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INTRODUCTION 
 

As we age, our brains undergo natural structural, chemical 

and functional deterioration, along with strong cognitive 
decline, characterized by brain atrophy, blood flow 

reductions, synaptic degeneration and neurochemical 

alternations [1]. Such human studies, however, rarely 

exclude common health conditions of aging, such as 

hypertension, that could influence the accuracy of the 

results [2]. Therefore, it is necessary to further understand 

age-related brain changes in nonhuman animal models to 

distinguish normal aging from pathological brain 

abnormalities. Using animal models to study the 

underlying mechanisms of aging will therefore provide 

a critical foundation from which to develop new 

interventions for aging-related brain disorders. 
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ABSTRACT 
 

Using animal models to study the underlying mechanisms of aging will create a critical foundation from which to 
develop new interventions for aging-related brain disorders. Aging-related reorganization of the brain network 
has been described for the human brain based on functional, metabolic and structural connectivity. However, 
alterations in the brain metabolic network of aging rats remain unknown. Here, we submitted young and aged 
rats to [18F]fluorodeoxyglucose with positron emission tomography (18F-FDG PET) and constructed brain 
metabolic networks. The topological properties were detected, and the network robustness against random 
failures and targeted attacks was analyzed for age-group comparison. Compared with young rats, aged rats 
showed reduced betweenness centrality (BC) in the superior colliculus and a decreased degree (D) in the parietal 
association cortex. With regard to network robustness, the brain metabolic networks of aged rats were more 
vulnerable to simulated damage, which showed significantly lower local efficiency and clustering coefficients than 
those of the young rats against targeted attacks and random failures. The findings support the idea that aged rats 
have similar aging-related changes in the brain metabolic network to the human brain and can therefore be used 
as a model for aging studies to provide targets for potential therapies that promote healthy aging. 
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Normal aging has been associated with considerable 

alterations to the brain network and its associated 

functions [3–5]. Aging-related reorganization of the brain 

network has been described for the human brain based on 

functional, metabolic and structural connectivity. Age-

related declines in functional connectivity have been 

observed both within and between several resting-state 

networks, such as the default mode, salience, dorsal 

attention and sensorimotor networks [4]. Moreover, brain 

networks in the elderly show decreased modularity and 

efficiency and exhibit a degeneration process in which 

the aging brain system shifts from a small-worldness 

network to a regular network along with normal aging [6, 

7]. In addition, age-related alterations in structural 

network metrics are similar to the findings of functional 

connectivity studies [1]. 

 

[18F]Fluorodeoxyglucose with positron emission 

tomography (18F-FDG PET) is a valuable tool for 

measuring energy consumption in neurons, which reflects 

neuronal communication signals [8]. Thus, 18F-FDG 

PET is considered a functional neuroimaging technique 

for detecting age-related brain activity changes. Over the 

past few decades, many studies have used 18F-FDG PET 

to investigate the changes in brain mechanisms 

associated with normal aging. Overall, a consistent 

finding in most studies is a significant age-related decline 

in glucose metabolism observed in the frontal lobe [9, 

10]. Decreased glucose uptake may reflect tissue loss or 

shrinkage [3]. In addition, age-related changes also 

appear in metabolic brain networks, e.g., increased 

clustering, decreased efficiency, reduced robustness and 

changed nodal centralities in association and paralimbic 

cortex regions [7]. 

 

However, it has not been definitively reported whether the 

age-related changes in glucose metabolism are consistent 

between the rat brain and the human brain, especially in 

terms of metabolic brain networks. It remains unclear 

whether the brain metabolic network of aged rats has 

similar age-related changes to the human brain. 

 

In the present study, we submitted young and aged rats 

to 18F-FDG PET and constructed brain metabolic 

networks. The topological properties were detected, and 

the network robustness against random failures and 

targeted attacks was analyzed for age-group 

comparisons. 

 

RESULTS 
 

Differences in metabolic connectivity of the brain 

metabolic networks of aged and young rats 

 

All of the rat brain regions included in the study are 

listed in Table 1. The group-level metabolic correlation 

matrix is shown in Figure 1 (A, the aged group; B, the 

young group). Compared to young rats, significantly 

decreased metabolic connectivity between regions 

related to visual (left visual cortex, right visual cortex), 

auditory (right auditory cortex), and olfactory (right 

entorhinal cortex) senses, as well as significantly 

increased metabolic connectivity between limbic brain 

regions (right raphe, left raphe, right nucleus accumbens 

core, right nucleus accumbens shell), were observed in 

aged rats (Table 2 and Figure 1). All significance tests 

were conducted at the threshold p < 0.001 without 

correction. 

 

No intergroup differences in global topological 

properties 

 

There were no significant differences in global network 

properties (path length (Lp), clustering coefficient (Cp), 

global efficiency (Eglob), or local efficiency (Eloc), σ, γ, 
λ) between aged rats and young rats (p > 0.05) (Table 3 

and Figures 2, 3). 

