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Abstract: To investigate the effect of soy protein isolate on the quality of whole-grain flat rice noodles,
the texture as well as the cooking properties and flavor of flat rice noodles, whole-grain flat rice
noodles and whole-grain flat rice noodles with soy protein isolate were investigated. Among the
three tested rice noodles, whole-grain flat rice noodles with soy protein isolate showed the highest
cohesiveness, adhesiveness, resilience, and springiness. Compared to the flat rice noodles and
whole-grain flat rice noodles, whole-grain flat rice noodles with soy protein isolate increased their
moisture content and water absorption, whereas the opposite trend was observed for their cooking
loss. The electronic nose analysis showed stronger response values at W5S, W1W, and W2W. Solid
phase micro extraction and gas chromatography–mass spectrometry results showed that aldehydes
are the main volatile compounds in whole-grain flat rice noodles and whole-grain flat rice noodles
with soy protein isolate. Moreover, seven more volatile compounds were detected in whole-grain flat
rice noodles with soy protein isolate compared to flat rice noodles and whole-grain flat rice noodles.
The whole-grain flat noodles with the addition of SPI are more sensory acceptable. Thus, soy protein
isolate, as a natural and safe additive, could be used to improve the quality and enrich the flavor of
whole-grain flat rice noodles.

Keywords: whole-grain product; flat rice noodles; soy protein isolate; quality; flavor

1. Introduction

Flat rice noodles (FRN), produced from Indica polished rice, are a very popular staple
food in Southeast Asian countries. Brown rice is a de-hulled grain consisting of bran,
embryo, and endosperm layers, which is rich in dietary fibers, phenolics, vitamins, and
minerals [1]. According to epidemiological studies, the increased consumption of whole
grains and/or whole grain products has been associated with reduced risk of chronic
diseases, including cardiovascular disease, type II diabetes, obesity, and cancer [2–4].
Therefore, the addition of rice bran into refined flat rice noodles to produce whole-grain
flat rice noodles is a suitable way to improve the nutritional quality of flat rice noodles.

Previous studies have reported that flat rice noodles made from whole-grain rice
showed poor texture properties and cooking qualities, because they have a rough sur-
face and are easy to break [5]. Many studies have focused on improving the quality of
whole-grain rice noodles involving different approaches such as slight milling, cellulase
enzymatic treatment [6], and heat-moisture treatment [7]. These methods are relatively
expensive. An appropriate amount of natural additives is another way to improve the
edible quality, textural properties, and nutritional quality of rice noodles. Previous studies
have demonstrated that the appropriate addition of wheat, pinto bean, polished rice, and
corn meal can improve the quality of rice noodles [8]. In recent years, soy protein isolate
(SPI) have received special attention due to their availability, well balanced amino-acid
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composition, health benefits, and ability to improve texture properties and retain water in
food products [9]. SPI is a complex mixture of proteins, mostly globulins with numerous
applications in meat analogues products [10], gluten-free foods, and cereal-based prod-
ucts [11]. SPI addition can improve the nutritional qualities, digestibility properties, and
other characteristics of banana pasta [12] and rice dough [13]. At present, there is no report
about the effect of SPI on the quality of flat rice noodles. Our preliminary experimental
results showed that with increasing SPI concentration from 0 to 9%, the breaking distance
of whole-grain flat rice noodles increased, whereas the opposite trend has been observed
with further increase of SPI concentration. Therefore, 9% SPI was used in this experiment.

Flavor is an important factor that affects the quality of rice products and their popular-
ity [14]. At present, there is no research on the flavor compounds of flat rice noodles, and
the change of flavor after SPI addition is still unclear. The electronic nose (E-nose) is an
efficient and simple tool for food flavor assessment. It usually consists of many sensitive
and high detection speed electronic chemical sensors [15]. Solid phase micro extraction
and gas chromatography–mass spectrometry (SPME/GC-MS) has gained popularity for
qualitative and quantitative analyses of volatile compounds [16]. The advantages of this
method are convenience, good reproducibility, high speed, low sample requirements, and
simple operation. However, neither SPME/GC-MS nor E-nose technology have been
reported to be used in the flavor analyses of flat rice noodles or SPI-added whole-grain flat
rice noodles.

