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Abstract: Anaplastic Lymphoma Kinase (ALK)-positive Anaplastic Large Cell Lymphoma (ALCL),
remains one of the most curable cancers in the paediatric setting; multi-agent chemotherapy cures
approximately 65–90% of patients. Over the last two decades, major efforts have focused on
improving the survival rate by intensification of combination chemotherapy regimens and employing
stem cell transplantation for chemotherapy-resistant patients. More recently, several new and
‘renewed’ agents have offered the opportunity for a change in the paradigm for the management
of both chemo-sensitive and chemo-resistant forms of ALCL. The development of ALK inhibitors
following the identification of the EML4-ALK fusion gene in Non-Small Cell Lung Cancer (NSCLC)
has opened new possibilities for ALK-positive ALCL. The uniform expression of CD30 on the cell
surface of ALCL has given the opportunity for anti-CD30 antibody therapy. The re-evaluation of
vinblastine, which has shown remarkable activity as a single agent even in the face of relapsed
disease, has led to the consideration of a revised approach to frontline therapy. The advent of immune
therapies such as checkpoint inhibition has provided another option for the treatment of ALCL.
In fact, the number of potential new agents now presents a real challenge to the clinical community
that must prioritise those thought to offer the most promise for the future. In this review, we will
focus on the current status of paediatric ALCL therapy, explore how new and ‘renewed’ agents are
re-shaping the therapeutic landscape for ALCL, and identify the strategies being employed in the
next generation of clinical trials.

Keywords: ALCL99; alectinib; brentuximab vedotin (BV); crizotinib; nivolumab; NPM-ALK;
pediatric; SGN-35; Tyrosine Kinase Inhibitor (TKI)

1. Clinical Features of Paediatric Paediatric Anaplastic Large Cell Lymphoma (ALCL)

In 1982, Stein and colleagues described tumours composed of neoplastic cells of unknown origin found
in what was thought to be Hodgkin’s Lymphoma (HL), expressing the CD30 antigen (Ki-1, Ber-H2) [1,2].
These tumours were initially known as Ki-1 positive Large Cell Lymphomas. Further immunohistochemical
and molecular analysis of these tumours, particularly the identification of the characteristic translocation
(t(2;5)(p23;q35)) and the successful cloning of the breakpoints by Steve Morris and Tom Look in 1994,
revealing fusion of the nucleolar phosphoprotein gene nucleophosmin 1 (npm1) with that of a newly described
gene, anaplastic lymphoma kinase (alk), led to the establishment of the entity now known as ALK-positive
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Anaplastic Large Cell Lymphoma (ALCL) [3–6]. Over the next decade, the two provisional entities known
as ALK-positive and ALK-negative ALCL were proposed and finally adopted into the WHO classification
of tumours of haemopoietic and lymphoid tissues in 2017 [7].

ALCL is primarily a paediatric tumour, accounting for 15% of all paediatric Non-Hodgkin Lymphoma
(NHL) with an annual incidence ranging from 1.2 per million in children under 15 years, to approximately
2 per million in young adults between 25 and 34 years [8], translating to approximately 80 new paediatric
cases diagnosed in Europe each year [9]. Whilst the majority of paediatric cases are ALK-positive, about
50–60% of adult ALCL cases are ALK-negative. It is estimated that 90% of paediatric ALCL show
aberrant expression of ALK fusion proteins, and of those, approximately 75% express NPM-ALK [10].
ALK-positive ALCL show improved chemo-responsiveness and patients experience superior survival
compared with ALK-negative disease. Age may be a confounding factor in the poorer prognosis of
ALK-negative disease [11]. However, considering only paediatric cases, overall survival (OS) rates are
still higher for ALK-positive paediatric patients than for ALK-negative ones, with an event-free survival
(EFS) of 65–75% for ALK-positive ALCL depending on the treatment regimen, compared to 15–46% for
ALK-negative ALCL [12–15].

2. Frontline Treatment for Paediatric ALCL

Fortunately, paediatric ALCL patients are relatively chemo-sensitive with high response rates to diverse
chemotherapy regimens, as proven by various studies; EFS and OS vary between 65% and 75%, and 70%
and 90%, respectively, independent of treatment duration, drugs used, or their dosages (Table 1) [13–18].

Table 1. Treatment outcomes for paediatric patients with Anaplastic Large Cell Lymphoma (ALCL)
after frontline multi-agent chemotherapy with or without methotrexate (MTX) or vinblastine (VBL).
IDM-HiDAC = intermediate dose MTX-high-dose cytarabine, Chemo. = multi-agent chemotherapy.

Therapy Study Designation Paediatric
Patients

Treatment
Duration
(Months)

EFS
(Year)

OS
(Year) Grade 3/4 Toxicity Ref.

Chemo.