 

Lower regional topological properties of the aged 

brain metabolic network 

 

Intergroup differences of the regional network 

parameters are listed in Table 4. Compared with young 

rats, aged rats showed significantly lower betweenness 

centrality (BC) in the left superior colliculus (p < 0.001) 

and a lower degree (D) in the right parietal association 

cortex (p < 0.001) (Figure 4). 

 

Lower robustness to virtual attacks in the aged brain 

metabolic network 

 

Compared with aged rats, the networks of young rats 

were generally more robust to random failure and 

targeted attack in order of nodal BC. 

 

Random failure analysis 

 

When 1%, 4%, 5%, 9%, 13%, 15%, 17%, 22%, 24%, 

27%, 39%, 41%, 44% and 67% of nodes were randomly 

removed, the Cp of brain networks in aged rats was 

significantly lower than that in young rats (p < 0.05). 

When 41%, 70% and 73% of nodes were randomly 

removed, the Eloc of brain networks in aged rats was 

significantly lower than that in young rats (p < 0.05) 

(Figure 5). 

 

Targeted attack analysis 

 

When 39%, 40%, 43%, 44%, 45%, 50% and 53% of 
nodes were removed in order of nodal BC, the Eloc of 

brain networks in aged rats was significantly lower than 

that in young rats (p < 0.05) (Figure 6). Figure 7 shows 
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Table 1. All of the rat brain regions included in the study. 