For the improvement and development of whole grain brown flat rice noodles, the
objectives of this study were to investigate the effects of SPI on the texture properties,
cooking property, and flavor of whole-grain flat rice noodles.

2. Materials and Methods
2.1. Materials

A brown rice (Oryza sativa L.) cultivar (indica rice, Xingyue) was used in this study. It
was grown in Ningxiang (Hunan, China) during the 2017 growing season and harvested in
July. After being dehulled, brown rice grains were ground into polished rice and rice bran
by a milling machine (THU35C, Zuozhu Machinery Co. Ltd., Suzhou, China). Every 100 g
brown rice contains 7 g rice bran. They were stored in sealed polyethylene containers at
−4 ◦C. Soy protein isolate (Shansong Biological Products Co., Ltd. Linyi, China) contains
96% protein.

2.2. Preparation of Flat Rice Noodles

Flat rice noodles (FRN): The polished rice were soaked in excess tap water at 25 ◦C
for 4 h, and they were ground into rice slurry with a refiner (SY-12, Zhe Jiang Shark Food
Machingery Co., Ltd., Lishui, Zhejiang, China). The slurry was evenly poured on a stainless
steel stray and steamed at 100 ◦C for 6 min. The rice noodle sheet was removed from the
tray and cut into 20 cm × 1.5 cm strands.

Whole-grain flat rice noodles (WFRN): The polished rice was soaked in excess tap
water at 25 ◦C for 4 h, and they were ground into rice slurry with a refiner. Then, 100.00 g
rice slurry was mixed with 7.00 g rice bran. The remaining steps are the same as FRN.

Whole-grain flat rice noodles with soy protein isolate (WFRN-SPI): The polished rice
was soaked in excess tap water at 25 ◦C for 4 h, and they were ground into rice slurry
with a refiner. Then, 100.00 g rice slurry was mixed with 7.00 g rice bran and 9.00 g soy
protein isolate; the ratio was optimized by our laboratory. The remaining steps are the
same as FRN.

2.3. Textural Properties

The texture properties of three flat rice noodles were analyzed using a TA-XT 2i/5
Texture Analyzer (Stable Micro System Ltd., Godalming, England) as previously reported
with some modifications [17]. Three types of flat rice noodles with uniform shapes were
placed under the P/36R probe (36 mm diameter cylindrical probe). The parameters were
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set as follows, pre-test speed 2 mm/s, test speed 1 mm/s, return speed 5 mm/s, residence
time 5 s, 50% compression ratio, 0.05 N triggering force, and a 3 s compression interval.
Each sample was measured 10 times.

2.4. Cooking Properties

The cooking loss of the flat rice noodles was analyzed according to AACC procedure
66–50 [18]. After being boiled in 150 mL water for 1 min, 10 g flat rice noodles were
separated from the cooking water and then weighed. The cooking water was dried to a
constant weight in an oven at 105 ◦C. The cooking loss was indicated by the percentage
of solid loss during cooking. Rice noodle samples were prepared in triplicate. The water
absorption was analyzed according to a previous study with some modifications [19], and
it was given by the amount of weight gain by the flat rice noodles after cooking. The
increase in weight of the rice noodles on cooking was determined as the water uptake ratio
as a percentage. The moisture content was determined by direct drying method.

2.5. Scanning Electron Microscope (SEM)

The samples were then freeze-dried at −38 ◦C, 10 Pa, for 24 h and put on a circular
specimen stub and attached. The surface was sprayed with gold, and the samples were
observed using a Quanta FEG 250 SEM (FEI Co., Hillsboro, OR, USA). The external
microstructure of flat rice noodles was observed 2000 times. The detector was ETD. All
images were obtained at the accelerating voltage of 15 kV.

2.6. Electronic Nose Analysis

The measurement parameters were according to the procedures described by Chen [20]
with some modifications. Seven grams of flat rice noodles were placed in 150 mL headspace
bottles and stored at 4 ◦C for 1 h. Subsequently, an equilibration process was performed
at 25 ◦C for 30 min before electronic nose analysis (PEN3, Airsense, Germany). The
experiments were carried out fivefold.

