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Abstract

Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of 

senescent cells contributes to age-associated organismal decline. The detrimental effects of 

CS are due to the senescence-associated secretory phenotype (SASP), an array of signaling 

molecules and growth factors secreted by senescent cells that contribute to the sterile inflammation 

associated with aging tissues. Recent studies, both in vivo and in vitro, have highlighted the 

heterogeneous nature of the senescence phenotype. Single-cell transcriptomics has revealed that 

oncogene-induced senescence (OIS) is characterized by the presence of subpopulations of cells 

expressing different SASP profiles. We have generated a comprehensive dataset via single-cell 

transcriptional profiling of genetically homogenous clonal cell lines from different forms of 

senescence, including OIS, replicative senescence, and DNA damage-induced senescence. We 

identified subpopulations of cells that are common to all three major forms of senescence and 

show that the expression profiles of these subpopulations are driven by markers formerly identified 

in individual forms of senescence. These common signatures are characterized by chromatin 

modifiers, inflammation, extracellular matrix remodeling, and ribosomal protein gene expression 

(measured at the RNA level). The expression patterns of these subpopulations recapitulate primary 

and juxtacrine secondary senescence, a phenomenon where a pre-existing (primary) senescent 

cell induces senescence in a neighboring (secondary) cell through cell-to-cell contact. Hence, our 

results demonstrate that the formation of juxtacrine secondary populations of cells is common 

to multiple types of senescence and occurs in competition with primary senescence. Finally, we 

show that these subpopulations show differential susceptibility to the senolytic agent Navitoclax, 

suggesting that senolytic agents targeting the apoptotic pathways may be clearing only a subset of 

senescent cells based on their inflammatory profiles.
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Introduction

Cellular senescence (CS) is a programmed stress response that leads to a cell’s permanent 

exit from the cell cycle and can be induced by a variety of factors including telomere 

attrition, oncogene activation, oxidative stress, and DNA damaging agents1–3. Although 

CS comes in different forms, an established senescent pathway involves a persistent 

DNA-damage response that leads to the activation of the tumor suppressor protein 53 

(P53), which, in turn, activates the cyclin-dependent kinase inhibitor gene CDKN1A. The 

translated protein encoded by the CDKN1A gene, p21, holds the cell in cell cycle arrest until 

upregulation of the cyclin-dependent kinase inhibitor gene CDKN2A, which encodes the 

p16 protein that maintains the cell in an irreversible senescent state1,4. During senescence, 

the cell undergoes global epigenetic changes including dramatic chromatin alterations and 

increased expression of an array of extracellular remodeling proteins, growth factors, and 

inflammatory molecules such as interleukins and interferons that compose the senescence-

associated secretory phenotype (SASP)4–7. SASP leads to inflammation disrupting the tissue 

microenvironment, reinforces the senescent phenotype by contributing to the cell cycle 

arrest, and can induce paracrine senescence in normal cells8,9.

Studies describing the heterogeneity of senescent cells have shown that there are different 

forms of SASP. For example, one form is dominated by transforming growth factor beta 

(TGF-beta) signaling10–12. TGF-beta-dominated profiles are characterized by extracellular 

matrix remodeling, collagen deposition, and by the expression of growth factors such as 

the connective tissue growth factor (CTGF)10,13,14. Another form of SASP, however, shows 

a more pro-inflammatory profile with higher levels of interleukins such as IL1A, IL1B, 

IL6, and other genes regulated by Nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFKB)10–12,15. In oncogene-induced senescence (OIS), the prevalence of these profile 

changes as cells persist in the senescent state: TGF-beta signaling is typically higher in 

the earlier stages of senescence, whereas in the later stages senescent cells transition to a 

pro-inflammatory phenotype10.

Not only do transcriptional profiles change over the course of time, but they can also 

characterize different types of senescent states. For instance, TGF-beta-dominated SASP 

profiles are prevalent in notch-induced senescence (NIS) 10–12, which occurs when a 

primary senescent cell (or a pre-existing senescent cell) makes direct contact and activates 

the notch signaling pathway in a neighbor cell, causing the spread of senescence through 

juxtacrine signaling and thereby creating a secondary senescent cell. OIS cells can act as the 

primary senescence source, and display more pro-inflammatory SASP profiles with higher 

levels of interleukins and NFKB regulated genes in contrasts with the anti-inflammatory 

TGF-beta-dominated profiles of NIS cells11.

CS is an inherently heterogeneous state, as it can be cell type- and insult-dependent1,4,16. 

However, most of the data describing senescence have been collected using bulk sequencing 

technologies that measure average gene expression across large heterogeneous pools of 

cells and is blind to cell-to-cell transcriptional variability. With the advent of single-

cell transcriptomics, it has become clear that distinct subpopulations contribute to the 
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population-wide average11,17. Despite the limited single-cell transcriptional data currently 

available for senescent cells, it is becoming increasingly clear that senescent cells are 

subject to significant transcriptional diversity10,16–18. Consistent with this transcriptional 

heterogeneity, subpopulations of senescent cells have been observed in single-cell 

transcriptomic studies from fibroblasts and endothelial cell lines11,17,18. For example, using 

single-cell RNA-seq, Teo et al showed that two subpopulations coexist in the OIS cultures11. 