NHL-BFM83, 86 62 2–5 81% (9) 83% (9) N/A [19]

HM89 82 8 66% (3) 83% (3) N/A [13]

UKCCSG-B-NHL-9001,
-9002/9602, -9003 72 N/A 59% (5) 65% (5) One toxic death [18]

POG9315 (APO arm) 85 11 71% (5) 88% (4) neutropenia/
thrombocytopenia (35%) [16]

POG9315 (IDM-HiDAC
arm) 90 11 71% (4) 88% (4) neutropenia/

thrombocytopenia (70%) [16]

CCG-5941 86 11 68% (5) 80% (5)
neutropenia (82%),

thrombocytopenia (66%),
anaemia (38%)

[17]

LNH-92 55 11 69% (5) 74% (5) neutropenia, hepatic
events [20]

NHL-BFM90 (K1 arm) 9 2–3 100% (5) N/A N/A [15]

NHL-BFM90 (K2 arm) 65 2–3 73% (5) N/A N/A [15]

NHL-BFM90 (K3 arm) 14 4–5 76% (5) N/A N/A [15]

EICNHL-ALCL99
(MTX1-arm) 175 4–5 74% (2) 90% (2)

hematologic toxicity
(79%), infection (50%),

stomatitis (21%)
[10]

EICNHL-ALCL99
(MTX3-arm) 177 4–5 75% (2) 95% (2)

hematologic toxicity
(64%), infection (32%),

stomatitis (6%)
[10]

Chemo.
+ VBL

HM91 82 7 66% (3) 83% (3) N/A [13]

EICNHL-ALCL99-VBL 110 17–18 70% (2) 94% (2) neutropenia (29%) [21]

ANHL0131 (APO arm) 64 12 74% (3) 84% (3) neutropenia (39%),
infections (22%) [22]

ANHL0131 (APV arm) 61 12 79% (3) 86% (3) neutropenia (84%),
infections (43%) [22]
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Given that ALCL was not recognised as a distinct form of NHL until 1989, most patients prior to
this time would have been treated as B or T-cell NHL. The NHL-Berlin-Frankfurt-Münster (NHL-BFM)
working group enrolled paediatric patients with B or T cell NHL into three different trials: NHL-BFM83,
NHL-BFM86, or NHL-BFM90 [15,19,23]. Though the trials were not primarily aimed at ALCL,
a retrospective analysis revealed an 83% 9-year EFS, and an OS of 81% for CD30-positive ALCL
patients [19]. NHL-BFM90 was the first trial to include a treatment arm specifically for ALCL, although
presence of the ALK translocation was not used as an inclusion criteria [15]. The treatment protocol
was based on the previous NHL-BFM studies (Table 2).

Table 2. Treatment strategies for childhood ALCL. ARA-C = cytarabine; BV = brentuximab vedotin;
Cyc = cyclophosphamide; CZ = crizotinib; Daun = daunorobicin; Doxo = doxorubicin; Eto = etoposide;
IDM-HiDAC = intermediate dose MTX high-dose Cytarabine; Ifo = ifosfamide; I/T = intrathecal; IV
= Intravenous; MTX = methotrexate; TT = topotecan; VBL = vinblastine; VCR = vincristine; VND =
Vindesine. Not detailed in the table: prednisone, prednisolone, dexamethasone and food supplements.
* Randomized into MTX1 or MTX3 arm. Shaded area indicates drugs used in the protocol.

Trial Acronym Other Cyc Ifo Doxo Eto MTX
(I/T)

MTX
(IV)

ARA-C
(IV)

ARA-C
(I/T) VCR VND VBL Ref.

HM89 [13]

HM91 [13]

NHL-BFM90 (K1/2 arm) [15]

NHL-BFM90 (K3 arm) [15]

POG9315 (APO arm) [16]

POG9315 (IDM-HiDAC arm) [16]

CCG-5941 [17]

LNH-92 +Daun [20]

NHL-BFM95 (R1/2) [24]

NHL-BFM95 (R3/4) [24]

EICNHL-ALCL99 (MTX1-arm) [10]

EICNHL-ALCL99 (MTX3-arm) [10]

EICNHL-ALCL99-VBL * [21]

ANHL0131 (APO arm) [22]

ANHL0131 (APV arm) [22]

COG-ADVL1212 (Course A/C/D) +CZ +TT [25]

COG-ADVL1212 (Course B) +CZ [25]

COG-ANHL12P1 (Course A) +CZ/BV [26]

COG-ANHL12P1 (Course B) +CZ/BV [26]

Patients were enrolled into one of three arms according to disease stage: arm K1 for stages I
and II if completely resected (nine patients), K2 for stage II non-resected and stage III (65 patients),
and K3 for stage IV (14 patients). Because CD30-positive ALCL resembled B-cell NHL closely, the first
protocol trialled was that used for B-cell NHL, which used methotrexate. Thus, the arms K1 to K3
tested increasing doses of methotrexate. NHL-BFM90 led to a 5-year EFS of 100%, 73%, and 79%
respectively for arms K1, K2, and K3. The treatment regimen lasted between 2 and 5 months compared
to 7 or 8 months respectively for HM89 and HM91 (Table 1), which are both protocols that were tested
by the French Society for Paediatric Oncology (SFOP) at that time. As a result, and because the drug
doses were comparatively lower—all with comparable EFS rates—the NHL-BFM working group
recommended its NHL-BFM90 protocol as standard therapy for ALCL [13,15,27,28].

