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Radiogenomics predicts the 
expression of microRNA-1246 in 
the serum of esophageal cancer 
patients
Isamu Hoshino1,7*, Hajime Yokota2,7, Fumitaka Ishige3, Yosuke Iwatate3, 
Nobuyoshi Takeshita4, Hiroki Nagase5, Takashi Uno2 & Hisahiro Matsubara6

Radiogenomics is a new field that provides clinically useful prognostic predictions by linking molecular 
characteristics such as the genetic aberrations of malignant tumors with medical images. The 
abnormal expression of serum microRNA-1246 (miR-1246) has been reported as a prognostic factor of 
esophageal squamous cell carcinoma (ESCC). To evaluate the power of the miR-1246 level predicted 
with radiogenomics techniques as a predictor of the prognosis of ESCC patients. The real miR-1246 
expression (miR-1246real) was measured in 92 ESCC patients. Forty-five image features (IFs) were 
extracted from tumor regions on contrast-enhanced computed tomography. A prediction model for 
miR-1246real was constructed using linear regression with selected features identified in a correlation 
analysis of miR-1246real and each IF. A threshold to divide the patients into two groups was defined 
according to a receiver operating characteristic analysis for miR-1246real. Survival analyses were 
performed between two groups. Six IFs were correlated with miR-1246real and were included in the 
prediction model. The survival curves of high and low groups of miR-1246real and miR-1246pred showed 
significant differences (p = 0.001 and 0.016). Both miR-1246real and miR-1246pred were independent 
predictors of overall survival (p = 0.030 and 0.035). miR-1246pred produced by radiogenomics had similar 
power to miR-1246real for predicting the prognosis of ESCC.

According to the World Health Organization report, the number of patients with esophageal squamous cell car-
cinoma (ESCC) is on an increasing trend; it is considered to be the sixth most common types of cancer in men 
and the thirteenth most common types of cancer in women1. Although treatment for ESCC has been improved 
in recent years, the prognosis is still quite poor, according to the report the 5-year survival rate is less than 30%2,3. 
Now, more than ever, technological developments such as the prediction of the diagnosis and treatment effects 
are desired to improve the management of ESCC. On January 20th, 2015, Barack Obama, the former President of 
the United States of America, announced the “Precision Medicine Initiative” in the State of the Union address, 
attracting worldwide attention4. In precision medicine, patients are analyzed and the optimal therapy is selected 
at an individual level. However, additional examinations and treatments for each patient can directly raise med-
ical expenses. In 2018, it cost more than $1000 to perform a genetic analysis and the cost-effectiveness remains 
controversial5.

In contrast, medical imaging modalities, such as computed tomography (CT) and magnetic resonance imag-
ing are widely used in the diagnosis of diseases and symptoms, including malignant tumors because the features 
of tissue images are strongly correlated with histopathological findings6,7. In this century, new correlations are 
being identified between tissue scale imaging and cellular molecule data based on the accumulation of com-
prehensive genome and transcriptome data from gene expression analyses using next generation sequencing 
and other approaches8–11. Radiogenomics is a method of integrating and analyzing the results of radiomics (the 
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analysis of radiological imaging) and omics analyses (e.g., genome and gene expression analyses (genomics))12,13. 
Therefore, image features (IFs) can be used as non-invasive biomarkers. In other words, it is possible to use IFs 
and omics information such as genome and epigenome that correlate with clinical features, and as a result, to 
predict prognosis, diagnosis, and treatment response from imaging14. The actual IFs are extracted from the seg-
mented regions, and these features can be broadly classified into statistics, shapes, textures, morphology, motion, 
and enhancements15. Positive and/or negative associations between IFs and omics features such as genomes and 
epigenomes are examined using statistical methods. Second, predictive models can be built using a number of 
statistical and deep machine learning algorithms16. Marigliano C. et al. extracted RNA from tissue samples of 20 
cases of clear cell renal cell carcinoma and performed microRNA analysis to identify five candidate microRNAs 
(miRs) that expressed differently from normal tissues17. At the same time, Radiogenomics analysis was performed 
using CT images of the same patient, and it was confirmed that there was a correlation between the expression of 
these five miRs and image features. They also showed that, in particular, miR-21-5p, which is involved in tumor 
progression, has a strong correlation with one of the image features, entropy.