One population possessed the familiar OIS transcriptional profile (primary senescence), 

whereas the second population, which was also senescent, possessed SASP profiles that 

were growth factor rich and dominated by TGF-beta signaling, and was composed of NIS 

cells (secondary senescence).

The senescent phenotype is characterized by chromatin modifications, DNA-damage 

response pathways, and SASP profiles1,3. However, an in-depth description of how these 

different aspects vary across senescent cell populations is still lacking17,19. Here, we 

used single-cell transcriptomics to identify subpopulation of senescent cells in genetically 

homogenous clonal cell lines with a inducible HRAS:G12V transgene that was activated 

only in OIS cultures. This strategy ensures that the subpopulations we observe are not 

a caused by variability of the number and genomic location of the transgene constructs, 

and the consequent variability in the expression levels of the transgene across cells. This 

experimental design allowed us to conduct a novel, unified analysis of senescent cell 

heterogeneity across the major forms of senescence.

Materials and Methods

Single-cell RNA sequencing

Human diploid fibroblast cells were trypsinized and centrifuged at 500 rcf for 10 minutes. 

Cells were resuspended in cold phosphate-buffered saline and passed through a 40 μM 

Flowmi Cell Strainer. Cells were then counted and loaded onto the 10× chromium using V2 

chemistry of 10× genomics’ 3-prime single-cell reagents with version 2 chemistry. Libraries 

were prepared according to the manufacturer protocol and sequenced on a Hi-Seq platform 

at GeneWiz with manufacture recommend sequencing specifications. Senescent libraries 

were subjected to two rounds of sequencing. All single-cell RNA-seq datasets generated in 

this work have been deposited in the Gene Expression Omnibus database with accession 

number GSE173879.

scRNA-seq data processing and filtering

Cell-specific barcodes were error corrected and identified from fastq files, and data were 

aligned to the hg19 reference genome using CellRanger V2.1 Command Line tools. For 

measuring expression of neo selectable marker, a second round of alignment was conducted 

to the hg19 reference genome along with the neomycin sequence from pLNCX2. Secondary 

analysis was conducted using Seurat R package version 319,20. Data generated from each 

cell population (growing, replicative senescence [RS], OIS, and DNA damage-induced 

senescence [DDIS] cells) were filtered separately. Stringent filtering methods were applied 

using parameters described in the literature such as the number of genes detected, number 

of unique transcripts detected, percent mitochondrial genes detected, and percent ribosomal 
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protein RNA detected19,20. To filter cells, we refrained from regressing out the effects of 

the abovementioned quality control metrics when implementing clustering protocols. Then, 

we were able to cluster the majority of “low-quality” cells separately from the good-quality 

cells. Low-quality clusters were then discarded.

Clustering scRNA-seq data

Filtered datasets were merged together, scaled, and renormalized using Seurat19,20. In this 

case, the number of genes detected, number of unique transcripts detected, and percent of 

mitochondrial genes detected were all scaled out using Seurat’s ScaleData method with 

the var.to.regress parameter, thereby ensuring that any conclusions drawn from downstream 

analysis were driven by variable gene expression and not technical factors such as cell-

to-cell variability in sequencing depth. Next, principal component analysis (PCA) was 

conducted, and, depending on the dataset, the top 20–30 principal components were fed 

into Seurat’s shared nearest neighbor-based Louvain clustering algorithm.

Differential expression analysis

Differential expression was performed using Seurat with model-based analysis of single cell 

transcriptomics (MAST) methodology21,22. Cluster 1 was compared to cluster 2 in each type 

of senescence.

Ingenuity pathway analysis (IPA)

The computed log fold changes of significantly differentially expressed genes (false 

discovery rate less than 0.05) were used in IPA by Qiagen. Upstream regulators were plotted 

according to their z score and q value of their overlap using GGplot2 R package. Q values 

for upstream regulators were computed using p.adjust function in base R.

Gene set enrichment analysis (GSEA)

Computed log fold changes of genes differentially expressed between clusters 1 and 2 were 

used in a pre-ranked GSEA analysis. Gene Ontology (GO) terms and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways were downloaded from MSigDB23. GO terms, 

included custom SASP lists, were based on the existing literature24–30. KEGG pathways for 

primary and secondary senescence were generated by Teo et al and were added to the list of 

KEGG pathways11. Bar charts were generated using ggplot2, and tables were generated in 

Microsoft Excel.