Given the high risk of short-term side effects associated with methotrexate such as oral and
gastrointestinal mucositis, sometimes leading to sepsis and toxic death [24], lower concentrations
of methotrexate administered in shorter pulses were investigated in the subsequent NHL-BFM95
trial (Table 2). NHL-BFM95 stratified patients into low risk (stages I and II, arms R1 and R2) and
high-risk patients (stages III and IV, arms R3 and R4). Patients in arms R1/R2 and R3/R4 were treated
with 1 g/m2 and 5 g/m2 methotrexate infusions, respectively. In both cases, half the patients were
randomized to receive the infusion over 4 h, whilst the other half were given the infusion over 24 h.
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The trial found that the 4-h infusion and the 1 g/m2 dose were not inferior but were less toxic than the
24-h infusion and 5 g/m2 injection [24].

The European Inter-group for Childhood Non-Hodgkin Lymphoma (EICNHL) launched the first
international randomized trial for ALCL patients under 22 years of age, regardless of ALK status
in 1999—the ALCL99 trial (NCT00006455) [10,29,30]. ALCL99 enrolled 352 children over 7 years in
11 European countries and Japan. The trial tested four different protocols aiming to achieve three
main goals: to lower the amount of methotrexate required, to rid the protocol of intrathecal injections,
and to test whether vinblastine could be a valuable addition to the protocol. Patients were randomly
enrolled into arms MTX1 and MTX3, which tested the NHL-BFM90 backbone with a 24-h low-dose
(1 g/m2) methotrexate infusion (without intrathecal injections) and intermediate-dose (3 g/m2) 3-h
methotrexate infusion (with intrathecal injections), respectively. The trial achieved a 2-year EFS of 74.1%
and a 2-year OS of 92.5%, and found that the MTX3 arm using a higher dose, but a shorter infusion
time for methotrexate was overall less toxic than the MTX1 arm [10,12–15,31]. Thus, the investigators
recommended using short-pulse, high-dose methotrexate without intrathecal injections for reduced
toxicity and improved quality of life. This has become the chemotherapy regimen referred to hereafter
as ALCL99 [10,31,32].

Besides the observed short-term toxicity, relapse following ALCL99 was comparable with previous
trials (HM89, HM91, NHL-BFM83, NHL-BFM86, and NHL-BFM90) averaging at 20–40% with
some children experiencing multiple events [10]. However, whilst these children tend to remain
chemo-sensitive, they still suffer the long-term side effects of toxic chemotherapy [31].

2.1. Vinblastine: Potential New Paradigm

Two small retrospective studies conducted by the SFOP showed that vinblastine could reduce the
risk of treatment failure, even for patients who had relapsed on chemotherapy [33,34]. Hence, as part
of the ALCL99 protocol, vinblastine was investigated in high-risk patients (those with mediastinal,
lung, liver, or spleen involvement, or biopsy-proven skin lesions) who were eligible for the sub-trial,
ALCL99-VBL (Tables 1 and 2). High-risk patients were first randomized into one of MTX1-VBL or
MTX3-VBL arms, and then half were randomly selected to receive weekly Vinblastine at 6 mg/m2,
in addition to the MTX1 or MTX3 protocol they were already in, followed by weekly vinblastine-only
injections for 1 year on its own as a maintenance treatment [21]. Results showed a significant
improvement over the first year of treatment with regard to EFS, but no significant difference overall
with relapse being delayed rather than prevented [21]. Vinblastine was also investigated as frontline
therapy in the Children’s Oncology Group (COG) trial ANHL0131 (NCT00059839), in addition to the
chemotherapy backbone (APO: doxorubicin, prednisone, vincristine, methotrexate, 6-mercaptopurine).
Similar to the European trial, it did not find any significant difference between 3-year OS or EFS as
compared to standard chemotherapy, but did show that weekly vinblastine administration was more
toxic than the ‘no vinblastine’ arm [22]. For both ANHL0131 and ALCL99-VBL, the vinblastine dose
started at 6 mg/m2, but had to be reduced to 4 mg/m2 due to toxicity in the majority of patients
(41/61).

However, mainly in the context of relapsed disease, accumulating evidence suggests
that vinblastine has unusual efficacy as a single agent in ALCL when given for prolonged
durations [21,33,34]. The EICNHL-ALCL-RELAPSE trial included an arm that recruited patients
with late relapse (more than 12 months from initial diagnosis) and CD3-negative ALCL treated with
single agent weekly vinblastine for 24 weeks. A first abstract in the British Journal of Haematology
reports that vinblastine achieved both high survival rates and length of remission, sometimes for the
entire 24 months duration of the treatment [35].