MiRs are non-coding single stranded RNAs that are characterized by their size (approximately 17–25 nucleo-
tides) and are transcribed from the genome18–20. Although their function has not been clear, in recent years it has 
been demonstrated that miRs are combined with mRNA with a complementary sequence, and that they inhibit 
targets by translation inhibition and cleavage (degradation)21–23. To date, more than 1000 miRs have been identi-
fied in humans24. It is now becoming clear that these miRs are aberrantly expressed in a disease-specific manner, 
specific to the cancer type, and that miRs circulating in the blood are relatively stable25–28. We previously reported 
that miR-1246 is significantly expressed in the serum of esophageal cancer patients and that its expression is an 
independent predictor of the prognosis29. Thus, miR is considered useful as a novel biomarker. Since analysis 
of miR expression requires time and economic cost, it is considered useful to apply general image examination 
to estimate its expression. In the present study, we attempted to predict the serum expression level of miR-1246 
using radiogenomics techniques and to evaluate the power of the predicted miR-1246 level as a predictor of the 
prognosis of ESCC patients.

Results
miR-1246 is upregulated in ESCC serum samples.  The serum miR-1246 expression levels of 35 healthy 
controls and all ESCC patients were evaluated by a qRT-PCR. The miR-1246 expression levels in serum from 
ESCC patients were significantly higher than those from controls (P < 0.001). The ROC analysis revealed that at 
the optimal cut off value of 1.3234 for miR-1246, the sensitivity was 71.29% and the specificity was 73.91%, with 
an area under the curve of 0.754.

The analysis of the real miR-1246 expression.  A value of 15.0 was selected as the threshold for the 
miR1246 expression to divide the patients into two groups according to the ROC analysis of survivors and 
non-survivors. Examples of CT images in the miR-1246real-high and miR-1246real-low groups are shown in Fig. 1.

Radiogenomics.  SHAPE_Compacity, NGLDM_Coarseness, GLRLM_RLNU, GLRLM_LRHGE, HISTO_
Skewness and GLRLM_SRLGE were significantly correlated with the miR-1246real value (r = 0.301, −0.295, 
0.249, 0.236, −0.227 and −0.222; P = 0.003, 0.004, 0.017, 0.023, 0.030 and 0.033, respectively) (Fig. 2A). The miR-
1246pred value calculated from linear regression with 10-fold cross-validation was significantly correlated with the 
miR-1246real value (r = 0.256, P = 0.013) (Fig. 2B).

Figure 1.  Examples of the high and low expression of serum miR-1246. The contrast uptake and wall thickness 
of the tumors in the high expression group appear much more evident in comparison to the low expression 
group.
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A value of 15.0 was used as the threshold to divide patients into miR-1246real and miR-1246pred groups. 
Significant differences were observed between the miR-1246real-high and miR-1246real-low groups and between 
the miR-1246pred-high and miR-1246pred-low groups (P = 0.001 and 0.016, respectively) (Fig. 3A,B). The results of 
the Cox regression analyses are shown in Tables 1 and 2. In the univariate Cox regression analyses, N stage, miR-
1246real and miR-1246pred showed statistical significance (Hazard ratio = 1.880, 1.018 and 1.068; P = 0.002, <0.001 
and =0.003). According to a multivariate Cox regression analysis, only miR-1246real was found to be significantly 
independent factors for N stage and miR-1246real (Hazard ratio = 1.013; P = 0.030), whereas only miR-1246pred 
was found to be a significantly independent factor for N stage and miR-1246pred (Hazard ratio = 1.051; P = 0.035).

Figure 2.  (A) Scatter plots between the serum miR-1246 expression and image features that were significantly 
correlated with the serum miR-1246 expression. Survivors and non-survivors are shown as red and blue points, 
respectively. (B) A scatter plot between the real and predicted miR-1246 values. The predicted miR-1246 value 
was derived from 6 image features that were identified in the correlation analysis. Survivors and non-survivors 
are shown as red and blue points, respectively. A significant correlation was identified when all data were used 
(r = 0.256; P = 0.013). Patients with miR-1246 expression values of more than 50 appeared to be outliers from 
the approximately straight line (dashed line), and 5 of the 7 patients with such values were non-survivors. When 
removing these data, the correlation was clearer (r = 0.452; P < 0.001).