No. Brain regions Abbreviation No. Brain regions Abbreviation 

1 Nucleus Accumbens Core_R AcbC_R 49 Nucleus Accumbens Core_L AcbC_L 

2 Nucleus Accumbens Shell_R AcbSh_R 50 Nucleus Accumbens Shell_L AcbSh_L 

3 Amygdala_R Amy_R 51 Amygdala_L Amy_L 

4 
Bed Nucleus of the Stria 

Terminalis_R 
BNST_R 52 

Bed Nucleus of the Stria 

Terminalis_L 
BNST_L 

5 Caudate Putamen_R CPu_R 53 Caudate Putamen_L CPu_L 

6 Corpus Collosum_R CoC_R 54 Corpus Collosum_L CoC_L 

7 Cortex- Auditory_R Aud_R 55 Cortex- Auditory_L Aud_L 

8 Cortex- Cingulate_R CiC_R 56 Cortex- Cingulate_L CiC_L 

9 Cortex- Entorhinal_R EC_R 57 Cortex- Entorhinal_L EC_L 

10 Cortex- Frontal Association_R FrA_R 58 Cortex- Frontal Association_L FrA_L 

11 Cortex- Insular_R In_R 59 Cortex- Insular_L In_L 

12 Cortex-Medial Prefrontal_R mPFC_R 60 Cortex-Medial Prefrontal_L mPFC_L 

13 Cortex- Motor_R M1_R 61 Cortex- Motor_L M1_L 

14 Cortex- Orbitofrontal_R OFC_R 62 Cortex- Orbitofrontal_L OFC_L 

15 Cortex- Parietal Association_R ParA_R 63 Cortex- Parietal Association_L ParA_L 

16 Piriform Cortex_R PC_R 64 Piriform Cortex_L PC_L 

17 Cortex- Retrosplenial_R RSC_R 65 Cortex- Retrosplenial_L RSC_L 

18 Cortex- Somatosensory_R S1_R 66 Cortex- Somatosensory_L S1_L 

19 Cortex- Temporal Association_R TeA_R 67 Cortex- Temporal Association_L TeA_L 

20 Cortex- Visual_R V1_R 68 Cortex- Visual_L V1_L 

21 Diagonal Band_R DB_R 69 Diagonal Band_L DB_L 

22 Globus Pallidus_R GPa_R 70 Globus Pallidus_L GPa_L 

23 Antero-Dorsal Hippocampus_R adHIP_R 71 Antero-Dorsal Hippocampus_L adHIP_L 

24 Posterior Hippocampus_R pHIP_R 72 Posterior Hippocampus_L pHIP_L 

25 Postero-Dorsal Hippocampus_R pdHIP_R 73 Postero-Dorsal Hippocampus_L pdHIP_L 

26 Hippocampus Subiculum_R sHIP_R 74 Hippocampus Subiculum_L sHIP_L 

27 Ventral Hippocampus_R vHPC_R 75 Ventral Hippocampus_L vHPC_L 

28 Lateral Hypothalamus_R LH_R 76 Lateral Hypothalamus_L LH_L 

29 Medial Hypothalamus_R MH_R 77 Medial Hypothalamus_L MH_L 

30 Internal Capsule_R Ic_R 78 Internal Capsule_L Ic_L 

31 
Interstitial Nucleus of the Posterior 

Limb of the Anterior Commissure_R 
IPAC_R 79 

Interstitial Nucleus of the Posterior 

Limb of the Anterior 

Commissure_L 

IPAC_L 

32 Medial Geniculate_R MG_R 80 Medial Geniculate_L MG_L 

33 Mesencephalic Region_R MR_R 81 Mesencephalic Region_L MR_L 

34 Olfactory Nuclei_R ON_R 82 Olfactory Nuclei_L ON_L 

35 Olfactory Tubercle_R OT_R 83 Olfactory Tubercle_L OT_L 

36 Periaqueductal Grey_R PAG_R 84 Periaqueductal Grey_L PAG_L 

37 Pons_R Pons_R 85 Pons_L Pons_L 

38 Raphe_R Raphe_R 86 Raphe_L Raphe_L 

39 Septum_R Septum_R 87 Septum_L Septum_L 

40 Substantia Innominata_R SI_R 88 Substantia Innominata_L SI_L 

41 Substantia Nigra_R SN_R 89 Substantia Nigra_L SN_L 

42 Superior Colliculus_R SC_R 90 Superior Colliculus_L SC_L 

43 Dorsolateral Thalamus_R DLT_R 91 Dorsolateral Thalamus_L DLT_L 

44 Dorsal Midline Thalamus_R dMT_R 92 Dorsal Midline Thalamus_L dMT_L 

45 Ventromedial Thalamus_R VMT_R 93 Ventromedial Thalamus_L VMT_L 

46 Ventral Pallidum_R VP_R 94 Ventral Pallidum_L VP_L 

47 Ventral Tegmental Area_R VTA_R 95 Ventral Tegmental Area_L VTA_L 

48 Zona Incerta_R ZI_R 96 Zona Incerta_L ZI_L 
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the brain regions in descending order of BC. We also 

calculated the size of the largest remaining component 

when nodes were continuously removed. When the 

nodes were removed, the size of the largest connecting 

component in both groups steadily and approximately 

decreased (p > 0.05) (Figure 8). 

 

DISCUSSION 
 

In the current study, we investigated differences in the 

brain metabolic network between aged rats and young 

rats based on 18F-FDG PET imaging. Our main results 

were as follows: (1) Compared to young rats, 

metabolic connectivity between regions related to 

visual, auditory, and olfactory senses was significantly 

reduced in aged rats, as well as significantly increased 

between limbic brain regions; (2) For global network 

properties, there were no significant differences 

between aged rats and young rats (p > 0.05); (3) In 

terms of regional nodal characteristics, the aged rats 

showed significantly lower BC in the left superior 

colliculus (p < 0.001) and lower degree in the right 

parietal association cortex (p < 0.001); (4) With regard 

to network robustness, the brain metabolic networks of 

aged rats were more vulnerable to simulated damage, 

which showed significantly lower Eloc and Cp than 

those of young rats against targeted attacks and 

random failures. 

 

 
 

Figure 1. The metabolic brain networks of the two groups (A for the aged group and B for the young group). The color bar indicates the 
Pearson correlation coefficient between each pair of brain regions. The rank and row successively represent the 96 brain regions (Table 4). (C) 
The 3D Figure represents metabolic connections with significant differences between the two groups. Metabolic connections are overlaid on 
an anatomical map using nodes and edges. The red line shows significantly increased metabolic connectivity in the aged group (p<0.001) 
compared with the young group. The yellow line shows significantly reduced metabolic connectivity in the aged group (p<0.001) compared 
with the young group. 
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Table 2. Significant differences in metabolic connectivity between regions. 

Aged group < young group  Aged group > young group 

Brain region Brain region P values  Brain region Brain region P values 

V1_L AcbC_R <0.001  Raphe_R AcbC_R <0.001 

V1_L CiC_R <0.001  Raphe_R ON_R <0.001 

V1_L CiC_L <0.001  Raphe_L AcbC_R <0.001 

V1_L Raphe_R <0.001  Raphe_L VP_R <0.001 

V1_L In_R <0.001  AcbSh_R MR_R <0.001 

V1_R mPFC_L <0.001  AcbSh_R In_L <0.001 

Aud_R IPAC_R <0.001  SC_R mPFC_L <0.001 

Aud_R VP_R <0.001  OFC_L PAG_L <0.001 

EC_R IPAC_R <0.001     

EC_R VP_R <0.001     

EC_R ZI_R <0.001     

FrA_L S1_R <0.001     

FrA_L ParA_R <0.001     

FrA_L DB_L <0.001     

TeA_R VTA_L <0.001     

DB_L IPAC_L <0.001     

V1, Cortex- Visual; AcbC, Nucleus Accumbens Core; CiC, Cortex- Cingulate; In, Cortex- Insular; mPFC, 
Cortex-Medial Prefrontal; IPAC, Posterior Limb of the Anterior Commissure; VP, Ventral Pallidum; ZI, 
Zona Incerta; FrA, Cortex- Frontal Association; S1, Cortex- Somatosensory; ParA, Cortex- Parietal 
Association; DB, Diagonal Band; TeA, Cortex- Temporal Association; VTA, Ventral Tegmental Area; 
AcbSh, Nucleus Accumbens Shell; SC, Superior Colliculus; OFC, Cortex- Orbitofrontal; ON, Olfactory 
Nuclei; MR, Mesencephalic Region; PAG, Periaqueductal Grey. 