This experience with single agent vinblastine in relapse therapy suggested that low-dose,
long-term, single-agent vinblastine could be as effective as is standard short-term multi-agent
chemotherapy in low risk patients. Therefore, proposals are in place to investigate the efficacy of
single-agent vinblastine in a new frontline trial for paediatric ALCL. EICNHL proposes to investigate
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vinblastine as a single-agent frontline treatment in patients negative for minimal disseminated disease
(MDD), a prognostic factor previously associated with a lower risk of treatment failure [36,37].
The goal is to assess whether vinblastine could replace the ALCL99 protocol, at least for low risk
patients—though it may not improve the OS and EFS rates, the anticipation is that it will be less
toxic overall. Patients who can be cured by vinblastine are spared both acute (stomatitis, neutropenia,
infections, 1–2% treatment related mortality) and late (risk of secondary malignancies, infertility,
cardiac toxicity, obesity, metabolic syndrome) toxicity of the multi-agent chemotherapy which includes
etoposide, alkylators, and anthracyclines. A further advantage for single agent vinblastine therapy
is that patients can be treated as outpatients. Unfortunately, the long duration of the treatment
protocol with weekly hospital visits for 2 years may prove to be a logistical barrier. In addition,
this could provide a low toxicity chemotherapy backbone forming a new basis to study the addition of
targeted therapies.

2.2. Development of Targeted Agents for Frontline Therapy

2.2.1. ALK Inhibition

With EFS and OS rates having barely changed since the NHL-BFM first tested its B-cell NHL
protocol on ALCL patients in the 1980s, there is a clear need for new, less toxic therapies for patients in
all risk groups (Table 3).

Table 3. Past, ongoing, and planned clinical trials for paediatric ALCL. Allo = allogeneic; AC = alectinib;
auto = autologous; BEAM = carbustine, etoposide, cytarabine and melphalan; BV = brentuximab vedotin;
CR = ceritinib; CZ = crizotinib; Cyc = cyclophosphamide; ARA-C = cytarabine; Dexa = Dexamethasone;
Doxo = doxorubicin; Eto = etoposide; Ifo = ifosfamide; MTX = methotrexate; SCT = stem cell transplantation;
TT = topotecan; VBL = vinblastine; VCR = vincristine. * as stated on the ClinicalTrials.gov webpage.

Stage ClinicalTrials.gov
Identifier Trial Acronym Treatment Phase Time

Frame* Location No
* Ref.

Fr
on

t-
lin

e

NCT00006455 EICNHL-ALCL99
ALCL99 (Cyc, MTX,
Ifo, Eto, ARA-C,
Doxo) +/− VBL

III 1999–2005 Europe,
Japan 487 [21,31]

NCT00059839 COG-ANHL0131 APO (Doxo, MTX,
VCR) +/− VBL III 2003–2014 USA 125 [22]

NCT01979536 COG-ANHL12P1

CZ/BV + (Dexa, Ifo,
MTX, ARA-C,
Eto)/(Dexa, MTX,
Cyc, Doxo)

II 2013–2020 USA 140 [26]

NCT02729961 NCI-2016-00396 BV+CR I/II 2017–2023 USA 30 [38]

R
el

ap
se

NCT00317408 EICNHL-ALCL-
RELAPSE

Allo SCT/BEAM-
conditioning + auto
SCT/VBL

N/A 2004–2014 Europe 96 [39]

NCT00354107 COG-ANHL06P1 SGN-30, Ifo,
Carboplatin, Eto I/II 2007–2010 USA 5 [40]

NCT01492088 C25002 BV I/II 2012–2018 Worldwide 36 [41]

NCT00939770 COG-ADVL0912 CZ I 2009–2020 USA 26 [42,43]

NCT01606878 COG-ADVL1212 CZ + (Cyc, TT)/
(VCR, Dexa, Doxo) I 2013–2018 USA 65 [25]

N/A UMIN000016991 AC II 2015–2020 Japan 10 [44,45]

N/A UMIN000028075 CZ I/II 2017–2022 Japan 23 [46]

N/A ITCC053/CRISP CZ +/− VBL IB 2016–2021 Europe 82 [47]

N/A EICNHL-ALCL-
Nivo Nivolumab II Planned Europe 38 [48]

ALK is an ideal drug target particularly as endogenous expression of ALK is limited to neuronal
cells during neonatal development [49] which should limit side-effects. However, initial interest in

ClinicalTrials.gov
ClinicalTrials.gov
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the development of ALK inhibitors was largely non-existent amongst pharmaceutical companies
due to not only the favourable survival rates of these patients, but also its orphan disease status.
Over a decade after the description of ALK in ALCL, it was identified to be fused to EML4 in 6.7%
of Non-Small Cell Lung Cancer (NSCLC) patients as a result of a chromosomal inversion [50] and
subsequently the development of ALK inhibitors began. The first phase I clinical trial of Pfizer’s
ALK/MET/ROS1 inhibitor, crizotinib, was initiated in 2008 [51]. Other ALK inhibitors have followed,
and since crizotinib’s FDA approval in 2011 for advanced ALK-positive NSCLC, ceritinib (Novartis)
and alectinib (Hoffmann-La Roche) were likewise approved in 2014 and 2015, respectively [52–54].
Two more ALK inhibitors—lorlatinib (Pfizer) and brigatinib (Takeda)—have recently been granted
breakthrough therapy designation and FDA-accelerated approval respectively [55]. As usual, there is
a necessary lag in the application of novel agents to a paediatric population but these drugs have been
slowly filtering through to the treatment of ALCL and other ALK-related malignancies in children.

