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Abstract
Objectives: Adults born prematurely have an increased risk of early heart failure. 
The impact of prematurity on left and right ventricular function has been well docu-
mented, but little is known about the impact on the systemic vasculature. The goals 
of this study were to measure aortic stiffness and the blood pressure response to 
physiological stressors; in particular, normoxic and hypoxic exercise.
Methods: Preterm participants (n  =  10) were recruited from the Newborn Lung 
Project Cohort and matched with term-born, age-matched subjects (n = 12). Aortic 
pulse wave velocity was derived from the brachial arterial waveform and the heart 
rate and blood pressure responses to incremental exercise in normoxia (21% O2) or 
hypoxia (12% O2) were evaluated.
Results: Aortic pulse wave velocity was higher in the preterm groups. Additionally, 
heart rate, systolic blood pressure, and pulse pressure were higher throughout the 
normoxic exercise bout, consistent with higher conduit artery stiffness. Hypoxic 
exercise caused a decline in diastolic pressure in this group, but not in term-born 
controls.
Conclusions: In this first report of the blood pressure response to exercise in adults 
born prematurely, we found exercise-induced hypertension relative to a term-born 
control group that is associated with increased large artery stiffness. These experi-
ments performed in hypoxia reveal abnormalities in vascular function in adult survi-
vors of prematurity that may further deteriorate as this population ages.
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1  |   INTRODUCTION

Preterm birth confers a unique, long-lasting physiological 
phenotype, including reduced pulmonary function (Lovering 
et  al.,  2013; Vrijlandt, Gerritsen, Boezen, Grevink, & 
Duiverman,  2006), impaired gas exchange during exercise 
(Farrell et  al.,  2015; Narang, Bush, & Rosenthal,  2009), 
and alveolar simplification, evidenced by reports of ob-
structive lung disease (Narang, 2010) and computed tomo-
graphic evidence of emphysema (Aukland et al., 2009; Wong 
et al., 2008). We previously reported that prematurely born 
adults have altered physiological responses to exercise and 
hypoxia that could not have been predicted from resting mea-
sures alone. Farrell et al. reported that the alveolar-arterial 
oxygen difference is higher in preterm adults performing 
cycle exercise, despite similar maximal oxygen consumption 
and an augmented gas exchange efficiency during hypoxic 
exercise (Farrell et  al., 2015). The fact that addition of hy-
poxia diminished the difference in gas exchange inefficiency 
and highlights the value of this added stress in probing mech-
anisms of physiological dysfunction. The hypoxic ventilatory 
drive is blunted in premature adults despite normal eupneic 
ventilation (Bates, Farrell, & Eldridge, 2014) and may be the 
result of impaired carotid body development (Bates, Welch, 
Randall, Petersen-Jones, & Limberg, 2018). Adults born pre-
maturely also experience delayed heart rate recovery after 
exercise (Haraldsdottir et al., 2019) and adolescents demon-
strate altered heart rate variability (Haraldsdottir et al., 2018). 
Taken together, these findings suggest that exercise and hy-
poxia are both uniquely valuable in probing differences in the 
physiological response to stress, even in preterm individuals 
that appear physiologically indistinguishable from control, 
term-born peers at rest.

These areas of research are important because very little 
is known as to how prematurely born adults will age. The 
survival of premature infants increased dramatically in the 
early 1990s with the introduction of surfactant, and the first 
cohort of surfactant-era patients are only now approaching 
30 years old. Still, very little is known about the long-term 
impact of prematurity on systemic vascular function. Systolic 
and diastolic blood pressures are higher in premature chil-
dren and this persists into adulthood (Edwards et al., 2014; 
Jong, Monuteaux, van Elburg, & Gillman, 1979; Luu, Katz, 
Leeson, & Thébaud,  2016). Elevated blood pressures may 
be the result of premature vascular stiffening that persists 
from birth. Tauzin et al. found that low birth weight infants 
had decreased aortic compliance compared to normal birth 
weight infant (Tauzin et  al.,  2006), although there are no 
data in the general premature population. Cheung et al. in-
vestigated 8-year-olds who were born prematurely and found 
birth weight and carotid-femoral pulse wave velocity (PWV), 
reflecting aortic stiffness, are inversely correlated such that 
children born smaller had higher PWV (Cheung, Wong, 

Lam, & Tsoi, 2004). Increased PWV is associated with in-
creased systolic blood pressure during exercise (Thanassoulis 
et al., 2012). Therefore, if increased arterial stiffness is the 
major contributor to increased blood pressure in this popu-
lation, we would expect to observe increased blood pressure 
with exercise, with and without the addition of hypoxia.