 

Table 3. Intergroup differences of global 
network properties. 

Global network properties p values 

Path length 0.498 

Clustering coefficient 0.160 

Global efficiency 0.456 

Local efficiency 0.652 

σ 0.594 

γ 0.669 

λ 0.350 

 

Degenerative changes caused by aging may affect the 

sensory experience, including vision, auditory and 

related cognitive domains [11]. Such changes occur as 

a part of normal physiological processes and may be 

irreversible [12]. In this study, the results 

demonstrated a decrease in metabolic connectivity 

between brain regions related to sensory experience 

that provided a basis to explain the pathogenesis  

of age-associated decline in sensory experience. 
However, the metabolic connectivity between 

emotion-related brain regions, such as raphe nuclei and 

nucleus accumbens, was significantly enhanced in 

aged rats. Raphe nuclei degeneration is related to the 

neurobiology of depression and is a common disorder 

in old age [13, 14]. Abnormal activation of raphe 

nuclei in metabolic connectivity might provide a new 

perspective for exploring the mechanism of depression 

in late life. The nucleus accumbens core, a limbic and 

premotor system nexus region, directly regulates 

behavior related to reward and motivation [15]. 

Consistent with the findings of this study, despite 
cognitive deficits, older adults have been reported to 

be sensitive to affective manipulations, such as reward 

motivation [16]. 
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Figure 2. Global parameters are displayed in the bar chart, with blue bars for the aged rats and red bars for the young rats.  
In all of the parameters, no significant differences were found between the aged group and young group. 
 

 
 

Figure 3. Global network properties of aged rats and young rats across a specific range of sparsity (0.05-0.5) at an  
interval of 0.01. 
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Table 4. Brain regions show significant differences in any of the three nodal 
characteristics. 

Brain regions 
p values 

Betweenness centrality Degree Efficiency 

Young rats>Aged rats    

Cortex_Parietal_Association_R - <0.001 - 

Superior_Colliculus_L <0.001 - - 

 

Studying the complex behavior of the brain from a brain 

network perspective will likely improve our under-

standing of brain function in health and disease states. 

Since animal models provide an understanding of 

disease progression, treatment and repair, research on 

extending brain networks to animal models has attracted 

increasing attention. Recent studies on brain network 

changes associated with aging have shown that node 

betweenness changes significantly with increasing 

aging [7]. Consistent with our study, the efficiency of 

information transfer in the left superior colliculus and 

the right parietal association cortex of aged rats was 

significantly lower than that of young rats. 

 

The superior colliculus is primarily involved in 

integrating multisensory information that serves to 

guide and coordinate orienting motor responses toward 

visual and auditory signals in space [17]. Typically, 

visual and auditory impairments are signs of aging, and 

aging can have a detrimental effect on complex 

audiovisual interactions. Costa et al. [18] performed 

extracellular single-unit recording in the superior 

colliculus of anesthetized Sprague–Dawley adult (10-12 

months) and aged (21-22 months) rats. The results 

showed that the audiovisual interactions in the superior 

colliculus were more numerous in adult rats (38%) than 

in aged rats. Moreover, spectral and temporal auditory 

processing in the superior colliculus is also impaired 

during aging [19]. In the present study, the significantly 

lower BC in the left superior colliculus of aged rats was 

thought to be associated with decreased audiovisual 

interactions with age. 

 

 
 

Figure 4. Significant differences in nodal parameters are shown by 3D schematic Figures, corresponding to Table 3. Red nodes 

indicate significant decreases in the aged group compared with the young group. 



www.aging-us.com 930 AGING 

The parietal association cortex, also known as the 

posterior parietal/anterior medial cortex, is a multi-

channel sensory region involved in spatial navigation, 

spatial memory, and associative tasks between different 

sensory patterns in rats [20, 21]. Meanwhile, the parietal 

association cortex is part of the retrosplenial cortex, an 

important cortical region that is closely related to the 

sensory-cognitive network [22]. As aging is 

characterized by cognitive impairment, our finding that 

the metabolic brain network of aged rats had a 

significantly lower degree in the right parietal 

association cortex would be consistent with its cognitive 

role. Cognitive impairments, such as learning and 

memory, are well-known features of the aging process 

[23, 24]. Rodent models have been frequently used in 

aging research to study the biochemical and functional 

effects of aging [25]. Compared with young rats, aged 

rats show poor spatial learning ability and behavioral 

flexibility, and the brain volume is correspondingly 

decreased in cognitive brain areas [26, 27]. Based on 

brain network analysis, our findings suggest that rats 

and humans exhibit similar changes in cognitive-related 

brain regions with age, providing further support for 

assessing whether changes in topological properties are 

associated with the behavioral effects of aging. 