In Europe, the EICNHL is planning to trial an ALK inhibitor in combination with the ALCL99
backbone as frontline treatment in a phase I safety study. Unfortunately, so far, no ALK inhibitor
has been selected or agreed for use in this study [56], although crizotinib is the obvious candidate
due to its longer history of use in adults, proven safety, and efficacy in ALK-positive NSCLC. Indeed,
crizotinib and combination chemotherapy have already been tested in a phase I trial in children with
ALK-related malignancies (NCT01606878), and a trial for adults with ALK-positive ALCL is underway
(NCT02419287), and final toxicity data will soon be available from the phase II trial of crizotinib
administered in combination with multi-agent chemotherapy in the USA (NCT01979536, Table 3).

The other potential candidate is ceritinib, although its use is associated with significant toxicities,
which may limit its application in a paediatric population; the drug has shown severe gastrointestinal
toxicity in 14% of NSCLC patients with diarrhoea, nausea, vomiting, or abdominal pain occurring
in 95% of 925 NSCLC patients [57]. However, ceritinib has shown long-lasting responses in three
ALK-positive adult ALCL patients who relapsed after anthracycline-based chemotherapy and were
included in the expansion cohort of the phase I ASCEND-1 trial (NCT01283516). At the time of the
report, patients were still on ceritinib treatment with durations ranging from 20 to 26 months [58].
Likewise, a phase I dose escalation trial of single-agent ceritinib in paediatric patients with
ALK-expressing malignancies (NCT01742286), showed two out of two ALK-positive ALCL patients
to achieve a complete response [59]. Currently, the results of a rare indications, phase II, open-label,
multi-centre, multi-arm study (ASCEND-10, NCT02465528) which recruits patients starting from
1 year of age diagnosed with an ALK-positive malignancy other than NSCLC, are expected in
2019 [60]. Interestingly, a phase I/II open-label dose-finding study of ceritinib combined with
brentuximab vedotin (BV; discussed later in this review) for frontline treatment of ALK-positive
ALCL patients 12 years and older, is planned to open to recruitment in 2018 (NCT02729961). This trial
will provide important information regarding new targeted agent combination strategies not involving
standard chemotherapy.

Other ALK inhibitors are at earlier stages of development for the treatment of adults with
ALK-positive malignancies other than NSCLC and therefore are likely to be slower in percolating
through to the treatment of paediatric populations. For example, alectinib, lorlatinib, brigatinib and
entrectinib (Ignyta) have shown promising results in ALK-positive NSCLC but have not yet been
sufficiently tested in the paediatric setting and long-term toxicities are unknown. The advantage of
these ALK inhibitors over crizotinib and ceritinib is that they are able to cross the blood–brain barrier
and as such are active against CNS disease [61–65]. However, unlike advanced ALK-positive NSCLC,
which is characterized by a high risk of CNS metastases and a high frequency of brain metastases at
diagnosis [66], paediatric ALCL patients have a low risk of CNS progression [67].

2.2.2. Targeting CD30

The consistent expression of CD30 (a protein expressed almost exclusively on activated B and
T cells) in ALCL provides another therapeutic target [68,69]. One of the earliest attempts was the
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development of an anti-CD30 monoclonal antibody called BerH2 and a single-chain variable fragment
(scFv) linked to immunotoxins saporin-6 and pseudomonas exotoxin A, respectively [70,71]. A few
other such therapies have since been trialled in various types of HL with some success [72], but the
high reported toxicities make this unsuitable for ALCL. A similar approach that utilized an iodine-131
labelled murine anti-CD30 monoclonal antibody in HL achieved partial remissions [73], however
toxicity was again found to be a barrier.

The first mouse–human chimeric anti-CD30 antibody, SGN-30, was developed by Seattle Genetics
and tested in a phase I/II pilot study in combination with ifosfamide, carboplatin, and etoposide (ICE)
in five children with recurrent ALCL (COG-ANHL06P1, NCT00354107). However, serious adverse
events (pleural effusion, ascites, decrease in neutrophil count, capillary leak syndrome, skin and
subcutaneous tissue disorders) led to the termination of the study [40].

The activity of SGN-30 was further improved by conjugation with the anti-microtubule agent
monomethylauristatin E (MMAE). The resulting antibody–drug conjugate brentuximab vedotin (BV,
SGN-35) binds to CD30 on the cell surface initiating its internalization, followed by trafficking to
the lysosomal compartment with eventual release of MMAE via proteolytic cleavage [74]. Binding
of MMAE to tubulin disrupts the microtubule network, induces cell cycle arrest and results in
apoptotic death of the CD30-expressing cell [75]. An initial phase I clinical trial of BV (NCT00430846)
was conducted in adults with CD30-positive lymphomas that had failed systemic chemotherapy.
The two adult patients with ALCL enrolled into the study both achieved complete remission (CR) [76].
Following this, a phase II study of BV in adults with relapsed or refractory systemic ALK-positive and
ALK-negative ALCL was initiated (NCT00866047) [77], and in 2011 BV was approved by the FDA for
the treatment of relapsed ALCL following failure of at least one multi-agent chemotherapy protocol
for adults. An update to this pivotal study provided 4-year follow-up of patients included in the phase
II study; the median Progression-Free Survival (PFS) was 20 months (25.5 months for ALK-positive
ALCL patients) and the 4-year OS was 64% [78].