Navitoclax experiments and analysis

Senescent cells were treated with 1 μM of Navitoclax for three days. For OIS and DDIS 

samples, 4OHT and Etoposide were removed from the growth media before Navitoclax 

treatment. Dimethyl sulfoxide (DMSO)-treated cells served as controls. Cells recovered 

in regular growth media supplemented with DMSO overnight before being harvested for 

scRNA-seq. Clusters were identified in DMSO-treated controls. p values were calculated 

using the chisq.test function in R.
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Retroviral infections of ERT2-HRAS:G12V

The 293T cells were co-transfected with plasmid DNAs of a retroviral vector and the helper 

vectors using FuGENE HD (Promega). Medium was collected 24, 36, and 48 hours later for 

infection of LF1 cells. The vector backbone was clonetech pQCXIN (Addgene Cat Number 

631514). Clonal cell lines were generated through serial dilution in 500 μg/mL of G418. 

Colonies generated from single cells were selected and further propagated.

Cell culture and senescence induction

We sequenced proliferating female human diploid fibroblast cells (LF1 cells) along with 

populations of LF1 cells that were induced into RS, OIS, and DDIS. LF1 cells were 

obtained from the Sedivy lab. All cell populations were generated with a clonal cell line 

that possessed an ERT2-HRAS:G12V transgene. For proliferating, populations cells were 

passaged in regular growth media and harvested at 60%–80% confluency. Meanwhile, 

replicative senescent cells were passaged in regular growth media until replicative 

exhaustion. DDIS was induced with addition of etoposide at 40 μM for three weeks 

to regular growth media. OIS was induced by adding 4-Hydroxytamoxifen (4-OHT) to 

regular growth media, at which point the cells underwent a hyperproliferative phase before 

senescing after six days. Regular growth media consisted of Ham’s F10, 15% Fetal Bovine 

Serum (FBS), and 1× of penicillin streptomycin and glutamine. Cells were maintained at 

37°C at 5% CO2 and 2.5% O2.

Results

Single-cell transcriptional profiling of clonal lines

We performed single-cell RNA sequencing using the 10× chromium microfluidics platform 

to study cell-to-cell gene expression heterogeneity in RS, OIS, and DDIS. All cell 

populations were generated using female human diploid fibroblast cells (LF1 cells) and were 

derived from a clonal cell line that possessed a 4-OHT inducible HRAS:G12V transgene 

(Fig. 1A). Although subpopulations of senescent cells had been identified in OIS cultures, 

little is known about the cell-to-cell diversity in other forms of senescence. We hypothesized 

that the diversity found in OIS cultures is a phenomenon common across multiple forms of 

senescence. To test this hypothesis, we sequenced different types of senescence in different 

cell culture conditions. For full list of culture conditions sequenced for this study, see Table 

1. For results in the main figures in this paper, we focus on the three of the datasets 

comprising RS, OIS, and DDIS cells. Analysis of the remaining datasets, which revealed 

strikingly similar diversity, is shown in the supplemental figures. Specifically, for OIS 

cultures we have samples that were in 4-OHT, whereas others were removed from 4-OHT 

prior to sample collection. This helped us to determine how 4-OHT affected diversity. For 

RS, we sequenced two clonal cells lines, referred to as RS and RS Rep2. This let us show 

that the observed heterogeneity was not due to the use of a specific clonal cell line but 

instead could be recapitulated across multiple clonal lines. Moreover, for OIS samples we 

also performed 5′ end sequencing. This let us show that the heterogeneity we discovered in 

our datasets is not due to a 3′ sequencing bias.
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Because all of our datasets were generated with cells that were infected with an 

HRAS:G12V transgene, controlling for variable expression of this transgene is important 

if we are to draw conclusions regarding the formation of subpopulations in senescence. 

Without clonal cell lines, the transgene would be expressed at varying levels across the 

cells, and because HRAS is upstream of many important molecular pathways that are 

heavily implicated in senescence, then this would have been a confounding factor in our 

experiments. Our approach contrasts previous studies which conducted scRNA-seq on non-

clonal cell lines that variably express the transgene11. Moreover, working with clonal cell 

lines ensured that any variability in gene expression that we observed was a product of the 

senescent phenotype and not due to a pre-existing heterogeneity in the proliferating cell 

populations.

For all types of senescence, we noticed the presence of a large populations of cells 

that showed signs of low-quality data. These included higher than average expression of 

ribosomal protein genes in combination with the low number of genes being expressed 

and low number of unique molecular identifiers (UMIs). In addition, we saw a different 

and smaller subpopulation of cells with the high number of mitochondrial reads. Our 

proliferating control cells did not possess these subpopulations in large numbers. Taken 

together, these observations suggest that senescent cells are more fragile to the microfluidics 

used to generate these libraries. For all datasets, we filtered out these low-quality droplets 

and the remainder of our analysis focused on the higher-quality cells which we retained. 

See Materials and Methods section and Supplemental Figure 7, for a detailed explanation of 

our filtering strategy. RS, OIS, and DDIS cultures showed clear senescent gene expression 

patterns including upregulation of CDKN2A and downregulation of cell cycle genes, 

HMGB1, and HMGB2 (Figs. 1C, 2H,J).