 

However, aging in healthy humans typically involves 

changes in the prefrontal and selective temporal brain 

regions, according to magnetic resonance imaging 

(MRI) studies [5, 28]. The characteristics of the aging 

brain structural network in rats are mainly manifested in 

the prefrontal/insula and temporal association/perirhinal 

cortices, as well as the cerebellum and olfactory bulb 

[2]. It is worth noting that there are some differences 

between the results of this study and previous studies, 

which may be due to different neuroimaging methods, 

nonhuman animal models and analysis methods of 

network properties [7]. 

 

The brain responds robustly to physical damage. 

Previous studies have indicated that human brain 

networks are remarkably resilient to different types of 

lesions compared to other types of complex networks, 

such as random or scale-free networks [29]. 

 

 
 

Figure 5. Changes in topological properties of the global network of the remaining network after random failure. The red * 
marker represents significant differences between aged rats and young rats. 
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Furthermore, previous findings suggested that network-

level robustness might serve as a biomarker of age-

related cognitive decline in normal middle-aged 

individuals decades before the onset of overt cognitive 

impairment [30]. That said, exploring age-related brain 

robustness could provide a basis for distinguishing 

healthy aging from the early stages of degenerative 

neurological diseases, such as Alzheimer’s disease. In 

general, the complex network robustness relies heavily 

on its organizational structure and attack nature [29]. 

For the latter, two methods are usually applied: random 

deletion of and targeted attacks on nodes/edges 

according to their centrality in the network [31]. 

Damage to specific regions of the brain or their 

connections is simulated by removing nodes or edges 

[32]. In addition to the computational lesion study, 

 

 
 

Figure 6. Changes in topological properties of the global network of the remaining network after target attack in order of 
nodal betweenness centrality. The red * marker represents significant differences between aged rats and young rats. 

 

 
 

Figure 7. Hubs in decreasing order of betweenness centrality in the aged group (blue) and the young group (red). 
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a further empirical study might also be required. 

However, it has been difficult to quantify the extent of 

this virtual damage in vivo. Indeed, the node elimination 

strategy is appropriate for simulating damage to specific 

brain regions in computational lesion studies [33]. 

Then, the robustness of the network is usually analyzed 

based on the ability of the graph to remain in one part 

despite the removal of elements [29]. Previous studies 

examining the robustness properties of human networks 

have shown that the brain networks of the aged group 

are just as resilient to random failures as those of the 

young group but more vulnerable to targeted attacks [7]. 

In this study, there was no significant difference in the 

size of the largest connected component between aged 

and young rats under random or targeted attacks. 

Additionally, we found that the global properties of the 

remaining networks of aged rats were significantly 

decreased after random failure (Eloc and Cp) or targeted 

attack (Eloc), although there was no significant 

difference in the global properties of the intact brain 

networks between the aged rats and young rats. The 

changes in network parameters can reflect the 

interruption in the overall performance of the network, 

such as stability and robustness [7]. In cerebral terms, 

aging begins long before symptoms manifest. Aging 

causes gradual degeneration of the myelin sheaths that 

surround certain nerves, which in turn leads to a decline 

in the function of neurons and the functional 

connections between them. Even without symptoms of 

dysfunction, the network robustness of the normal aging 

brain has become abnormal. The results of our study 

were consistent with previous studies on the network 

robustness of the aging brain; that is, the brain networks 

of the aged group showed a significant decrease in 

global efficiency against simulated attacks [34], 

suggesting that aging brains are vulnerable to severe 

brain dysfunction even with minor damage. 

Consistently, human studies have reported that network 

integrity is decreased in healthy aging, but this decrease 

is accelerated in Alzheimer's networks, with specific 

systems hit the hardest [35]. 

 

As mentioned above, we investigated differences in the 

brain metabolic network between aged rats and young 

rats based on 18F-FDG PET imaging, involving 

topological properties and network robustness. The 

results showed decreased regional network measures 

and vulnerable robustness of brain metabolic networks 

in aged rats. The findings support the idea that aged rats 

have similar aging-related changes in the brain 

metabolic network to the human brain, which can be 

used as a model for aging studies to provide targets for 

potential therapies that promote healthy aging. 

 

In addition, understanding the molecular and 

biological mechanisms of aging will be a key step in 

preventing, slowing and treating age-related diseases, 

such as Alzheimer's disease (AD) and Parkinson's 

disease (PD) [36]. However, there is no gold standard 

tool for evaluating healthy aging, nor is there a single 

indicator that can be used as a sensitive and specific 

biomarker of aging [37]. Currently, epigenetic clocks, 

a method for using human DNA methylation data to 

develop biomarkers of aging, have been noted as the 

most successful aging biomarkers [38]. With the rising 

prevalence of neurodegenerative diseases of aging, 

such as AD and PD, several studies have explored 

epigenetic clocks in brain tissue [39, 40]. This study 

showed age-related topological changes in some brain 

regions of the metabolic network, which provided an 

important basis for further locating epigenetic clocks 

in brain tissue. Furthermore, these findings, when 

combined with recently identified molecular and 

DNA-based markers, have greater potential to improve 

the prediction of healthy aging and contribute to aging, 

being better described as a multifactorial interactive 

process between biological and molecular 

mechanisms. 