The purpose of this study was to evaluate the dynamic 
blood pressure response to exercise and hypoxic stress in our 
well-described population of preterm adults and evaluate 
arterial stiffness. We further hypothesized that PWV would 
be higher in preterm adults and, therefore, adults who were 
born prematurely would have an exaggerated blood pres-
sure response to exercise compared to the term-born adults. 
Consistent with our hypothesis, prematurely born adults had 
increased arterial stiffness and increased systolic and diastolic 
blood pressures during exercise. Contrary to our hypothesis, 
the addition of hypoxia to exercise caused a transient decrease 
in diastolic blood pressure in premature adults, while systolic 
blood pressure remained increased. This suggests that alter-
ations in vascular tone and arterial stiffening both contrib-
ute, causing increased systolic and diastolic blood pressure 
during exercise in prematurely born individuals.

2  |   METHODS

2.1  |  Subject population and screening

All participants gave informed consent prior to participa-
tion. This protocol was approved by the Institutional Review 
Board at the University of Wisconsin and conducted in ac-
cordance with the Declaration of Helsinki. Preterm subjects 
(n = 10) were recruited from the Newborn Lung Project, a 
longitudinal cohort at the University of Wisconsin (Madison, 
WI), that registered premature patients admitted to nine neo-
natal intensive care units between 1989 (presurfactant era) 
and 1991 (surfactant era). This population has been described 
extensively (Evans, Palta, Sadek, Weinstein, & Peters, 1998; 
Farrell et  al.,  2015; Hagen, Palta, Albanese, & Sadek-
Badawi, 2006; Palta et al., 1990, 1996, 2001; Palta, Gabbert, 
Weinstein, & Peters, 1991; Palta, Sadek, Barnet, et al., 1998; 
Palta, Sadek, Lim, Evans, & McGuinness, 1998; Palta, Sadek-
Badawi, Evans, Weinstein, & McGuinnes,  2000; Palta, 
Sadek-Badawi, Madden, & Green, 2007; Palta et al., 1994; 
Peppard et al., 2013; Weinstein, Peters, Sadek, & Palta, 1994; 
Young et al., 1997, 2009), but the hypothesis was developed 
a priori to data analysis. Patients recruited to this cohort were 
low birth weight (<1,500 g) and had a gestational age less 
than 36 weeks (mean, 28 ± 2 weeks). All preterm-born sub-
jects studied here received supplemental oxygen at birth and 
were mechanically ventilated. A term-born, aged-matched 
control population (n = 12) was recruited from the general 
public of Madison, WI.
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Prior to participation, preterm- and term-born individ-
uals participated in a screening visit where they received 
a general medical screening exam, an echocardiogram 
overseen by a licensed echocardiographer (KRB) with 
measures of cardiac anatomy, pulmonary function tests 
(Farrell et al., 2015), and a graded, maximal exercise test 
on a cycle ergometer (Velotron, Quarq Technology), as has 
previously been described (Bates, Farrell, Drezdon, et al., 
2014; Farrell et  al.,  2015). During the screening exercise 
test, participants breathed through a mouthpiece and wore 
nose clips, and the workload was increased in 50  W in-
crements until the participant could no longer maintain 
a cadence >55 RPM despite vigorous verbal encourage-
ment. The test was completed within 10 min (Buchfuhrer 
et  al.,  1983). Ventilation and metabolism were measured 
(AD Instruments, Exercise Physiology Package with 
Gemini Gas Analyzer) and VO2max was determined as 
the highest 20s value of oxygen consumption achieved 
(Poole, Wilkerson, & Jones,  2008). Control populations 
were well matched for body mass index (BMI), age, pul-
monary function, and exercise capacity. Both populations 
had no prior history of cardiopulmonary disease, took no 
regular medication except hormonal birth control, and were 
nonsmokers.

2.2  |  Experimental design

Each participant completed two research visits. On one oc-
casion, participants breathed 21% O2, balanced in N2, dur-
ing the resting, baseline phase, and exercise protocol. On 
the other occasion, participants breathed 12% O2, balanced 
in N2 (Airgas, 12% ± 0.1% verified by mass spectroscopy). 
Participants were blinded as to the gas condition. Upon report-
ing to the laboratory, a 3F catheter was placed in the brachial 
arterial under local anesthesia and an intravenous catheter 
was placed in an antecubital vein. The arterial catheter was 
attached to a clinical grade pressure transducer (Edwards 
Lifesciences). A temperature sensing pill was swallowed for 
the measurement of core temperature (CoreTemp, HQInc).