All datasets were merged using the Seurat Bioconductor Package19,20. Our filtered dataset 

included a total of 6108 cells split across multiple types of senescence and conditions. We 

projected individual cells’ transcriptional profiles onto two dimensions using the Uniform 

Manifold Approximation and Projection reduction and observed a clear separation between 

senescent and growing cells. Computing a cell cycle score with Seurat shows that the 

proliferating population is composed of cells in the S, G2/Mitosis, and G1/G0 phases of the 

cell cycle. We noticed that the different types of senescent cells are positioned more closely 

to control cells in the G1/G0 phase, showing that the senescent state as a distinct and final 

cell cycle phase (Fig. 1B).

Clustering reveals two subpopulations in clonal cell lines

We combined each senescent dataset along with an equal-sized subpopulation of control 

cells (Fig. 2A). Clustering was performed on the resulting datasets (see Materials and 

Methods section), and in all cases, we could identify subpopulations of senescent cells. 

For each type of senescence, we call the subpopulations “−1” and “−2” (Fig. 2B–G). We 

analyzed the expression of the transgene between the two clusters by aligning to the amino 

3 0-glycosyl phosphotransferase (neo) selectable marker gene. We saw that the transgene is 

much more evenly expressed between the subpopulations we observe in cultures generated 

from clonal cell lines when compared to previous published experiments which did not use 
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clonal lines (Supplemental Fig. 6). In addition, when combined, the cluster 2 cells tend to 

be more similar to each other across the three forms of senescence than to cells in cluster 1 

(Supplemental Fig. 9).

Subpopulations are distinguished by TGF-beta signaling, DNA-damage response, and 
inflammatory pathways

We performed a differential expression analysis between clusters 1 and 2 in each type 

of senescence using the Seurat package with MAST methodology21,22. The computed 

log fold changes of genes passing a false discovery rate of 0.05 were used to identify 

potential upstream regulators via the IPA (Fig. 3). We plotted the upstream regulators 

according to two dimensions. On the x-axis are the computed z scores, which show the 

direction of regulation. On the y-axis is the negative logarithmic transformation of their 

false discovery rate, which determines the upstream regulators whose gene sets show a 

statistically significant overlap with the list of differentially expressed genes in the data.

Using a z score cutoff 1.64 and −log q-value cutoff of 1.301, we were able to identify 

statistically significant upstream regulators. We noticed that the predicted upstream 

regulators were very similar for each type of senescence. More specifically, cluster 1 

showed upstream regulators TP53, a marker for DNA damage13,31–33. We also saw 

Interferon term IFNA2, suggesting a more pro-inflammatory profile30. Meanwhile, cluster 

2 showed upstream regulators corresponding to TGF-beta signaling and extracellular matrix 

remodeling. These regulators included TGF-beta receptors, TGF-beta1–3, and several 

Suppressor of Mothers against Decapentaplegic (SMAD) proteins that are transducers for 

TGF-beta signaling. We also performed a comparison analysis for each type of senescence 

and noticed a strong similarity in the z scores for the upstream regulators between all 

types of senescence that we sequenced (Fig. 3). We also confirmed the existence of these 

subpopulations in all other senescent datasets (see Supplemental Fig. 1, for senescent 

markers, supplemental tables provided in Excel sheet for GSEA and KEGG terms, and 

Supplemental Fig. 8 for IPA upstream regulators).

Next, we took the log fold changes between clusters 1 and 2 for each type of senescence 

and conducted a pre-ranked GSEA with GO terms and KEGG pathways24–29. We plotted 

the normalized enrichment scores for statistically significant (p < 0.05) GO terms and 

KEGG pathways. We noticed that subpopulations in cluster 1 showed enrichment for terms 

related to DNA-damage response pathways such as telomere organization, mismatch repair, 

base excision repair, and DNA-ligation. Moreover, there was also an enrichment for SASP 

and inflammation pathways including our custom SASP lists (see Materials and Methods 

section, for details on custom SASP lists), inflammatory response, cytokine interactions, 

viral life cycle, neutrophil migration, and viral transcription (Tables 2–4).

In contrast, cells in cluster 2 showed higher levels of extra cellular matrix activity 

including terms related to integrin signaling pathways, extracellular organization, cell 

adhesion, collagen organization, Major Histocompatibility Complex (MHC) class 1 antigen 

presentation, and cell junction organization. Cluster 2 was also enriched for terms related 

to TGF-beta signaling such as regulation of TGF-beta, SMAD protein signaling, Wingless-

Type (WNT) signaling, and anti-inflammatory gene activity (Tables 2–4). Collagen 
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deposition, extra cellular matrix remodeling, and WNT signaling are all regulated or co-

activated by TGF-beta signaling13,14,31,34. Therefore, this is consistent with the expression 

profile of cluster 2 cells as being dominated by TGF-beta signaling pathways. These 

GO terms and KEGG pathways were also verified in all other datasets we collected 

(Supplemental Tables provided in Excel sheet).