 

 
 

Figure 8. Between-group differences in network resilience to target attack and random failure. 
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There are some limitations to this study. Given the more 

complex structure and function of the human brain, the 

study of aged rats might not fully reflect the effects of 

aging on the human brain. However, it opens the 

possibility of aging-related research at multiple macro- 

and microlevels, since the brain of aged rats had similar 

aging-related changes to the human brain. Another 

potential limitation was that only female rats were 

selected as subjects. In the future, we will further 

explore the sex differences of brain metabolic networks 

between male and female rats. In addition, it was only 

an observational study with a cross-sectional 

comparison. A longitudinal comparison of aging-related 

brain network changes in rats still needs further 

exploration. 

 

MATERIALS AND METHODS 
 

Rats 

 

In the study, 24 healthy aged female Sprague–Dawley 

(SD) rats (weight 350–380 g, age 18 months) and 24 

healthy young female SD rats (weight 180–200 g, age 8 

weeks) were included. Rats were raised under 

laboratory conditions of 21° C–23° C with a 12-h light-

dark cycle and given sufficient food and water for 1 

week before the examination. 
 

All rats were obtained from the Shanghai Slack 

Laboratory Animal Limited Liability Company 

(Shanghai, China). All procedures for animals were 

carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals (US National Institutes 

of Health) and approved by the Animal Ethical 

Committee of Shanghai University of Traditional 

Chinese Medicine. 

 

18 F-FDG PET/CT scan 

 

Scanning was conducted on a PET/CTR4 bed (Siemens 

Inc., USA). To enhance brain absorption of the tracer, 

all rats were fasted overnight before scanning. After 0.5 

mCi 18F-FDG was injected through the tail vein, the 

rats were placed in a quiet space for an uptake period of 

40 minutes. During scanning, halothane gas was used to 

anesthetize the rats, with a 5% induction and a 1.5% 

maintenance dose. After acquisition, the attenuation 

correction was automatically carried out, and images 

were obtained in a 128 × 128 matrix and recombined in 

OSEM3D mode. PET/CT acquisition showed the 

following parameters: spherical tube voltage (80 kV), 

current (500 μA), and time (492 s). 
 

All rats were in a normal active state before 18F-FDG 

PET/CT scanning. One aged rat was excluded from the 

final analysis because of poor image quality. Thus, 23 

aged rats and 24 young rats were included in the final 

data analysis. 

 

Data preprocessing 

 

Data preprocessing was performed using the Statistical 

Parametric Mapping 8 toolbox (SPM 8; 

http://www.fil.ion.ucl.ac.uk/spm/) based on the MATLAB 

2013b platform (Mathworks, Inc., Natick, MA, USA). 

Preprocessing was performed as previously reported [41]. 

The DICOM-format PET/CT images were adapted into 

the NIFTI format by ImageJ software (Image Processing 

and Analysis in Java, National Institutes of Health, 

Bethesda, MD, USA). A hand drawing mask was applied 

to extract the rats’ PET images of the skull-stripped 

brain. The orientation of these images was modified by 

resetting the origin and adjusting pitch/roll/yaw 

parameters according to a standard template. To fit the 

algorithm in SPM8, the voxels were upscaled by a factor 

of 10. Accordingly, each brain PET image was 

normalized and resampled to a resolution of 2.06 × 2.06 

× 2 mm3. In addition, the images were smoothed by a 

full width at half maximum (FWHM) twice the voxel 

size (FWHM = 4 mm). Finally, the 18F-FDG uptake 

value of each voxel was globally normalized by the mean 

uptake value of the whole brain [42]. 

 

Construction and property analysis of the metabolic 

brain network 

 

Metabolic brain network construction and network 

property analysis were processed with the Brain 

Connectivity Toolbox (BCT, version 2017-15-01, 

http://www.brain-connectivity-toolbox.net/). Based on 

the standard rat brain template including 96 brain 

regions [43], the standard uptake value (SUV) of each 

brain region of all rats was extracted, and the Pearson 

correlation coefficient of each two brain regions was 

calculated to generate the group-level metabolic brain 

network in an intersubject manner. The nodes of the 

network were defined as the brain regions. The edges of 

the network were considered to be the correlation 

between each pair of brain regions. Figure 9 shows the 

locations of the 96 brain regions, and the explanation of 

the abbreviated region names is given in Table 1. To 

ensure that all of the networks had the same number of 

edges, the specific range of sparsity (0.05-0.5) at an 

interval of 0.01 was set for the correlation matrix [44], 

resulting in a set of undirected and unweighted binary 

networks. Finally, we explored the differences in 

topological properties of the metabolic brain network in 

aged rats and young rats by using graph theory network 

analysis. In addition, a simple analysis of network 
robustness against random failure and targeted attacks 

was performed. The diagram of network construction 

and analysis is shown in Figure 10. 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.brain-connectivity-toolbox.net/
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Global network properties 