2.7. SPME/GC-MS Analysis

The volatile properties of flat rice noodle samples were analyzed and identified
according to our previous study [21].

2.8. Sensory Evaluation

In order to test the acceptability of three kinds of flat rice noodles, a sensory evaluation
was carried out according to Cocci [22] with some modifications. A group of 30 trained
panelists (half was male and half was female) was invited to evaluate the sensory attributes.
Appearance, flavor, taste, hardness, resilience, smoothness, and viscosity, accounted for 15,
15, 15, 15, 15, 15 and 10 points of the total score respectively. “0” means “Extremely Dislike”
on this indicator, and full score (10 or 15) means “Extremely Like” on this indicator.

2.9. Statistical Analysis

Experiments were performed in triplicate, and the average value was expressed as the
mean ± standard deviation (SD) unless mentioned otherwise, which was calculated with
Origin 9.1 software (OriginLab Co., Northampton, MA, USA). Experimental data were
statistically analyzed by one-way analysis of variance (ANOVA) in SPSS 19.0 software
(IBM Co., Armonk, NY, USA), and p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Textural Properties

The cohesiveness, adhesiveness, resilience, and springiness values of flat rice noodles
are presented in Table 1. The results showed that the cohesiveness, adhesiveness, resilience,
and springiness values of WFRN were significantly lower than that of FRN (p < 0.05), while
no significant difference was observed for their hardness and chewiness values. Textural
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properties of noodle are mainly affected by the matrix structural network of starches,
glutens, other proteins, fibers, and other additional ingredients. The addition of rice
bran with high fiber content would weaken the formation of hydrogen bonds within the
noodle structure network, which leads to deterioration of textural properties [23]. Besides,
the reduction of amylose content may result in a decrease in gel properties and textural
properties of flat rice noodles [24].

Table 1. Textural properties of flat rice noodles.

Cohesiveness Adhesiveness
(N·s) Resilience Springiness Hardness (N) Chewiness(N)

FRN 0.76 ± 0.03 b −2.23 ± 0.55 b 0.507 ± 0.01 b 0.96 ± 0.01 b 51.30 ± 4.85 a 37.37 ± 3.26 a

WBRN 0.71 ± 0.03 a −1.57 ± 0.23 a 0.390 ± 0.01 a 0.91 ± 0.01 a 47.93 ± 6.11 a 32.17 ± 5.08 ab

WBRN -SPI 0.74 ± 0.04 b −1.87 ± 0.24 a 0.437 ± 0.01 ab 0.95 ± 0.01 b 35.42 ± 3.94 b 24.52 ± 3.17 b

FRN, WFRN, and WFRN-SPI represent the flat rice noodles, whole-grain flat rice noodles, and whole-grain flat rice noodles with soy
protein isolate, respectively; Means values ± standard deviation, n = 10. Different superscript letters in the same column are significantly
different at p < 0.05.

The cohesiveness and springiness of WFRN-SPI and FRN had no significant difference
(p > 0.05), while the hardness of WFRN-SPI was significantly lower than WFRN. Compared
to WFRN, FRN showed higher resilience and springiness values; this may be because rice
protein and starch formed a network structure. However, the fiber in rice bran hindered
the formation of hydrogen bonds within the WFRN. For WFRN-SPI, a porous honeycomb
network structure appeared on flat rice noodles; this may be because soy protein isolate
interacts with rice starch. Thus, similar textural properties of FRN and WFRN-SPI have
been observed. The hardness and chewiness of WFRN-SPI were significantly lower than
that of WFRN and FRN, due to the higher water holding capacity of SPI [25].