Participants then sat on the same magnetically braked er-
gometer used for maximal exercise testing and donned nose 
clips and a mouthpiece for breath-by-breath measures of ven-
tilation and metabolism. They remained seated quietly for 
at least 5 min until blood pressure and heart rate stabilized. 
Participants then began cycling at 50  W and the workload 
was increased 10 W every 2 min. Unlike the traditional ex-
ercise test used for screening, this prolonged graded exercise 
test was chosen in order to allow us to resolve subtle differ-
ences between the groups. The exercise protocol was termi-
nated when participants could not maintain a cadence ≥55 
RPM, despite strong verbal encouragement. Arterial blood 
gases were measured at rest and every other workload. The 

experiments described here were part of a larger project and 
the blood gas results have been previously reported (Farrell 
et al., 2015).

2.3  |  Heart rate, blood pressure, and pulse 
wave velocity

A multipoint calibration was performed for each transducer 
at the end of the study using a clinical transducer calibration 
device (Veri-Cal, Utah Medical) that was verified monthly 
against a water manometer. The calibration of the transducer 
was performed at the end of the experiment in order to main-
tain the sterility of the arterial line.

Heart rate, derived from the arterial pressure waveform, 
and blood pressure recordings were collected for 5  min at 
rest and continuously throughout exercise (LabChart8 (AD 
Instruments). The final 45s of each stage was used for the 
analysis of blood pressure and heart rate. Aortic pulse wave 
velocity was derived from the intrabrachial artery pressure 
waveforms obtained during the resting phase as previously 
described (Pierce et  al.,  2013) (Hemolab, Harald Stauss 
Scientific). Briefly, brachial artery pressure waveforms were 
converted into central aortic pressure waveforms using a pub-
lished transfer function (three-parameter Windkessel model) 
as described by Sugimachi et  al.  (1997) and Sugimachi, 
Shishido, Miyatake, & Sunagawa (2001). The ascending aor-
tic pressure waveforms were then decomposed into the for-
ward and reflected wave components according to Westerhof, 
Guelen, Westerhof, Karemaker, & Avolio (2006) and Qasem 
& Avolio (2008) and the time delay between these two com-
ponents was determined. Finally, the aortic pulse wave ve-
locity was calculated by dividing the effective reflecting 
distance (EfRD), by the time delay between the forward and 
reflected waves. The EfRD was estimated using a previously 
validated equation: (EfRD = (0.173 × age) + (0.661 × BMI
) + 34.548 cm) established by Pierce et al. (2013). This esti-
mation of pulse wave velocity has been shown to agree with 
tonometry-based measures.

2.4  |  Statistical analysis

Data are reported as mean ± SE unless otherwise indicated. 
Analyses were performed in Minitab (State College) and sig-
nificance was set a priori at p <  .05. Anthropometric, pul-
monary function, and exercise capacity comparisons were 
made using a two-sample t test. The impact of exercise and 
hypoxia on heart rate and blood pressure was evaluated using 
a repeated measure, nested multivariate linear model where 
the percent of maximal workload was the covariate, and the 
individual subject, group (preterm vs. term), baseline value 
of the parameter during nomoxic rest, and the gas (normoxia 
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vs. hypoxia) were included as factors. An interaction term 
(group × gas) was also included in the analysis. Results of the 
multivariate linear model analysis are given in Table 4. Heart 
rate variability, PWV, and resting blood pressure values were 
evaluated with a two-way analysis of variance for one in-
dependent (group) and one repeated (normoxia vs. hypoxia) 
measure model.

3  |   RESULTS

3.1  |  Anthropometric data, pulmonary 
function, and exercise capacity

The preterm and term-born groups were well matched with 
no difference between gender, age, height, weight, body 
mass index (BMI), and body surface area (BSA) (Table 1). 
Mild preterm is classified as 32–36  weeks, very preterm 
as 28–31  weeks, and extremely preterm as  <  28  weeks 
gestational age. The preterm groups had an average gesta-
tional age of 28 weeks, with 4 of the subjects being born at 
≤28 weeks and the youngest being 25 weeks of gestation at 
birth (Moutquin, 2003). Average birth weight of the preterm 
group was 1,047 ± 95 g and one participant was small for 
gestational age at birth. Additional data from their neonatal 
intensive care unit stay are given in Table 1. The term-born 
adults were all born at or after 36 weeks and weighed more 
than 1,500 g. Measures of cardiac anatomy, including right 

and left ventricular wall thickness, septal thickness, ejection 
fraction, end systolic and diastolic volumes, and left ven-
tricular outflow tract diameter were within normal limits and 
were not different between groups.

There was no significant difference between preterm and 
term-born adults when comparing FEV1, FVC, FEV1/FVC, 
and DLCO (Table 2). Maximum wattage of the graded exer-
cise test and VO2 max were also not different.