Figure 3.  The survival curves of the real (A) and predicted (B) miR-1246 expression levels for values that 
were above or below the threshold (=15.0). A log rank test revealed significant differences between the curves 
respectively (P = 0.001 and 0.016).
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Discussion
In this study, we examined the relationship between the expression levels of miR-1246 in serum and image fea-
tures using Radiomics techniques. There seemed to be a close relationship between the miR-1246 expression and 
the image features. We first confirmed the abnormal expression of miR-1246 in ESCC patients in comparison 
to normal controls, which validated the findings of our previous report (Takeshita et al., 2013). Next, we set 
the VOI for the lesions on contrast-enhanced CT by referring to the FDG-PET and endoscopy findings, and 
extracted image features using the VOI. We then selected the image features that were significantly correlated 
with the serum level of miR-1246 using a correlation analysis. As a result, 6 image features (SHAPE_Compacity, 
NGLDM_Coarseness and so on) were extracted. The constructed model with the selected 6 features predicted 
serum levels of miR-1246. miR-1246pred could divide the ESCC patients into two groups with a better and worse 
prognosis. Furthermore, the miR-1246pred was an independent predictor of the prognosis. The patients were sim-
ilarly divided by their miR-1246real values; thus, for predicting the prognosis of ESCC patients, the predicted 
miR-1246 (determined on CT images) might be used as a substitute for the measurement of the miR-1246 expres-
sion by a qRT-PCR. Body fluid levels of miR-1246 have been reported to be good candidate biomarkers in vari-
ous malignancies. Recently, a systematic review and meta-analysis revealed that miR-1246 had the high efficacy 
for discriminating gastrointestinal cancer patients from normal controls (sensitivity, 0.920; specificity, 0.958)30. 
Actually, serum miR-1246 was significantly elevated in ESCC patients, similar to our previous results29. However, 
no significant increase was observed in cStageI patients compared to healthy controls (P = 0.297, data not shown), 
which may be inappropriate for screening for early cancer. However, the value of cStageII patients was signifi-
cantly higher than healthy controls (P = 0.0002), and the value also increased according to the degree of progres-
sion, suggesting that it may be an indicator of disease status.

Although the function of miR-1246 is still unclear, several reports have indicated the mechanisms of miR-
1246. A number of miRs have been shown to play a role in p53-dependent growth control, apoptosis and 
senescence and miR-1246 is considered to be one of the targets of p53 protein since the promoter region has a 
p53-response element31. However, in order to clarify the relationship between p53 status and miR-1246 expres-
sion in esophageal squamous cell carcinoma and its action, more detailed examination is necessary.

Current evidence also suggests that miR-1246 can act as an oncogene. MiR-1246 promotes cancer stemness, 
including self-renewal, drug resistance, tumorigenicity, and metastasis, via the activation of the Wnt/β-catenin 
pathway in hepatocellular carcinoma. Clinically, high endogenous and circulating miR-1246 was identified in 
HCC clinical samples and was correlated with a worse prognosis32. Moreover, miR-1246 is considered a crucial 
driver for tumor initiation and the progression of cancer in human non-small cell lung cancer and the serum 
level of miR-1246 is correlated with the clinical response of lung cancer patients receiving anti-neoplastic ther-
apy33. The miR-1246 expression was significantly upregulated in oral squamous cell carcinoma tumor tissues. The 
patient group with high miR-1246 expression levels had a worse survival rate in comparison to those with low 
expression levels. Besides, the inhibition of miR-1246 in oral cancer stem cells significantly reduced stemness 
hallmarks and the downregulation of miR-1246 decreased chemoresistance34. Thus, miR-1246 could be clinically 
useful both as a biomarker and therapeutic target.

Variable

Univariate

95% CI P-valueHazard ratio

Clinical factor

age 1.006 0.964–1.049 0.792

sex 5.869 0.802–42.790 0.081

T stage 1.396 0.954–2.043 0.086

N stage 1.880 1.252–2.822 0.002

M stage 0.907 0.123–6.672 0.092

SCC 0.992 0.930–1.058 0.801

CEA 0.990 0.913–1.073 0.810

real miR.1246 1.018 1.008–1.028 <0.001

predicted miR.1246 1.068 1.023–1.114 0.003

Table 1.  The results of the univariate Cox regression analyses for survival. *P values with statistical significance 
are written in bold. CI, confidence interval.