3.2. Cooking Properties

Cooking loss is an important index to reflect the cooking quality of flat rice noodles,
because the loss on cooking shows resistance to disintegration during cooking. Figure 1a–c
showed the cooking properties of the flat rice noodles. The cooking loss of FRN, WFRN
and WFRN-SPI was 1.95%, 3.83% and 2.11% respectively. Similar to previous reports [26],
the addition of wheat bran to noodles significantly increased the cooking loss of noodles.
This could be attributed to the destruction of the protein-starch network by the high fiber
content of bran, which allowed more of the gelatinized starch to leach from the noodles
during cooking [27]. However, no significant difference was observed between WFRN-SPI
and FRN. The cross-linking among protein molecules can create an extensive network that
acts as a barrier against water penetration [28].

Water absorption and the moisture content are correlated with the cooking properties
of starch-based noodles. The water absorption of FRN, WFRN, and WFRN-SPI was 23.41%,
15.99%, and 34.17% respectively. The water absorption of WFRN was significantly lower
than that of FRN; this result was in agreement with reports that insoluble dietary fiber
decreased the water absorption of noodle samples, due to the binding of water competes
with starch [29]. However, the water absorption of WFRN-SPI was significantly higher
than that of FRN and WFRN. The main reason for water absorption of flat rice noodles
is starch gelatinization, followed by protein hydration. SPI has good water absorption,
water retention, and expansion, due to many polar groups on the peptide chain skeleton of
SPI. It has also been reported that the water absorption of noodles decreased when the SPI
content was low, because the gluten network was strengthened [30].

The moisture content of FRN, WFRN, and WFRN-SPI was 60.09%, 59.78%, and 64.98%
respectively. The moisture content of WFRN-SPI was significantly higher than that of
FRN and WFRN, which was mainly attributed to the water absorption of SPI during
steam-cooking.
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3.3. SEM

The SEM of FRN, WFRN, and WFRN-SPI is presented in Figure 1d. There was a
network structure on the surface of FRN, but this phenomenon was not observed in WFRN.
However, the addition of SPI led to the network structure reappearing in WFRN-SPI.
Similar phenomena have been reported; after SPI was added to gluten-free rice spaghetti,
the SEM showed the more porosity at the surface, and the fluorescent micrograph showed
that the proteins were arranged neatly in starch [31]. The mixture of rice flour and SPI has
more dense and compact structure, which led to better cooking and texture quality [32].
SPI has the capacity to form a three-dimensional skeleton and make the microstructure
compact [33].

3.4. Electronic Nose Analysis

The results of electronic nose analysis of flat rice noodles are shown in Figure 2.
Principal component analysis (PCA) showed that the cumulative variance of the first
principal component (PC1) was 98.06%; the second principal component (PC2) was 2.89%;
and PC1 and PC2 accounted for 99.74% of the total variance. PCA images of the three flat
rice noodles samples did not overlap each other, indicating that they are different odors
and can be distinguished by electronic nose. With the addition of rice bran and SPI, the
distribution of volatile compounds in flat rice noodles changed along the direction of PC1.

Similar radar plots have been observed for the flavor of the three kinds of flat rice
noodles. They all had obvious response values at W5S (sensitive to NOx), W1W (sensitive
to sulfide and sulfur-containing organic compounds) and W2W (sensitive to aromatic
compounds and organic sulfides). The result was consistent with the analysis of flavor
compounds in rice noodles [34]. WFRN-SPI had the strongest response values of W5S,
W1W, and W2W, followed by WFRN and FRN. This finding suggested that the flavor
of nitrogen oxides, sulfide, sulfur-containing organic compounds, aromatic compounds,
and organic sulfur compounds was enhanced with addition of rice bran and SPI. Loading
analysis of volatile compounds from flat rice noodles showed that the contribution rates
of the first and second principal components in loading analysis were 96.06% and 2.89%
respectively, and the total contribution rate was 98.95%, indicating that the analysis results
contained the main sample information. The sensors W5S, W1W, and W2W made the
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biggest contribution to the first principal component, while the sensors W5S, W2W, and
W3C (sensitive to ammonia and aromatic compounds) made the biggest contribution to
the second principal component. The sensors W5S, W1W, and W2W are farthest from the
origin, so they played a key role in distinguishing the volatile compounds of three flat rice
noodles.
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3.5. Volatile Compound Analysis

The volatile components of flat rice noodles are presented in Table 2. Our measure-
ments of volatile components in FRN, WFRN, and WFRN-SPI showed 24, 34, and 41
components respectively. The types of volatile compounds were enhanced by the addition
of rice bran and SPI. The category distributions of volatile compounds from flat rice noodles
is shown in Figure 3.