3.2  |  Heart rate and blood pressure

Aortic pulse wave velocity measured at rest was higher in the 
preterm group (p = .006) (Table 3) and was not altered by the 
addition of hypoxia (p = .059). Systolic and diastolic blood 
pressures were not different between groups in the period 
immediately before the onset of before exercise (Table  3). 
Normoxic, resting heart rate was higher in the preterm group 
(Table 3, p = .001).

In both groups, heart rate increased as a function of in-
creasing workload (Figure 1, p < .001). Heart rate was con-
sistently higher for the preterm group (group effect p < .001), 
even after considering significant differences in resting, nor-
moxic heart rate (Table 4, p < .001). Hypoxia caused an in-
crease in resting heart rate in both groups (Table 3, p < .001). 
We also observed a significant group × gas interaction effect 
(p = .01) that is likely the result of changes in resting and max 
heart rate. Hypoxia resulted in a 9 bpm reduction in maxi-
mum heart rate for the term-born group, compared to a 6 bpm 
reduction in the preterm individuals. The term-born group 
had a lower resting heart rate in hypoxia. Therefore, the over-
all increase in heart rate was 74 bpm compared to 68 bpm in 
the preterm group.

Systolic blood pressure increased as a function of in-
creasing workload in both groups (Figure 2, p < .001) and 
was impacted by the addition of hypoxia (p = .013). Systolic 
blood pressure increased linearly in term-born subjects per-
forming normoxic exercise up until 90% of their maximal 

T A B L E  1   Anthropometric data of adults born prematurely and 
matched term-born adults

Term 
(n = 12)

Preterm 
(n = 10) p-value

Gender: M, F 4, 8 4, 6

Age (y) 21 ± 0 21 ± 0 0.07

Height (cm) 170.7 ± 3.4 164.5 ± 3.9 0.25

Weight (kg) 71.7 ± 5.2 71.0 ± 6.8 0.94

BMI (kg/m2) 24.2 ± 1.1 25.4 ± 2.6 0.69

BSA (m2) 1.8 ± 0.1 1.8 ± 0.1 0.72

Gestational age (wk) ≥36 28 ± 1

Birth weight (g) ≥1,500 1,047 ± 95

Number of intubations 2 ± 1

Ventilator time (h) 276 ± 68

Length of stay in NICU 
(days)

74 ± 8

Surfactant at birth: (Y,N) 6, 4

Oxygen at 36 weeks: 
(Y,N)

5, 5

Note: Data are presented as mean ± SE.
Abbreviations: BMI, body mass index; BSA, body surface area; N, no; NICU, 
neonatal intensive care unit; wk, weeks; Y, yes.

T A B L E  2   Pulmonary function and exercise capacity

Term 
(n = 12)

Preterm 
(n = 10) p-Value

FEV1 (L) 4.0 ± 0.3 3.5 ± 0.2 .19

FVC (L) 4.9 ± 0.4 4.5 ± 0.3 .38

FEV1/FVC 0.81 ± 0.03 0.77 ± 0.02 .28

DLCO (mL/min/
mmHg)

27.5 ± 2.3 26.1 ± 1.7 .62

Maximum Wattage (W) 173 ± 14 145 ± 13 .18

VO2 Max (mL/min/kg) 35.8 ± 3.0 38.2 ± 1.9 .51

Note: Data are presented as mean ± SE. DLCO, diffusing capacity of the lung 
for carbon monoxide; FEV1, forced expiration volume in 1 s; FVC, forced vital 
capacity.
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workload, while it plateaued at 60% of the maximal work-
load in preterm subjects. Both groups demonstrated a linear 
increase in systolic pressure with hypoxic exercise and, as in 
normoxia, systolic blood pressure was higher in the preterm 
group throughout the exercise protocol. Differences between 
preterm and term-born individuals can be accounted for by 
pre-exercise, systolic blood pressure (p < .001), suggesting 
that small differences in pre-exercise blood pressure predict 
the higher systolic pressure during exercise.

Consistent with classic studies of the effect of exercise on 
diastolic blood pressure (Hanson & Tabakin,  1965; Tabakin, 
Hanson, Merriam, & Caldwell, 1964), term-born participants 
demonstrated little change in diastolic blood pressure during 
exercise in normoxia (Figure 2). Preterm individuals began the 
exercise at a higher diastolic pressure than the term-born indi-
viduals and maintained a higher diastolic pressure until voli-
tional maximum was approached (group effect, p = .002), even 
after considering effect of the normoxic, pre-exercise diastolic 

Term Born (N = 12) Preterm (N = 10)

Normoxia Hypoxia Normoxia Hypoxia

Heart rate (BPM) 87 ± 4 94 ± 4†  92 ± 3* 106 ± 3† 

Systolic blood pressure 
(mmHg)

137 ± 7 145 ± 15 162 ± 14 152 ± 10

Diastolic blood pressure 
(mmHg)