Variable
Hazard 
ratio 95% CI P-value

Hazard 
ratio 95% CI P-value

Clinical factor

N stage 1.544 0.985–2.421 0.058 2.807 0.035–2.290 0.051

real miR.1246 1.013 1.001–1.025 0.030

predicted miR.1246 1.051 1.004–1.101 0.035

Table 2.  The results of the multivariate variate Cox regression analyses for survival. *P values with statistical 
significance are written in bold. CI, confidence interval.
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Radiogenomics is a novel technology that allows for the non-invasive prediction of molecular characteristics 
of human malignancies35. Radiogenomics has been considered more efficient and effective than conventional 
imaging analyses, since the goal of this technology is to identify phenotypic imaging biomarkers that are related 
to the gene expression and/or mutations that provide predictive and prognostic information that can be used for 
the selection of personalized precision medicine8,10,11. In fact, in clinical cases, imaging examinations are always 
performed to diagnose the status of malignant tumors; thus, an alternative image marker that can analogize 
tumor-specific genetic changes would be very useful. Actually, several reports describing image features, focusing 
on the Ki-67 status of gliomas, have been published. Entropy, derived from apparent diffusion coefficient (ADC) 
maps of gliomas, was found to be associated with the expression of Ki-6736. Furthermore, in a small sample study 
(n = 21), features related to Ki-67 were identified among 86 radiological features extracted from conventional 
structural magnetic resonance (MR) images of glioblastoma37. Woodard GA. et al. showed that there was no sig-
nificant difference in the risk of breast cancer recurrence in ER-positive breast cancer patients determined based 
on the amount of image features on Breast Imaging and Reporting Data System (BI-RADS) mammography and 
MR images and the risk determined based on an Oncotype DX assay10.

The correlation analysis identified 6 significantly correlated image features derived from 1 morphologic, 
1 histogram and 4 texture analyses. The SHAPE_Compacity of a shape feature and NGLDM_Coarseness of a 
texture feature showed the strongest and second strongest correlations with the serum miR-1246 expression. 
SHAPE_Compacity reflects how compact the VOI is. As the VOI shape becomes spherical, compacity becomes 
small. In other words, if the esophageal cancer has progressed in the longitudinal and vertical directions, the 
compacity will be greater; eventually the miR-1246 level will also become high. NGLDM_Coarseness is defined 
as the level of the spatial rate of change in intensity. As the pixel values become more nonuniform, the value of 
NGLDM_Coarseness will decrease. Thus, when esophageal cancer progresses and the contrast uptake becomes 
heterogenous, miR-1246 will become high. Actually, when reviewing the images of ESCC, the contrast uptake 
and wall thickness of the tumors in the miR-1246-high group seemed to be more evident than that in the miR-
1246-low group. These imaging findings would influence the NGLDM_Coarseness.

The correlation between miR-1246real and miR-1246pred was not high (r = 0.256). The result was affected by 
outlying miR-1246real values. When these values were removed, the correlation value improved (r = 0.452). In 
order to interpret the results of machine learning easily and to avoid overfitting for the given data, we used a 
simple algorithm, linear regression, to construct the model in this study. In the next stage, non-linear machine 
learning models may be able to fit the outliers; however, appropriate manipulation and larger datasets are essential 
to avoid overfitting.

Our study was associated with several limitations. First, the study population was relatively small, which might 
have affected the stability of the predictive model. Although linear regression is useful for reducing the likelihood 
of overfitting and despite the fact that we performed cross-validation to evaluate the generalization ability of the 
model, further validation with data from an external institute would be useful. Second, the segmentation was 
manual. To prevent VOI delineation from affecting the results, a well-experienced radiologist and surgeon delin-
eated the VOI with consensus and also referred to the FDG-PET and endoscopy images. Moreover, the VOI shape 
was simplified by covering the wall and lumen of the slice visualizing the tumor.

In conclusion, the present study suggested that the serum level of miR-1246 could be inferred from image 
features, and the findings are considered to provide a foothold for information analysis systems that predict 
molecular information from image information. It is considered that there have been no reports of analysis of 
marker expression in serum using the Radiogenomics. Moreover, the findings of the present study suggest that 
the image features of tumors with high miR-1246 expression levels might be associated with the tumor extension 
shape, and it is presumed that the tumor density presents heterogeneity. It is an important fact for the develop-
ment of Radioepigenomics that even independent prognostic factors in serum such as miR1246 are reflected to 
some extent in image features and can be predicted from images. Based on this result, we are now planning to 
examine Radiogenomics technology for clinically useful markers such as, PD-L1, HER2, and BRACA1, etc. In 
the future, the multimodal so-called “RadioEpigenomics” approach, through which molecular information is 
predicted based on the analysis of radiological imaging, will be applied in precision medicine.