Both crizotinib and BV have since been studied in adults with HL (NCT02243436,
NCT01578967, NCT02098512, NCT01874054, NCT00848926 NCT02298283, NCT02227433, NCT02939014,
NCT01716806) [79–82] and NHL (NCT01805037, NCT02462538, NCT01657331, NCT01909934,
NCT01352520, NCT01950364, NCT02139592, NCT02419287, NCT02939014, NCT00866047, NCT02280785)
in the frontline setting with promising results. Additionally, BV and combination chemotherapy has been
trialled in young patients with newly diagnosed HL (NCT02166463).

This has encouraged a randomized phase II COG study for paediatric ALCL, (COG-ANHL12P1,
NCT01979536) that compares the use of BV to the ALK inhibitor crizotinib administered with a common
chemotherapy backbone (Table 3). This study is the first frontline trial of these targeted agents
specifically for children with ALCL. The trial enrolled its first patient in 2013 and final results will be
available by the end of 2020; to date, 110 patients have been enrolled and updated study results were
presented at the EICNHL meeting in November 2017. The BV arm has been closed, as recruitment is
now complete. The crizotinib arm has re-opened at the time of the writing of this manuscript following
an FDA-imposed clinical hold in March 2017 due to the occurrence of thrombosis. Catheter-related
clots and pulmonary emboli occurred in 10 patients, after which the study committee initially closed
the crizotinib arm. This is surprising as the robust and sustained activity observed in the Phase I/II
COG-ADVL0912 trial (discussed below) provided the rationale for combining crizotinib at 165 mg/m2

with conventional chemotherapy. The only grade 3 or 4 drug-related adverse event was a decrease
in neutrophil count occurring in 83% of patients treated at 165 mg/m2 crizotinib [83]. In the future,
single-agent vinblastine may provide a lower toxicity chemotherapy backbone as mentioned above.
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3. Treatment of Refractory/Relapsed Disease

3.1. Stem Cell Transplantation

Consolidation of chemotherapy response in relapsed and refractory ALCL with allogeneic Stem
Cell Transplantation (SCT) remains a subject without international consensus. Some retrospective
studies suggest that OS is over 50% for ALK-positive ALCL relapse cases when treated with SCT or
continued multi-agent chemotherapy [34,84,85], the former being the standard of care for children or
adolescents with some other forms of relapsed or refractory NHL (except ALCL) [84,85]. Therefore,
one treatment option for relapsed or refractory ALCL is SCT and four retrospective studies have been
conducted to assess its efficacy.

The NHL-BFM working group was the first to report that SCT is a viable option for relapsed
ALCL looking back at ALCL patients treated in the 1990s [85,86]. Two retrospective Japanese studies
also found that relapsed or refractory ALCL patients who received SCT did better than those who
did not [84,87]. For all cases, the risk profile was acceptably low, but this approach was reserved
for high-risk ALCL patients who had already relapsed at least once. One of the Japanese studies in
particular showed that 30% of relapsed patients treated with chemotherapy alone relapsed a second
time, which is similar to the 37.5% of patients treated with autologous SCT who relapsed a second
time [84]. However, the patient group was fairly small with only 10 and eight patients treated in each
arm, respectively. Allogeneic SCT was more successful, with all six patients entering remission [84].
Collectively, these limited data suggest that allogeneic SCT is superior to autologous SCT [87].
A retrospective French trial also showed mixed results, with 45% of patients treated with autologous
SCT entering remission, as opposed to 52% treated with chemotherapy alone [33]. However, there is no
consensus on the type of conditioning that should be used for allogeneic SCT with varying regimens
of radiotherapy being the more commonly used options.

Two clinical trials are ongoing to test the efficacy of SCT against other second- or third-line
treatment options. The planned Japanese trial, JPSLG-ALCL-RIC-18, will specifically test the efficacy
of Reduced Intensity Conditioning (RIC) to prepare for allogeneic SCT. EICNHL-ALCL-RELAPSE
(NCT00317408), which, between 2004 and 2011 enrolled 80 relapsed paediatric ALCL patients sorted
into three arms depending on CD3 expression and time to relapse, tested allogeneic SCT and autologous
SCT with and without BEAM (carmustine, etoposide, cytarabine and melphalan)-conditioning in
comparison to single agent, weekly vinblastine. EICNHL-ALCL-RELAPSE has no published results.
In conclusion, none of the therapies trialled to date have provided decisive data as to how to treat
relapsed disease, although the results of the Japanese trial are awaited to inform on the importance of
different conditioning regimens.