80 ± 4 87 ± 10 92 ± 10 81 ± 7

Mean arterial pressure 
(mmHg)

103 ± 5 109 ± 11 118 ± 12 106 ± 8

Pulse pressure (mmHg) 57 ± 3 58 ± 7 70 ± 5* 71 ± 6

Aortic pulse wave 
velocity (m/s)

7.8 ± 0.3 8.8 ± 0.6 9.2 ± 0.8* 10.7 ± 1.0

Central augmentation 
index (%)

4.4 ± 2.2 2.9 ± 1.4 2.0 ± 1.2 0.5 ± 0.4

Average interbeat interval 
(ms)

709 ± 30 657 ± 24†  670 ± 26* 574 ± 20† 

SD interbeat interval (ms) 57 ± 7 54 ± 9†  66 ± 11 35 ± 6† 

SD rate (BPM) 7.1 ± 0.9 6.8 ± 0.9 8.1 ± 0.9 5.9 ± 0.6

VLF power (%) 36.1 ± 5.0 29.4 ± 4.5 34.4 ± 5.2 40.3 ± 5.9

LF power (%) 38.5 ± 4.4 38.3 ± 3.0 42.3 ± 4.8 42.8 ± 4.8

HF power (%) 25.2 ± 6.3 30.9 ± 4.1 23.8 ± 4 17.2 ± 4.0

LF/HF 3.5 ± 1.3 1.7 ± 0.4 2.4 ± 0.6 3.5 ± 0.7

Abbreviations: BPM, beats per minute; HF, high frequency; LF, low frequency; VLF, very low frequency.
*Represents an interaction of the group (p < .05). 
†Represents an effect of the gas (p < .05) 

T A B L E  3   Pre-exercise heart rate, 
blood pressure, pulse wave velocity, and 
heart rate variability parameters

F I G U R E  1   Heart rate during normoxic (21% oxygen) and hypoxic (12% oxygen) incremental exercise tests to volitional exhaustion in term-
born (n = 12) and preterm (n = 10) adults. Data are represented as mean ± SE and were analyzed with a repeated measures, nested multivariate 
model with the group (term vs. preterm), gas (normoxia vs. hypoxia), resting normoxic value, and an interaction (group × gas) included as factors. 
Statistical information is given in Table 4
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pressure (p < .001). Diastolic pressure was increased by the ad-
dition of hypoxia in the term born. In contrast, exercise caused 
a reduction in diastolic pressure in the preterm population, and 
diastolic pressure was lower in the preterm group compared to 
controls throughout exercise (groups  ×  gas effect p  =  .046). 
The differences in diastolic pressure largely contribute to the 
differences in mean arterial pressure (Figure 3). In normoxia, 
the mean arterial pressure was higher, consistent with increased 
systolic blood pressure (group effect p < .001). However, in hy-
poxia, the difference in mean arterial blood pressure between 
groups was reduced, driven by the reduction in diastolic pres-
sure in the preterm group (gas effect, p < .001).

The pulse pressure is the difference between the systolic 
and diastolic blood pressure, depends on stroke volume and 

arterial stiffness (Lamia et al., 2007), and reflects the work 
of the left ventricle during ejection (Walley, 2016). In both 
groups, pulse pressure increased as a function of increasing 
workload (p  <  .001) and pulse pressure was higher in the 
preterm group compared to term-born controls (p  <  .001). 
Hypoxia resulted in a higher pulse pressure in both groups 
(p < .001).

4  |   DISCUSSION

The major finding of this work is that healthy survivors of 
prematurity experience substantially higher blood pressures 
during exercise that are likely to have multiple mechanistic 

T A B L E  4   Multivariate linear model of heart rate and blood pressure responses to normoxic and hypoxic exercise

Dependent variable Independent variable
Regression 
coefficient (β) Coefficient SE p-Value