Subpopulations resemble primary and secondary senescent cells

We investigated whether there were any differences in the expression levels of important 

chromatin modifiers. We found that High Mobility Group AT-Hook 1 (HMGA1) is 

consistently upregulated in cluster 1 (Fig. 3A). The HMGA1 gene encodes a highly 

abundant chromatin-associated protein that has been shown to organize chromatin 

architecture in senescence and is critical for the onset of OIS. Moreover, previous studies 

have shown that HMGA1 is expressed higher in OIS when compared with NIS, which 

is characterized by increased levels of TGF-beta signaling. This difference in HMGA1 

expression is known to be responsible for many of the differences in chromatin architecture 

that exist between OIS and NIS cells, and many of these differences are predictive of 

gene expression10–12. These studies comparing NIS and OIS, along with the fact that 

we see TGF-beta signaling and elevated HMGA1 expression arising from two distinct 

subpopulations in our scRNA-seq data, suggests that this HMGA1 expression is elevated 

only in the senescent cells where TGF-beta expression is low and levels of DNA damage are 

high, which we would expect from a primary senescent cell. This suggests that cells induced 

into RS, OIS, and DDIS develop subpopulations that resemble primary and secondary 

senescence, which before was only demonstrated in OIS.

Because HMGA1 is differentially expressed between OIS and NIS cells, we decided to 

compare our data with the single-cell transcriptional profiles from Teo et al11, as they 

showed that OIS cultures generated from non-clonal cell lines are composed of primary 

and secondary senescent subpopulations. For all four datasets (RS, OIS, DDIS, and Teo 

et al), we see differential expression of collagen genes, TGF-beta response genes, and 

HMGA1 which are markers for primary and secondary senescence (see Fig. 3A, for our 

data, and Supplemental Fig. 4, for Teo et al data). Moreover, the expression of HMGA1 

is anti-correlated with TGF-beta signaling. We then ran a KEGG analysis with terms 

generated by Teo et al relating to primary and secondary senescent phenotypes, we see 

that our subpopulations are enriched for these terms, referred to as “UP_primary” and 

“UP_secondary,” respectively (see Table 1, for main text data, and Supplemental Tables 

provided in Excel sheet for all other datasets). Like with our own data, we conducted a 

GSEA analysis for the data generated by Teo et al and identified very similar GO terms and 

KEGG pathways. Cluster 1 is enriched for SASP, inflammation, and DNA-damage response 

pathways. Meanwhile, cluster 2 is enriched for extracellular matrix remodeling, collagen 

deposition, and WNT signaling (see Supplemental Tables provided in Excel sheet).

Subpopulations show differential sensitivity to the senolytic agent Navitoclax

We wanted to determine if we could characterize the subpopulation of cells that are more 

resistant to treatment with BH3 mimetics. We treated DDIS and OIS cells with 1 μM of the 

BH3 mimetic Navitoclax for three days35. Cells were then harvested and run on the 10× 
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chromium platform to generate single-cell libraries along with DMSO-treated controls; see 

Materials and Methods section and Figure 4A, for Navitoclax experimental details. Data 

were aligned and filtered as previously described. We identified the clusters 1 and 2 in 

Navitoclax-treated samples as well (Fig. 4B–G). We observed that Navitoclax preferentially 

induced apoptosis in DDIS and OIS cells in cluster 2, the subpopulation enriched for a 

secondary senescent phenotype, TGF-beta signaling, extracellular matrix remodeling, and 

lower levels of DNA damage (Fig. 5). Moreover, we also saw this phenomenon in OIS 

cells that were sequenced from the 50 end, although this dataset did not reach statistical 

significance (Supplemental Fig. 3). This suggests that TGF-beta signaling in senescence 

may sensitize cells to drug-induced apoptosis, emphasizing the translational importance 

of these subpopulations. In general, these data demonstrate that for the development on 

senolytic agents, it is important to consider the inflammatory profile of the target cell.

Subpopulations differentially express collagen and ribosomal protein genes

Another feature we noticed in our analysis is that cells belonging to cluster 1 significantly 

accumulate ribosomal protein transcripts. Altered ribosome biogenesis is implicated heavily 

in senescence36, and we extend these findings further by showing that it is a process 

differentially regulated between subpopulations. We plotted cells according to their 

expression of ribosomal genes on the x-axis and expression of collagen genes on the y-axis 

and saw a strong anticorrelation for all datasets, suggesting that cluster 2 and secondary 

senescent cells are characterized by the high levels of collagen genes, and cluster 1 cells 

express high levels of ribosomal protein genes (Fig. 5).

Subpopulations expression profiles are identified in senescent endothelial cells

Because we identified these subpopulations in multiple forms on senescence in our clonal 

cell lines in addition to the IMR90 experiments conducted by Teo et al, we wanted to 

verify if these diversity profiles existed in another cell type. We downloaded single-cell 

transcriptomic datasets generated from Human Umbilical Vein Endothelial Cells (HUVEC) 

cell lines18. These data were collected from cells as they transitioned into RS. This means 

that there were many more subpopulations in the HUVEC dataset, and it was difficult to 

distinguish senescent form pre-senescent cells. However, we were still able to show major 

features of the diversity we saw in our own data.