 

The topological properties of the global network, 

including path length (Lp), clustering coefficient (Cp), 

global efficiency (Eglob), local efficiency (Eloc) and 

small-worldness indices (σ, γ, λ), were calculated to 

describe the network’s global and local information 

transmission capability [45]. The Lp of the network 

refers to the average of the shortest path’s edges in the 

network’s node pairs [46]. The Cp of a node is the 

ratio of existing edges to all the others in its direct 

neighbors. The Cp of a network is the mean of Cp over 

all nodes, reflecting the local interconnectivity of the 

network [46]. Eglob refers to the inverse of all the 

network nodes’ average shortest Lp [45], and Eloc 

represents that of a node’s nearest neighbors [47]. By 

comparing the Cp and Lp to the mean Cprand and Lprand 

of 5000 random networks, the normalized Cp (γ) and 

normalized Lp (λ) were calculated. A network’s small-

worldness is defined as σ = γ/λ, representing the 

balance between all of the network nodes’ segregation 

and integration [48, 49]. When the ratio is greater than 

1, the network is considered a small-worldness 

network. 

 

Regional network properties 

 

Three topological characteristics of the regional 

network were used to demonstrate the nodal 

characteristics: degree (D), betweenness centrality (BC) 

and node efficiency (Enod). D refers to the number of 

neighbors of a given node, reflecting the importance of 

the node [50]. BC is defined as the fraction of shortest 

paths of a network through a given node, which is an 

indicator of the importance of a node in the network 

[51]. Enod is the average of the inverse of the shortest 

path between a given node and all other nodes and is an 

evaluation of regional connectivity [52]. 

Network robustness 

 

Network robustness against simulated damage was 

analyzed by the iterative ‘random’ and ‘targeted’ 

removal of nodes [7, 53]. A random node attack refers 

to the continuous removal of a certain proportion of 

random nodes from the 96 × 96 connectivity matrix. 

Each random removal of nodes was repeated 40 times. 

In procedures requiring the targeted node attack, the 96 

nodes are arranged in order of BC value from high to 

low. Nodes were removed in order of BC value, starting 

with the nodes of higher connectivity. In the case that 

information transfer follows the shortest path, BC 

reflects the centrality of nodes in the network. 

Therefore, the nodes with high centrality have a greater 

impact on the information transfer in the network. After 

each removal of nodes, the above global topological 

measures, including Lp, Cp, Eglob, Eloc, σ, γ, and λ, were 

calculated for the resulting networks thresholded at 

minimum density with full connectivity. In addition, the 

size of the largest connected component was calculated 

when nodes were continuously removed. Additionally, 

the network properties of the resulting networks after 

each random attack were averaged across 40 repetitions 

of random removal. 

 

Statistical analysis 

 

A 5000-repetition nonparametric permutation test was 

used to determine the between-group differences’ 

statistical significance. Metabolic Connectivity Analysis. 

We performed statistical comparison on the edges of the 

metabolic network between groups by 5000 permutation 

tests. In each repetition, the SUV of the ROIs of all rats 

was randomly assigned to two new groups with the 

sample sizes as the original groups, and then the 

Pearson correlation coefficient of each two brain 

regions was calculated to generate a new group-level 

 

 
 

Figure 9. Locations of the 96 brain regions. 
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metabolic brain network. After 5000 permutations, we 

obtained 5000 random intergroup differences in 

metabolic connectivity. Thus, the p value was obtained 

according to the percentile position of the real 

intergroup difference in the corresponding permutation 

distribution. Graph Theoretical Network Analysis. First, 

during each repetition, the SUV values of each rat were 

randomly assigned to either the aged group or the young 

group to form two randomized groups with the same 

number of rats as the original group. Second, the 

undirected and unweighted binarized network was 

established for each randomized group based on the 

new dataset. Third, the network properties of 

randomized groups were calculated through all sparsity 

thresholds, and the area under the curve (AUC) 

corresponding to the sparsity ranges of both groups was 

calculated in each permutation cycle. Last, the AUC 

difference between the two groups obtained under 5000 

permutations constituted the permutation distribution 

under the original hypothesis. The p value was obtained 

from the AUC’s actual intergroup difference at the 

distribution. The above procedure was also used to 

investigate significant differences in the network 

robustness between the two groups. After each removal 

 

 
 

Figure 10. The diagram of network construction and analysis. 
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of nodes, the network properties of the two remaining 

networks were compared by a nonparametric 

permutation test with 5000 repetitions mentioned above. 