Model 
adjusted R2

Heart rate Pre-exercise normoxic 
value

.32 .05 <.001 83.8%

Group −2.84 .60 <.001

Gas .38 .65 .56

Group × gas 1.55 .60 .01

Workload .89 .02 <.001

Systolic blood pressure Pre-exercise normoxic 
value

.97 .03 <.001 87.3%

Group −.13 .78 .87

Gas −1.72 .69 .013

Group × gas −.36 .71 .61

Workload .40 .02 <.001

Diastolic blood pressure Pre-exercise normoxic 
value

.81 .04 <.001 83.2%

Group −1.591 .50 .002

Gas −3.55 .48 <.001

Group × gas .91 .50 .046

Workload .02 .02 .26

Mean arterial pressure Pre-exercise normoxic 
value

.92 .04 <.001 86.1%

Group −1.84 .56 .001

Gas −3.07 .52 <.001

Group × gas .59 .54 .28

Workload .15 .02 <.001

Pulse pressure Pre-exercise normoxic 
value

1.31 .06 <.001 80.7%

Group 2.42 .64 <.001

Gas 2.84 .52 <.001

Group × gas 10.5 .52 .042

Workload .38 .02 <.001

Bold indicates statistically significant values.
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contributors. Whether prematurity directly impacts hy-
pertension risk continues to be a topic of intense interest 
(Bertagnolli, Luu, Lewandowski, Leeson, & Nuyt,  2016). 
The overall purpose of this study was to evaluate the blood 
pressure response to exercise in an adult population of pre-
maturely born adults. Crump, et al. described blood pres-
sure in 636,000 adults, including 28,220 born prematurely, 
and found that young adults born prematurely (Lamia 
et  al.,  2007; Lewandowski Adam et  al.,  2015; Lovering 
et al., 2013; Luu et al., 2016; Martyn et al., 1995; Martyn & 
Greenwald, 1997; McEniery et al., 2011; Moutquin, 2003; 

Narang, 2010; Narang et al., 2009; Palta et al., 1990, 1991) 
had an increased risk of antihypertensive use (Crump, 
Winkleby, Sundquist, & Sundquist, 2011). Sipola-Leppänen 
et al. (2015 measured 24-hr ambulatory blood pressure and 
found that systolic blood pressure is ~5  mmHg higher in 
young adults born prematurely. While these studies sug-
gest important baseline differences, the addition of a dy-
namic challenge allowed us to better interrogate vascular 
dysfunction in this population. This study adds to the field 
by evaluating the blood pressure response in the face of two 
physiologically relevant stressors – exercise and hypoxia.

F I G U R E  2   Systolic and diastolic 
blood pressure during normoxic (21% 
oxygen) and hypoxic (12% oxygen) 
incremental exercise tests to volitional 
exhaustion in term-born (n = 12) 
and preterm (n = 10) adults. Data are 
represented as mean ± SE and were 
analyzed with a repeated measures, nested 
multivariate model with the group (term 
vs. preterm), gas (normoxia vs. hypoxia), 
resting normoxic value, and an interaction 
(group × gas) included as factors. Statistical 
information is given in Table 4
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F I G U R E  3   Mean arterial pressure 
and pulse pressure during normoxic 
(21% oxygen) and hypoxic (12% oxygen) 
incremental exercise tests to volitional 
exhaustion in term-born (n = 12) 
and preterm (n = 10) adults. Data are 
represented as mean ± SE and were 
analyzed with a repeated measures, nested 
multivariate model with the group (term 
vs. preterm), gas (normoxia vs. hypoxia), 
resting normoxic value, and an interaction 
(group × gas) included as factors. Statistical 
information is given in Table 4. Mean 
arterial pressure was measured directly by 
averaging the brachial artery waveform

0 10 20 30 40 50 60 70 80 90 100

80

95

110

125

140

155

M
ea

n 
ar

te
ria

l)

0 10 20 30 40 50 60 70 80 90 100

80

95

110

125

140

155

0 10 20 30 40 50 60 70 80 90 100

0

25

50

75

100

125

Workload (% Max)

Pu
ls

e 
pr

es
su

re
 (m

m
 H

g)

0 10 20 30 40 50 60 70 80 90 100

0

25

50

75

100

125

Workload (% Max)

Normoxia Hypoxia

pr
es

su
re

 (m
m

 H
g



8 of 12  |      BARNARD et al.

4.1  |  What does the diastolic pressure in 
hypoxia tell us about the vascular function of 
preterm adults?

Increased blood pressure in premature individuals has been 
previously attributed to microvascular rarefaction (Bonamy, 
Martin, Jörneskog, & Norman, 2007) and increased circulat-
ing antiangiogenic factors (Lewandowski Adam et al., 2015). 
Notably, blood pressures were not correlated with capillary 
density. This begs the question whether increased vascular 
tone also contributes to abnormal blood pressure. Our data 
suggest that vascular reactivity is also impaired.

The use of exercise and hypoxia allows us to probe the 
hypothesis that vascular tone is also abnormal in the preterm 
population. In normoxic exercise, preterm adults demonstrate 
increased diastolic blood pressure, consistent with increased 
total peripheral vascular resistance and decreased microvas-
cular density. However, the addition of hypoxia caused a 
decrease in blood pressure during exercise, suggesting that 
preterm-born adults have an impaired vascular reactivity. 
Whether endothelial function is impaired in this population 
remains unknown. Bonamy, et al. evaluated endothelial func-
tion in the skin blood vessels of children born prematurely 
and found that the response to acetylcholine was not differ-
ent than that of term-born children (Bonamy et  al.,  2007). 
Furthermore, it is not known if endothelium-independent 
vascular reactivity is altered. Yzydorczyk, et al. demon-
strated that perinatal oxygen exposure impairs vascular re-
activity to angiotensin II in an animal model of prematurity 
(Yzydorczyk et al., 2008). However, there are no studies as 
to the impact of prematurity on sympathetic tone or sympa-
thetic vascular responsiveness and functional sympatholysis 
(Fadel, 2015).