We wanted to see if HUVEC cells expressing higher level of HMGA1 expressed low 

levels of collagen. We plotted cells according to their expression of HMGA1 (markers for 

cluster 1 and primary senescence) on the x-axis and expression of collagen genes (marker 

of cluster 2 and secondary senescence) on the y-axis. We saw an anticorrelation between 

these two features. We also plotted cells according to the number of reads mapping to 

ribosomal protein genes (which we saw higher in cluster 1) on the x-axis and saw a 

strong anticorrelation with cells that expressed high level of collagen reads. Moreover, reads 

mapping to ribosomal protein genes also anticorrelates with cells that have the high number 

of reads mapping to collagen genes. See Supplemental Figure 5, for this analysis.
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Discussion

Our analysis compares subpopulations of senescent cells across different forms of 

senescence. We observe that DDIS, RS, and OIS cells are composed of two subpopulations. 

For our experiments, we used clonal cell lines that were infected with a 4-OHT 

HRAS:G12V inducible transgene that was only activated in OIS cultures. The fact that 

we have discovered subpopulations of senescent cells being generated from clonal cell lines 

suggests that the formation of these subpopulations is an inherent property of the senescent 

phenotype, and not due to a pre-existing heterogeneity that was present in proliferating 

cells. Therefore, these results offer additional insight into the formation of senescent 

cell subpopulations when compared with pre-existing scRNA-seq studies that have been 

generated from non-clonal cell lines. For instance, scRNA-seq studies on OIS samples that 

were infected with an inducible HRAS construct and then selected for with antibiotics yields 

a population of cells with varying amounts of HRAS expression that influences the diversity 

of the final senescent population.

It is important to mention that due to the experimental conditions, our cell yield in 

the various forms of senescence was different, which affected the sensitivity with which 

we could detect differential expression between the two clusters. Although this did not 

compromise our ability to detect common signatures, some of the genes that appear to be 

specific to one form of senescence and not the others might be the result of false negatives 

due to low cell numbers and statistical power.

For all forms of senescence, we have identified a subpopulation of cells that shows higher 

levels of extracellular matrix remodeling genes and genes that are regulated by TGF-beta 

such as collagen genes. Meanwhile, the other subpopulation shows higher levels of DNA 

damage, pro-inflammatory profiles, and HMGA1 expression, and a strong accumulation of 

ribosomal protein gene transcripts. These molecular signatures are reminiscent of what is 

seen in senescent cells inducing notch senescence in neighboring cells10–12. Consistently 

with this model, we see that the subpopulations we observe show similar gene expression 

patterns as described in the study conducted by Teo et al11, where a primary population 

of cells was driven into the senescent state through the activation of the HRAS oncogene, 

and, in turn, induced neighboring cells into senescence through the notch signaling pathway 

(juxtacrine-induced senescence), giving rise to the second cluster of cells characterized by 

the activation of the TGF-beta signaling pathway11. Our study extends this work by showing 

that these subpopulations appear to be a universal feature of senescence as they consistently 

appear in clonal cell lines and in all the main forms of senescence. One possible explanation 

is that that ability for OIS cells to induce secondary senescence though the notch signaling 

pathway is also shared by RS and DDIS cells (Fig. 5A).

Another possible explanation of the formation of these subpopulations is that senescent 

cells tend to express TGF-beta early on in their senescent lifespan, while expressing 

higher levels of inflammatory and interferon response genes later in their lifespan10. Our 

analysis could be capturing a transition from a senescence phase dominated by TGF-beta 

signaling to a phase displaying a more pro-inflammatory profile. If this is the case, then 

HMGA1 offers an interesting candidate whose role in this transition could be further 
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investigated. As mentioned previously, HMGA1 has been shown to be downregulated 

in secondary senescent cells induced through a notch signaling pathway when compared 

with their primary OIS counterparts. An important difference between OIS and NIS is the 

expression of HMGA112,37,38. HMGA1 is a highly abundant chromatin-associated protein 

that is an essential component of the senescent chromatin architecture and is critical for 

the onset of the senescence program in OIS. OIS typically upregulates HMGA1, and this 

creates dramatically different chromatin structures compared to NIS cells12. Even though 

HMGA1 is a very important protein for the execution of the senescence program and the 

organization of the senescent chromatin, HMGA1’s role in senescence and its opposition 

of anti-inflammatory and TGF-beta-dominated SASP profiles has almost entirety been 

explored in the context of OIS and NIS. NIS is also characterized by high levels of 

TGF-beta signaling, which is consistent with a model where HMGA1 is anticorrelated 

with the expression of TGF-beta pathways10–12,37. Another interesting possibility is that the 

heterogeneity we are seeing is a result of differences in levels of DNA damage. We noticed 

that cells in cluster 1 are enriched in pathways relating to the DNA-damage response. 