3.2. Development of Future Treatments for Relapsed/Refractory ALCL

3.2.1. ALK Inhibition

As mentioned above, COG was the first group to open a phase I dose-escalation study of an ALK
inhibitor (COG-ADVL0912, NCT00939770) [42]. In this trial, crizotinib was administered orally,
twice daily in 28-day cycles as a single agent for an indefinite duration, to paediatric patients with
ALK-positive relapsed or refractory ALCL that had received at least one course of chemotherapy [43].
Those with relapsed ALCL achieved an objective response rate of 90% [83] when treated with the
recommended phase II dose (RP2D) of 280 mg/m2 [42]. The 10 patients treated at the RP2D in phase I
of the study were included in the phase II study. The additional 10 patients that were treated at the
RP2D were specifically enrolled in the phase II expansion cohort. Of the 20 patients included in the
phase II expansion cohort, 13 responded within 4 weeks of initiating treatment and the remaining
seven within 5 to 8 weeks with CR in 18 out of 20 patients. Two patients came off therapy after
experiencing adverse events (AEs), three after experiencing disease progression, 12 proceeded to SCT
and two continued on crizotinib [83].
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Three years later, a phase I study was also initiated by COG (COG-ADVL1212, NCT01606878)
combining crizotinib with conventional chemotherapy for relapsed or refractory paediatric ALCL
patients, which provided the requisite safety and tolerability data for eventually integrating crizotinib
into frontline treatment regimens for children with ALCL. Preliminary study results are expected
in 2018.

In Japan, trials UMIN000016991 and UMIN000028075 are investigating the efficacy and safety
of alectinib or crizotinib, respectively, as monotherapies for children with recurrent or refractory
ALK-positive ALCL [44–46]. UMIN000016991 is the first trial to test an ALK inhibitor other than
crizotinib in paediatric ALCL patients. Results for UMIN000016991 and UMIN000028075 are expected
in 2020 and 2022, respectively.

In Europe, an Innovative Therapies for Children with Cancer (ITCC) trial is in progress to treat
relapsed patients with ALK-, ROS1- or MET-positive malignancies (not limited to ALCL) with crizotinib
either as a single agent or in combination with vinblastine (only patients with ALCL) in a phase IB safety
study. The trial (ITCC053, CRISP) will determine the RP2D of vinblastine in combination with crizotinib
by dose escalation of vinblastine with a fixed dose of 150 mg/m2 crizotinib. Patients will receive
a maximum of 24 cycles corresponding to two years of therapy. Salvage of non-responding patients is
anticipated by transfer of patients to the EICNHL-ALCL-Nivo trial discussed below (Figure 1).

Figure 1. Management of childhood Anaplastic Large Cell Lymphoma (ALCL). ALK AA = ALK
auto-antibody; BV = brentuximab vedotin; MDD = minimal disseminated disease; SCT = stem cell
transplantation; TKI = tyrosine kinase inhibitor; VBL = vinblastine.
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Even though the final results from the ALK inhibitor trials are still to come, single-agent crizotinib
has not yet proven curative, since abrupt relapses following crizotinib discontinuation have been
described in isolated cases [88], and no successful reported case of continuous CR after discontinuation
of treatment has been reported thus far. Hence, accumulating evidence suggests that ALK inhibitors
might have to be taken life-long and drug resistance is a distinct possibility that may require the cycling
of patients through different ALK inhibitors as is the case for NSCLC [89,90]. However, crizotinib is
currently used to induce second remission in adult relapsed/refractory ALKpositive ALCL patients
before allogeneic or autologous SCT [91] (Figure 1).

3.2.2. Targeting CD30

As mentioned earlier, following encouraging results from adult ALCL trials (NCT00430846,
NCT00866047), a company-sponsored international phase I/II study of BV in paediatric patients with
relapsed or refractory systemic ALCL (NCT01492088) was opened in 2012. Participants received BV at
1.4 mg/kg in Phase I and 1.8 mg/kg in Phase II, on day 1 of every 21-day cycle for up to 16 cycles.
Of the 17 ALCL patients recruited into the phase II expansion cohort of the trial, the Overall Response
Rate was 53% and time to progression was 6.3 months. However, 13 patients did not complete the
study; one patient died and 12 patients dropped out for unspecified reasons. The most common
reported drug-related AE was a decrease in neutrophil and lymphocyte counts with one patient
experiencing pyrexia and four of 17 patients developing neutralizing anti-therapeutic antibodies [41].
Additionally, a major clinical consideration is cumulative peripheral neuropathy that was observed in
36% of patients recruited into the dose finding study of BV for adults with CD30-positive hematologic
malignancies (NCT00430846) [92]. Given the neurologic side-effects of BV, prolonged treatment may
be difficult to manage in paediatric patients. Thus, this drug is currently mostly used as a bridge to
transplant in relapsed patients (Figure 1).

Interestingly, experimental treatment using imatinib, which inhibits enzymatic activity of
PDGFRA, PDGFRB, and c-KIT, resulted in the full remission of a refractory late-stage ALK-positive
ALCL patient [93]. This is yet another promising compound that is already being investigated in
combination with BV in adult ALK-positive ALCL patients (NCT02462538).