4.2  |  What is the etiology of arterial stiffness 
in adult survivors of prematurity?

We derived aortic pulse wave velocity from brachial arterial 
waveforms obtained at rest with normoxic and hypoxic gas 
breathing. Our results indicate that aortic stiffness is elevated 
in adult survivors of prematurity. In general populations with 
matched blood pressures, age is the best predictor of aortic 
stiffness (Koivistoinen et al., 2007). Reusz, et al. measured 
aortic pulse wave velocity in 1,000 children and teenagers 
and noted that the 95th percentile for 20-year-old men and 
women is 7.5 and 7.0 m/s, respectively. Seven of ten of our 
preterm participants exceed the 95th percentile for their age 
group and six exceed the 95th percentile by > 1 m/s. Four 
individuals exceeded the 90th percentile for 70-year-old men 
and women (The Reference Values for Arterial Stiffness C, 
2010), suggesting a severe premature vascular aging pheno-
type. We additionally observed an increased pulse pressure 

during exercise, which is likely related to the increased aortic 
stiffness. Given the value of pulse wave velocity as a bio-
marker for cardiovascular risk (Vlachopoulos, Aznaouridis, 
& Stefanadis, 2014), the elevated aortic PWV in preterm-
born adults potentially has important clinical implications, 
such as the need for a more rigorous assessment of cardio-
vascular risk in this population. We propose that increased 
pulse wave velocity may be a contributor to elevated systolic 
blood pressure during exercise, but note that we did not com-
prehensively evaluate arterial function and responsiveness.

The etiology of increased aortic stiffness in this preterm-
born adults is not well understood. One hypothesis for in-
creased aortic pulse wave velocity is improper development 
of the aorta (Martyn et al., 1995). Elastin is deposited in the 
aorta primarily between 38 and 40 weeks of gestational age 
(Martyn & Greenwald, 1997). Preterm birth may disrupt this 
process, and it may be further inhibited by clinical treatment 
events. In animal models of prematurity, antenatal steroids 
(Bensley, De Matteo, Harding, & Black, 2011) and perinatal 
supplemental oxygen (Huyard et  al.,  2014) disrupt normal 
aortic development. It is noteworthy that all of our partic-
ipants received supplemental oxygen at birth and we have 
described other physiological abnormalities that are likely 
driven by oxygen (Bates, Farrell, & Eldridge, 2014; Bates 
et al., 2018). While aortic pulse wave velocity has not been 
validated as a surrogate for aortic stiffness in hypoxia, we 
did not find it to be changed by hypoxia in either preterm- or 
term-born individuals.

Alternatively, our observations may be described by pre-
mature aging. McEniery, et al. evaluated aortic pulse wave ve-
locity in extremely prematurely born 11-year-olds and found 
that systolic and diastolic blood pressure were not different, 
and aortic pulse wave velocity was also not difference than 
that measured in term-born peers (McEniery et  al.,  2011). 
Arterial wave reflections were elevated, suggesting the emer-
gence of a phenotype. It is possible that an observable in-
crease in aortic stiffness will only emerge as these children 
mature into young adulthood. None the less, the question of 
whether aortic stiffening occurs because of premature aging, 
disruption in vascular development, or a combination of both 
remains an unanswered question.

While we note increased aortic pulse wave velocity in 
the preterm population, we did not find an increase in the 
central augmentation index. The fact that the augmentation 
index does not change in the same direction as aortic pulse 
wave velocity in the preterm population is not necessar-
ily surprising. While the augmentation index is influenced 
by arterial stiffness, it is not a pure measure of stiffness, 
per se. The augmentation index is impacted by additional 
factors including heart rate, vascular tone and geometry, 
height, and LV contractility (Hughes et  al.,  2013; Kelly, 
Millasseau, Ritter, & Chowienczyk, 2001; Sharman, Davies, 
Jenkins, & Marwick, 2009). Augmentation index is inversely 
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proportional to heart rate (Wilkinson et  al., 2000) and it is 
conceivable that increases in the augmentation caused by in-
creased stiffness would be countermanded by the increased 
heart rate in the preterm population.

4.3  |  Why is heart rate elevated during 
exercise in survivors of prematurity?