Therefore, higher levels of DNA damage could predispose a cell to displaying the molecular 

signatures that we see in cluster 1 such as increased SASP, lower TGF-beta signaling, and 

higher levels of HMGA1. Our study sets the stage for important questions. For instance, 

how does HMGA1 interact with DNA-damage response pathways and TGF-beta signaling 

pathways in CS?

We also see that these subpopulations are translationally important by showing that 

treatment with the commonly used senolytic agent, Navitoclax, preferentially kills cells 

in cluster 2. A possible explanation for this is that the higher levels of TGF-beta signaling, 

which is a known affecter of the apoptotic pathways39, sensitizes cells to the apoptotic 

effects of Navitoclax35. Another explanation is that cells in cluster 1 are at a later stage 

of senescence, and therefore are more resistant to apoptosis and senolytic drugs. It is also 

possible that cells in cluster 1 are indeed primary senescent cells, and Navitoclax resistance 

is an inherent property of primary senescence. In any of these cases, this study points to the 

translational importance of senescent cell heterogeneity.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematic showing generation of clonal cell lines with HRAS:G12V transgene and 

overall experimental design. (B) Uniform Manifold Approximation and Projection (UMAP) 

plots showing all datasets generated for this study (left) and their predicted stage in the 

cell cycle (right). (C) Violin plots showing downregulation of cell cycle genes (used to 

generate G2 and S scores) and chromatin modifiers HMGB and HMGB2 in senescent cells. 

Meanwhile, there is an upregulation of CDKN2A and CDKN1A in senescent cultures.
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Figure 2. 
(A) Schematic showing the process for analyzing each senescent dataset separately. 

Oncogene-induced senescence (OIS) data were chosen for this illustration, but the same 

process was used for all datasets. (B–D) UMAP plots showing DNA damage-induced 

senescence (DDIS), OIS, and replicative senescence (RS) clusters. (E–G) The corresponding 

cluster trees. (H–J) Violin plots showing similar levels of senescence markers for each 

senescent subpopulation (ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 

0.0001).
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Figure 3. 
(A) Violin plots showing expression of marker genes for primary and secondary senescence 

for clusters 1 and 2 in DDIS, OIS, and RS cells. HMGA1 is known to be higher in primary 

OIS (Teo et al, 2019), and the remaining genes are known to be higher in secondary notch-

induced senescence. (B) Volcano plots showing predicted upstream regulators (Ingenuity 

Pathway Analysis) for cluster 1 (red) and cluster 2 (blue) for each type of senescence. 

Regulators are plotted according to their z score on the x-axis, which shows if they regulate 

cluster 1 or cluster 2. Positive values indicate an upstream regulator for cluster 1 and 

negative for cluster 2. The “−log q value of overlap” is plotted on the y-axis. This is 

the negative logarithmic transformation of the false discovery rate, which determines the 

upstream regulators whose gene sets show a statistically significant overlap with the list of 

differentially expressed genes in the data. Gray lines indicate significance values. Upstream 

regulators located above the horizontal line and to the left of the vertical left gray line or 
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right of the vertical right gray line have significant z scores and false discovery rates. (C) 

Heatmap showing z scores for the upstream regulators for each type of senescence. Positive 

values indicate an upstream regulator for cluster 1 and negative for cluster 2 (ns: p > 0.05; *p 

≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001).
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Figure 4. 
(A) Schematic showing experimental design for the Navitoclax experiments conducted on 

OIS and DDIS cells. (B–D) UMAP plots, cluster trees, and violin plots of primary and 

secondary senescence for DDIS cells treated with Navitoclax. (E–G) UMAP plots, cluster 

trees, and violin plots of primary and secondary senescence for OIS cells treated with 

Navitoclax. (H) Bar plots showing that Navitoclax preferentially induces apoptosis in cluster 

2 cells for OIS and DDIS cells (ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 

0.0001).
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Figure 5. 
(A) Model explaining the observed expression profiles in our datasets. (B) Violin plots 

showing the expression of collagen (middle) and ribosomal genes (left) in cluster 1 and 

cluster 2 for RS, OIS, and DDIS cells. (Right) Scatter plot showing that cells expressing 

higher levels of ribosomal reads express lower levels of collagen reads. Cells are colored 

according to their cluster 1 and cluster 2 assignments (ns: p > 0.05; *p ≤ 0.05; **p ≤ 0.01; 

***p ≤ 0.001; ****p ≤ 0.0001).
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Table 2.

Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for 

oncogene-induced senescence (OIS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