Table 2. Volatile compound analysis of flat rice noodles.

Compounds
Relative Content (%)

FRN WFRN WFRN-SPI

Alcohols
2-Undecen-1-ol, (2E)- 36.40 a 0.49 b -

Dihydroterpineol 2.02 b 3.94 a 3.73 a

isomenthol 0.18 - -
1-Pentanol - 6.37 a 3.27 b

1-Octen-3-ol - 0.44 b 1.74 a

2-Decyn-1-ol - 1.95 -
3,5-Octadien-2-ol - 0.09 b 0.43 a

1-Octanol - 2.05 a 0.18 b

(2Z)-2-Octene-1-ol - - 0.13
2-Pentadecyn-1-ol - - 0.24

Linalool 0.20 a 0.22a -
2-Decen-1-ol, (2E)- - - 0.15

alpha-Terpineol - - 0.18
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Table 2. Cont.

Compounds
Relative Content (%)

FRN WFRN WFRN-SPI

Aldehydes
1-Nonanal 23.87 b 31.18 a 20.73 c

Hexanal - 25.26 b 30.96 a

2-Nonenal, (2E)- 1.25b 1.62 a 1.27 b

Decanal 4.67 a 2.90 b 2.85 b

Octanal 3.83 c 5.80 a 4.24 b

Heptanal - 2.72 b 3.63 a

Dodecanal 0.28 a 0.30 a 0.31 a

(E)-2-Octenal - 1.04 b 2.69 a

2,4-nonadienal - 0.22 a 0.23 a

trans-2-Decenal - 0.27 b 0.51 a

2,4-decadienal - - 2.81
4-Nonenal, (4E)- - - 0.18

Dodecyl aldehyde - - 0.39

Ketones
(1R)-trans-p-menthan-3-one 9.04 a 1.07 c 2.58 b

Geranylacetone 1.47 a 0.98 b 0.99 b

2-Dodecanone - 0.43 a 0.31 b

2-Heptanone - - 2.96
3,5-Octadien-2-one,(3E,5E)- - - 1.12
1-(3-Butyloxiranyl)ethanone - - 0.44