Another recent CD30 targeting therapy uses T-cells engineered to express CD30 Chimeric Antigen
Receptors (CAR-T cells). CAR-T cells have already been granted breakthrough designation by the FDA
for relapsed or refractory myeloma, and three clinical trials are currently ongoing in CD30-positive
relapsed lymphomas in adults (NCT02259556, NCT01316146, NCT02274584). Preliminary results for
eight [94] and 18 [95] patients have shown CAR-T cells to be reasonably safe and remissions of variable
lengths were achieved. However, the authors note a large number of adverse events and the safety
profile has yet to be tested in paediatric patients [96].

3.2.3. Immunotherapy

Accumulating evidence indicates that the immune system plays a major role in the pathogenesis of
ALK-positive ALCL [97,98]. Indeed, it has been shown that ALK-positive ALCL cell lines strongly express
the cell surface protein, Programmed Cell-Death Ligand 1 (PD-L1; CD274, B7-H1), as determined at both
the mRNA and protein levels [99]. Furthermore, immunostaining of ALK-positive ALCL primary patient
tumours showed strong PD-L1 expression [100]. Analysis revealed that PD-L1 expression is induced by the
chimeric NPM-ALK tyrosine kinase, via STAT3, confirming a unique function for NPM-ALK as a promoter
of immune evasion by inducing PD-L1 [100]. PD-1 and its ligands, PDL-1 and PDL-2, have been shown to
be involved in immune suppression with increased expression of PD-1 leading to decreased activation of
reactive T-cells inhibiting the PI3K/Akt pathway on ligation by ligand [101–103].

These observations provided a strong rationale to use consolidative anti-PD1/PD-L1
immunotherapy for relapsed or refractory ALK-positive ALCL. Indeed, three case reports describe
a dramatic and durable response using the anti-PD1 monoclonal antibodies pembrolizumab (Merck,
Merck Kenilworth, NJ, USA) or nivolumab (Bristol-Myers Squibb, New York, NY, USA) for ALCL
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patients [104–106]. The first, an adult with ALK-negative ALCL was treated with pembrolizumab
following chemotherapy, BV and SCT [104]. The second, a 19-year-old ALK-positive ALCL patient was
treated with nivolumab following chemotherapy, BV, crizotinib, and SCT [105]. Finally, a case report
observed a similar dramatic response to nivolumab in a relapsed 17-year-old patient with ALK-positive
ALCL after two lines of treatment including chemotherapy and crizotinib [106]. While the 19-year
old developed grade 2 pneumonitis, there are no reports of AEs for the other two patients, pointing
towards an acceptable toxicity profile. Only the 17-year-old patient was tested for PD-1 expression
on tumour cells by immunostaining showing strong expression throughout the tumour. It should
be noted that several publications have shown that PD-1 inhibitors can provoke a response even in
tumours which do not have strong PD-1 expression, but also that they sometimes fail in tumours which
do show strong PD-1 expression [107]. The lack of an obvious biomarker for PD-1 inhibitor efficacy
may make clinical decisions difficult when assessing therapeutic approaches for relapsed disease.

With a clear need for a randomized trial of anti-PD-1 monoclonal antibodies in refractory or
relapsed ALCL, ALCL-Nivo has been designed as a phase II trial of nivolumab in paediatric and
adult relapsed or refractory ALK-positive ALCL patients. The trial will test the objective response to
nivolumab at 24 weeks, for patients who have already relapsed on chemotherapy and either an ALK
inhibitor or BV. Should there be sufficient response in this first cohort, the trial also plans to test
nivolumab as a consolidation therapy after CR of at least two months as a replacement to SCT. Patients
in both cohorts are to be treated with 24 months of Nivolumab at 3 mg/kg every two weeks, and every
four weeks after the first eight weeks for patients in the second cohort [48].

Another immunotherapy under investigation, potentially of therapeutic use for ALCL at all
stages, is the application of cancer vaccines. Strong expression of the ALK chimera in the majority
of ALCL cases combined with near-absent expression of ALK in healthy tissues makes it an ideal
candidate for vaccine development. Autoantibodies against ALK as well as cytotoxic and helper
T cell responses to ALK have been detected in patients with ALK-positive ALCL both at diagnosis
and during remission with a significant inverse correlation between ALK-autoantibody titres and
the incidence of relapse [108,109]. Vaccination using a truncated cDNA of ALK has been reported to
induce potent and long-lasting protection from local and systemic lymphoma growth in mice [110,111],
but this has yet to be trialled in ALCL patients.

4. Conclusions

ALCL is susceptible to multiple targeted agents, which highlights the potential to transform the
therapy and outcomes for this disease. However, ALCL is a rare lymphoma and the increasing number
of possible agents presents a challenge for investigators to select the most appropriate ones. This review
has highlighted the agents at the forefront of current investigations in paediatric ALCL. It is likely
that, due to the increasing number of malignancies in which aberrant ALK signalling is implicated,
there will be yet more targeted and other drugs developed that could be relevant to paediatric ALCL.
This should provide the possibility for continued refinement of therapy to achieve the highest survival
rates with the least toxicity.
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