Up_primary_secondary_(KEGG) 1.9 0

intrinsic_apoptotic_signaling_by_DNA_damage 1.8 0

GO_SHELLY_NATURE_SASP 1.7 0.006

p53_signaling 1.7 0

GO_CAMPISI_V2 1.6 0.027

chemokine_signaling 1.6 0.024

positive_inflammatory_response 1.4 0.049

apoptotic_signaling_pathway 1.3 0.018

cytokine_receptor_interaction_(KEGG) 1.3 0.032

regulation_of_actin_cytoskeleton_(KEGG) −1.6 0

cell_adhesion_molecules_(KEGG) −1.6 0.004

actin_filament_based_process −1.7 0

actin_filament_organization −1.7 0

cell_junction_assembly −1.7 0

negative_regulation_of_cytokine −1.7 0.002

positive_wound_healing −1.7 0

regulation_of_wound_healing −1.7 0

response_to_wounding −1.7 0

wound_healing −1.7 0

actomyosin_structure_organization −1.8 0

cell_junction_organization −1.8 0

cell_matrix_adhesion −1.8 0

cell_substrate_adhesion −1.8 0

substrate_adhesion_cell_spreading −1.8 0

collagen_fibril_organization −1.9 0

extracellular_structure_organization −1.9 0

ECM_receptor_interaction_(KEGG) −1.9 0

Up_secondary_primary_(KEGG) −2.2 0

GSEA results for cluster 1 versus cluster 2 for OIS samples are shown. Positive normalized enrichment scores (NESs) are pathways/gene sets 
enriched in cluster 1, and negative NES are enriched in cluster 2.
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Table 3.

Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for 

replicative senescence (RS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

IL1_secretion 1.7 0.012

interferon_response 1.6 0.02

NIK_NF_KappaB_signaling 1.6 0

IL1B_production 1.5 0.021

IL1_production 1.5 0.031

innate_immune_activation 1.4 0.011

DNA_damage_signaling 1.4 0.037

KANNAN_TP53_TARGETS_UP 1.4 0.019

positive_innate_immune_response 1.3 0.026

p53_signaling 1.3 0.021

TNF_signaling 1.3 0.028

Up_primary_secondary_(KEGG) −1 0.389

NK_cell_mediated_cytotoxicity_(KEGG) −1.3 0.039

response_to_TGFbeta −1.5 0

LABBE_WNT3A_TARGETS_UP −1.5 0

TGFbeta_production −1.6 0.003

response_to_wounding −1.6 0

actin_filament_based_movement −1.7 0

actin_filament_organization −1.7 0

negative_regulation_of_cytokine −1.7 0.001

regulation_of_wound_healing −1.7 0

substrate_adhesion_cell_spreading −1.7 0

wound_healing −1.7 0

regulation_of_actin_cytoskeleton_(KEGG) −1.7 0

actin_filament_based_process −1.8 0

cell_junction_assembly −1.8 0

cell_junction_organization −1.8 0

cell_substrate_adhesion −1.8 0

cell_adhesion_molecules_(KEGG) −1.8 0

Up_secondary_primary_(KEGG) −1.8 0

extracellular_structure_organization −1.9 0

ECM_receptor_interaction_(KEGG) −1.9 0

GSEA results for cluster 1 versus cluster 2 for RS samples are shown. Positive normalized enrichment scores (NESs) are pathways/gene sets 
enriched in cluster 1, and negative NES are enriched in cluster 2.
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Table 4.

Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for 

DNA damage-induced senescence (DDIS).

GSEA/KEGG NES p value

viral_life_cycle 2 0

intrinsic_apoptotic_pathway 1.9 0

p53_signaling 1.9 0

DNA_damage_signaling 1.9 0

cellular_response_to_UV 1.8 0

intrinsic_apoptotic_by_DNA_damage_and_p53 1.8 0.006

intrinsic_apoptotic_pathway_by_p53 1.7 0.003

response_to_UV 1.6 0.009

chemokine_signaling 1.5 0.031

stat_cascade 1.5 0.011

SMAD_signaling 1.5 0.045

apoptotic_signaling_pathway 1.4 0

Up_primary_secondary_(KEGG) 1.3 0

TGF_beta_signaling_pathway_(KEGG) −1.5 0.004

positive_substrate_adhesion_cell_spreading −1.6 0.003

LABBE_WNT3A_TARGETS_UP −1.6 0

cell_matrix_adhesion −1.7 0

negative_regulation_of_cytokine −1.7 0.001

non_canonical_Wnt_signaling −1.7 0

positive_regulation_of_wound_healing −1.7 0

response_to_TGFbeta −1.7 0

cell_adhesion_molecules_(KEGG) −1.7 0.001

actin_filament_based_process −1.8 0

actin_filament_organization −1.8 0

cell_junction_assembly −1.8 0

cell_junction_organization −1.8 0

response_to_wounding −1.8 0

actomyosin_structure_organization −1.9 0

cell_substrate_adhesion −1.9 0

regulation_of_actin_cytoskeleton_(KEGG) −1.9 0

extracellular_structure_organization −2.1 0

Up_secondary_primary_(KEGG) −2.1 0

GSEA results for cluster 1 versus cluster 2 for DDIS samples are shown. Positive normalized enrichment scores (NESs) are pathways/gene sets 
enriched in cluster 1, and negative NES are enriched in cluster 2.
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