Although peak oxygen uptake was not different between 
groups, heart rate was consistently higher during exercise in 
the premature group. Considering that the rate of oxygen up-
take is similar between groups and is determined by both car-
diac output and oxygen extraction (West, 2008), an increased 
heart rate suggests that either stroke volume or oxygen ex-
traction is impaired. We found no statistically significant dif-
ferences in left ventricular morphometry between groups, but 
cardiac function during exercise may be impacted by prema-
turity. Huckstep et al. evaluated left ventricle function during 
exercise and found that stroke volume was similar at baseline, 
but reduced at 60% and 80% of peak exercise. Cardiac out-
put reserve was decreased in the preterm-born group at each 
percent peak of exercise intensity (Huckstep et  al.,  2018). 
Consistent with our findings, prematurely born individuals 
may compensate for impairments in stroke volume with an 
increased heart rate (Goss et al., 2018). Additional compre-
hensive measures of hemodynamic function in this popula-
tion are warranted.

4.4  |  Limitations

A strength of our study is invasive arterial measures of blood 
pressure during exercise, allowing us to obtain high fidelity 
pressure recordings and derive the aortic pulse wave veloc-
ity. Baseline arterial pressures were higher than might be 
expected in a young, healthy population. Despite the use of 
generous local anesthesia, we suspect the invasiveness of 
placing an arterial catheter may have influenced baseline 
blood pressure, resulting in higher baseline blood pressures 
than would be expected in a young adult population. Baseline 
blood pressure was also measured immediately before the 
onset of exercise, with the participant seated on the ergometer. 
No participant reported use of antihypertensive medication or 
a clinical diagnosis of hypertension and all participants had 
clinically normal blood pressure before the screening session 
(<130 mmHg systolic). We also used the brachial pressure 
tracings to derive the aortic pulse wave velocity based on a 
previously published algorithm (Pierce et al., 2013). Although 
this method has been validated against gold standard arterial 
tonometry, we appreciate that there is a small average disa-
greement between the two measures (0.04 ± 0.19 m/s), but 
no evidence of bias (Pierce et al., 2013). We are confident 

that the differences we observe here are not influenced by the 
absolute pulse wave velocity. Derivation of pulse wave ve-
locity from the brachial arterial waveform has been validated 
in young, healthy individuals without cardiovascular disease. 
While prematurity was not included as a variable in these 
studies, it is reasonable to assume that this population likely 
included preterm individuals. Still, we note that the deriva-
tion of pulse wave velocity from a brachial waveform has 
not been specifically validated in survivors of prematurity. 
Our data provide a rationale for additional follow-up studies 
in this area.

We did not directly measure cardiac output at rest or during 
exercise in this study. As we note, others have observed a di-
minished stroke volume and cardiac output reserve during ex-
ercise in a similar preterm population (Huckstep et al., 2018). 
This is physiologically consistent with our observation that 
the heart rate is higher in adult survivors of prematurity. To 
date, there have been no simultaneous measures of systemic 
hemodynamic function, inclusive of both cardiac output and 
blood pressure, in this population. Comprehensive studies of 
hemodynamic function, inclusive of cardiac output and blood 
pressure, are needed in this population.

Consistent with the populations of Wisconsin and Iowa, 
the participants in this study were white and nonhispanic. The 
results may not be broadly applicable. The study was derived 
from NICUs in Iowa and Wisconsin, which could elicit a geo-
graphical bias. Our study excluded any participants that were 
diagnosed with asthma, cardiovascular defects, and cogni-
tive or motor defects, and all participants appeared clinically 
normal. We suspect that the invasiveness of the protocol and 
intensity of the exercise selected for high-performing indi-
viduals and our data may not be applicable to patients with 
long-term clinical sequelae. However, we observed altered 
cardiovascular responsiveness to exercise even in individuals 
who appear clinically normal. There may be individuals with 
a more severe phenotype that we did not characterize here.

4.5  |  Clinical Implications and conclusions

This is the first study to evaluate the dynamic blood pressure 
response to physiologically relevant stressors in adult survi-
vors of prematurity. We found that preterm adults experience 
higher systolic blood pressures during exercise compared to a 
term-born control group, and that this is possibly the result of 
increased large artery stiffness. The experiments performed 
in hypoxia revealed abnormalities in vascular function that 
may further deteriorate as this population ages. Preterm 
adults also require a higher heart rate during exercise, sug-
gestive of alterations in stroke volume or oxygen extraction. 
Given the association between arterial stiffness and vascular 
dysfunction with cardiovascular diseases, our results suggest 
that the preterm population is vulnerable to cardiovascular 
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diseases even in young adulthood. We propose that the ad-
dition of a cardiovascular stressor is critical to determine the 
full range of dysfunction in this population.
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