4-Nonenal, (4E)- - - 0.17
6-Methyl-5-hepten-2-one 1.75 - -

2-Nonanone - 0.26 -
5-methyl-2-(1-methylethylidene)-

Cyclohexanone 0.50 - -

Hydrocarbons
Tridecane 1.29 b 1.62 a 1.04 c

Cyclopropane, pentyl- - 2.44 a 1.25 b

Dodecane, 4,6-dimethyl- - 0.57 a 0.45 b

Decane,6-ethyl-2-methyl- - 0.33 b 0.62 a

Undecane, 3,5-dimethyl- 0.8 - -
Heptadecane, 2,6-dimethyl- 0.74 - -

Heptadecane,2,6,10,14-tetramethyl- - 0.88 b 2.31 a

2,6,8-Trimethyldecane - - 0.55

Esters
Phenacyl thiocyanate 2.08 a 0.12 b 0.12 b

Formic acid, heptylester 2.54 a 1.23 b 1.29 b

Arecaidine methyl ester 0.82 - -
Acetic acid, trichloro-, nonyl ester 0.47 - -

Nonyl chloroformate 0.32 - -

Others
2,4-Di-tert-butylphenol 3.66 a 1.58 b 1.55 b

1,3-Dioxolane,4-methyl-2-pentyl- - 0.45 b 0.59 a

(E)-2-Dodecene - 0.26 b 0.48 a

Naphthalene - 0.62 a 0.33 b

Indole 0.81 a 0.30 b -
Azulene 1.01 - -

FRN, WFRN, and WFRN-SPI represent the flat rice noodles, whole-grain flat rice noodles, and whole-grain
flat rice noodles with soy protein isolate, respectively; compounds identified via GC-MS analysis are based on
the comparison with retention indices (RI) and the mass spectra of the standard compounds (similarity ≥ 85%);
relative content, the percentage of each compound area to total area of identified compounds; “-”, not detected;
results are presented as means (n = 3). Means with different small letter superscripts in the same row are
significantly different at p < 0.05.
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Alcohols were the dominant volatile compounds in FRN, WFRN, and WFRN-SPI, and
their contents were 38.80%, 15.55%, and 10.05% respectively. The highest relative content
of 2-Undecen-1-ol, (2E)- was in FRN (36.40%). 1-octen-3-ol was the most important alcohol
contributing flavor in rice and rice product, because of the high threshold and low content
of other alcohols [35]. 1-octen-3-ol, mushroom flavor, was detected only in WFRN and
WFRN-SPI, and was enhanced with the addition of SPI. Table 2 demonstrated that FRN
had the highest relative content of alcohols, but WFRN and WFRN-SPI had more kinds of
alcohols, especially WFRN-SPI.

Aldehydes were the dominant volatile compounds in WFRN and WFRN-SPI, account-
ing for 71.31% and 70.80% respectively. The content of aldehydes in FRN was significantly
lower than the other two type of flat rice noodle, due to the relatively high content of
fatty acids in rice bran. However, aldehydes and alcohols identified by SPME are mainly
the products of fatty acid degradation and oxidation [36]. Thirteen types of aldehydes
were detected in WFRN-SPI, which was more than that of flat rice noodles. 2,4-decadienal,
4-nonenal, (4E)-, and dodecyl aldehyde were only detected in WFRN-SPI. Octanal was
detected in all three kinds of flat rice noodles, but hexanal was only detected in WFRN
and WFRN-SPI. Octanal and hexanal are degradation products of oleic acid, and their odor
descriptor is green [37]. 1-nonanal content of FRN, WFRN, and WFRN-SPI was 23.87%,
31.18%, and 20.73% respectively, and its odor descriptor was green, citrusy, and soapy,
respectively [38].

Ketones, fruit, and floral aroma are important aroma components in FRN and WFRN-
SPI, such as 2-heptanone and (1R)-trans-p-menthan-3-one; similar results have been re-
ported in fragrant rice [39]. Esters are among the unsaturated fatty acids degradation
products that appear at the late stages of the oxidation process [40]. Few esters were
detected in all flat rice noodles. The hydrocarbons identified included alkanes, terpenes,
and aromatic compounds, and they are known as the secondary products of unsaturated
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fatty acids oxidation. A small amount of indole, showing tar smell [41], was detected in
FRN and WFRN, while indole was not detected in WFRN-SPI.

Although similar sensors response characteristics of three types of flat rice noodles
have been determined by electronic nose analysis (Figure 2b), SPME/GC-MS analysis
showed that they had different variation trends in flavor compounds (Figure 3). This
could explain that the main odor of flat rice noodles consisted of a number of volatile
compounds [42].

3.6. Sensory Evaluation

Results of flat rice noodles sensory acceptability are shown in Figure 4. The scores in
the figure indicated the preference of consumers for each attribute. FRN had the highest
appearance score; this may be because consumers still preferred traditional white flat
rice noodles. There were clear differences in hardness, resilience, and smoothness of
samples, which was consistent with the texture results above. WFRN and WFRN-SPI
had higher scores in flavor, and this result was consistent with the electronic-nose and
volatile compounds’ results above. In summary, the global sensory scores of WFRN-SPI
were similar with FRN, and the quality of WFRN was not good enough to meet the basic
needs of consumers. The sensory evaluation indicated that the quality of WFRN with SPI
addition met the basic demands of consumers.
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Figure 4. Sensory evaluation of flat rice noodles. FRN, WFRN, and WFRN-SPI represent the flat rice
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4. Conclusions