The significance level for the global network analysis 

was set at p < 0.05. p <0.05 after FDR correction for 

multiple comparisons was the significance level for 

regional network analysis. 

 

Abbreviations 
 

18F-FDG PET: [18F]Fluorodeoxyglucose with positron 

emission tomography; Lp: path length; Cp: clustering 

coefficient; Eglob: global efficiency; Eloc: local 

efficiency; BC: betweenness centrality; D: degree; Enod: 

node efficiency; SUV: standard uptake value; AUC: 

area under the curve. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary File 

 

 

 

MATERIALS AND METHODS 
 

Leave-one-out (LOO) 

 

First of all, one group-level metabolic network was 

constructed based on [18F]Fluoro-deoxyglucose with 

positron emission tomography (18F-FDG PET) data of 

a group of subjects [1, 2]. Then, data from one subject 

was removed and the group-level metabolic network 

was constructed based on the remaining dataset. Finally, 

the Mantel test was performed to detect the similarity 

between the group-level network after removing any 

one of the subjects and the original group-level 

network. A higher similarity was considered as a lower 

variability. 

 

The Mantel test was proposed in 1967 to test the 

correlation between two matrices. The calculation 

formula is: 

 

1 1
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In this study, n was the number of subjects, M 

represented the original group-level brain metabolic 

network matrix. After removing any one of the subjects, 

the group-level brain metabolic network based on the 

remaining dataset (P) was constructed. Sp and Sm were 

the standard variances of P and M respectively. The 

coefficient of Mantel test (r) ranged from -1 to 1. The 

closer the absolute value of the coefficient was to 1, the 

more similar M and P were. Furthermore, a 1000-time 

permutation test was used to determine the coefficient's 

statistical significance. 

 

RESULTS 
 

The Mantel Test showed significantly positive 

correlation between the original group-level brain 

metabolic network matrix and the network matrix 

constructed after removing any one of the subjects in 

both the aged and young groups (all p < 0.001). 

(Supplementary Tables 1, 2).  

 

DISCUSSION 
 

This study also investigated inter-individual 

variability among the used subjects. There was a high 

correlation between the original group-level brain 

metabolic network matrix and the network matrix 

constructed after removing any one of the subjects in 

both the aged and young groups. In other words,  

inter-individual variability among the used subjects 

had less impact on the results. We believed that the 

results were closely related to the high homogeneity 

of the rat models which could provide tools to 

examine the effect of singular pathologies, and the 

interaction of multiple factors in a well-controlled 

environment.  
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Supplementary Tables 
 

Supplementary Table 1. Results of inter-
individual variability among the aged rats 
by the leave-one-out(LOO) method. 

No. r p 

1 0.998 <0.001 

2 0.998 <0.001 

3 0.997 <0.001 

4 0.997 <0.001 

5 0.990 <0.001 

6 0.971 <0.001 

7 0.991 <0.001 

8 0.999 <0.001 

9 0.997 <0.001 

10 0.998 <0.001 

11 0.987 <0.001 

12 0.995 <0.001 

13 0.987 <0.001 

14 0.989 <0.001 

15 0.988 <0.001 

16 0.988 <0.001 

17 0.950 <0.001 

18 0.992 <0.001 

19 0.998 <0.001 

20 0.996 <0.001 

21 0.998 <0.001 

22 0.979 <0.001 

23 0.997 <0.001 

No., the number of the removing rat during the 
leave-one-out procedure; r, the correlation 
coefficient of the Mantel test between the 
group-level metabolic network after removing 
the specific rat and the original network; p, p 
value of the Mantel’s r statistics by 1000-time 
permutational tests (p<0.05 is considered as 
significant). 
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Supplementary Table 2. Results of 
inter-individual variability among 
the young rats by the leave-one-out 
(LOO) method. 

No. r p 

1 0.998 <0.001 

2 0.993 <0.001 

3 0.995 <0.001 

4 0.998 <0.001 

5 0.992 <0.001 

6 0.996 <0.001 

7 0.986 <0.001 

8 0.998 <0.001 

9 0.999 <0.001 

10 0.994 <0.001 

11 0.998 <0.001 

12 0.997 <0.001 

13 0.998 <0.001 

14 0.994 <0.001 

15 0.995 <0.001 

16 0.974 <0.001 

17 0.994 <0.001 

18 0.996 <0.001 

19 0.996 <0.001 

20 0.983 <0.001 

21 0.989 <0.001 

22 0.993 <0.001 

23 0.992 <0.001 

24 0.992 <0.001 

No., the number of the removing rat 
during the leave-one-out procedure; r, 
the correlation coefficient of the Mantel 
test between the group-level metabolic 
network after removing the specific rat 
and the original network; p, p value of 
the Mantel’s r statistics by 1000-time 
permutational tests (p<0.05 is 
considered as significant). 