This study demonstrated that the addition of rice bran reduced the resilience and
increased the cooking loss of flat rice noodles by destroying the network structure. The
addition of SPI improved the texture properties and cooking properties of whole-grain flat
rice noodles; this may be because of the formation of dense soy protein network structures.
SPME/GC-MS analysis showed that adding rice bran and SPI both enriched the flavor of
flat rice noodles. The main volatile compounds changed from alcohols to aldehydes. The
whole-grain flat noodles with the addition of SPI are more sensory acceptable. Adding
9% SPI is a simple and economical way to produce whole-grain flat rice noodles with
idea quality. These results are beneficial to the comprehensive utilization of whole-grain
resources and lay the foundation for whole-grain products deep processing technology.
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compounds generated by a thermal treatment of steryl esters with different fatty acid moieties. Food Res. Int. 2017, 97, 87–94.
[CrossRef] [PubMed]

37. Widjaja, R.; Craske, J.D.; Wootton, M. Changes in Volatile Components of Paddy, Brown and White Fragrant Rice during Storage.
J. Sci. Food Agric. 1996, 71, 218–224. [CrossRef]

38. Mahattanatawee, K.; Rouseff, R.L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using
GC–Olfactometry and GC–PFPD. Food Chem. 2014, 154, 1–6. [CrossRef]

39. Calingacion, M.N.; Boualaphanh, C.; Daygon, V.D.; Anacleto, R.; Hamilton, R.S.; Biais, B.; Deborde, C.; Maucourt, M.; Moing, A.;
Mumm, R.; et al. A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and
improved varieties. Metabolomics 2012, 8, 771–783. [CrossRef]

40. Concepcion, J.C.T.; Ouk, S.; Riedel, A.; Calingacion, M.; Zhao, D.; Ouk, M.; Garson, M.J.; Fitzgerald, M.A. Quality evaluation,
fatty acid analysis and untargeted profiling of volatiles in Cambodian rice. Food Chem. 2018, 240, 1014–1021. [CrossRef]

41. Zeng, Z.; Zhang, H.; Chen, J.; Zhang, T.; Matsunaga, R. Flavor Volatiles of Rice During Cooking Analyzed by Modified Headspace
SPME/GC-MS. Cereal Chem. 2008, 2, 140–145. [CrossRef]

42. Wang, K.; Ma, C.; Gong, G.; Chang, C. Fermentation parameters, antioxidant capacities, and volatile flavor compounds of
tomato juice-skim milk mixtures fermented by Lactobacillus plantarum ST-III. Food Sci. Biotechnol. 2019, 4, 1147–1154. [CrossRef]
[PubMed]

http://doi.org/10.1111/j.1750-3841.2011.02590.x
http://doi.org/10.1002/star.201000140
http://doi.org/10.1016/j.foodres.2005.07.001
http://doi.org/10.1016/j.jcs.2013.08.005
http://doi.org/10.1016/j.foodchem.2011.11.085
http://doi.org/10.1016/j.foodchem.2013.08.078
http://doi.org/10.1016/j.fbio.2018.02.008
http://doi.org/10.1007/s13197-016-2323-8
http://doi.org/10.1111/ijfs.14347
http://doi.org/10.1016/j.foodres.2017.03.039
http://www.ncbi.nlm.nih.gov/pubmed/28578069
http://doi.org/10.1002/(SICI)1097-0010(199606)71:2&lt;218::AID-JSFA570&gt;3.0.CO;2-5
http://doi.org/10.1016/j.foodchem.2013.12.105
http://doi.org/10.1007/s11306-011-0374-4
http://doi.org/10.1016/j.foodchem.2017.08.019
http://doi.org/10.1094/CCHEM-85-2-0140
http://doi.org/10.1007/s10068-018-00548-7
http://www.ncbi.nlm.nih.gov/pubmed/31275714

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of Flat Rice Noodles 
	Textural Properties 
	Cooking Properties 
	Scanning Electron Microscope (SEM) 
	Electronic Nose Analysis 
	SPME/GC-MS Analysis 
	Sensory Evaluation 
	Statistical Analysis 

	Results and Discussion 
	Textural Properties 
	Cooking Properties 
	SEM 
	Electronic Nose Analysis 
	Volatile Compound Analysis 
	Sensory Evaluation 

	Conclusions 
	References