Materials and Methods
Patients.  The protocol was approved by the Institutional Review Board of Chiba Cancer Center (No. 28–15) 
and all patients and healthy volunteers provided their written informed consent. The study was carried out in 
accordance with the World Medical Association’s Declaration of Helsinki. In total, 101 patients were diagnosed 
with ESCC in our hospital between October 2010 and July 2017. Ninety-two of one hundred one patients (age 
65.0 ± 8.0 years (mean ± standard deviation); female, n = 12; male, n = 80) underwent contrast-enhanced CT 
before any therapeutic procedures, including surgery, chemotherapy and radiotherapy, and were followed up for 
more than 2 years. The demographics of the 92 ESCC patients are shown in Table 3.

miR-1246 expression analysis.  Collection of serum samples.  Venous blood samples were collected from 
all ESCC patients. These samples were collected before any therapeutic procedures. Thirty-five healthy controls 
without any history of malignant disease were included in the test cohort. Samples were stored at −80 °C. Written 
consent for sample donation for research purposes was obtained from each patient before sample collection.

RNA extraction.  Total RNA that contained small RNAs was extracted from 400 μl of serum using a miRNeasy 
Serum/Plasma kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. C. elegans miR-39 
miR mimic spike-in control (3.5 μl (1.6 × 108 copies/μl); Qiagen) was added before the purification of total RNA. 
The miScript II RT Kit (Qiagen) was used for cDNA synthesis.
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Quantitative real-time polymerase chain reaction.  The serum levels of miR-1246 (Hs_miR-1246_2 miScript 
Primer Assay; Qiagen) were analyzed by a quantitative real-time polymerase chain reaction (PCR) (miScript 
SYBR Green PCR Kit; Qiagen, Hilden, Germany) and normalized to Ce-miR-39 (Ce_miR-39_1 miScript Primer 
Assay; Qiagen) using a 7300 Real-Time PCR system (Applied Biosystems) according to the manufacturer’s proto-
col. A Mann-Whitney U-test and receiver operating characteristic (ROC) analysis were performed to analyze the 
difference in miR-1246 expression between ESCC patients and healthy controls.

Radiogenomics.  Computed tomography.  All CTs were performed using a 128-detector row com-
puted tomography (CT) system (SOMATOM Definition Flash; Siemens; Erlangen, Germany). The following 
imaging parameters were applied: tube voltage, 120 kVp; tube current, 160 mAs; beam pitch, 0.6; resolution 
0.68 × 0.68 × 5 mm. Contrast agent (iomeprol, Iomeron 350; Eisai, Tokyo, Japan; 100 mL) was administered from 
the superficial vein of the upper extremity using double-head power injector (injection rate, 4.5 mL/sec). The 
contrast agent was followed by normal saline (30 mL) at the same injection rate. Imaging slices from the skull base 
to the lower were acquired 40 s after contrast agent injection.

Volume of interest delineation.  A board-certified radiologist and surgeon (13 and 20 years of experience in gas-
trointestinal imaging, respectively) reviewed the CT, 18F-fluorodeoxyglucose-positron emission tomography 
(FDG-PET), and endoscopic images, and delineated a whole tumor volume of interest (VOI) on CT images with 
consensus. VOI delineation was performed with Slicer ver. 4.8.1 (https://slicer.org/). In order to avoid variation 
of recognition of tumor extension as much as possible, the VOIs covered the wall and lumen of the esophagus on 
the slice that included the ESCC (Fig. 4).

Feature extraction.  Absolute intensity rescaling methods (−1000 to 1000 Hounsfield unit) were applied using 
LIFEx (https://www.lifexsoft.org). In rescaling, the upper and lower limits were set in advance and the pixel values 
were resampled into 64 levels. The upper limit was set to 1000 Hounsfield units and the lower limit was set to 
−1000 Hounsfield units; numerical values outside the range were truncated. A total of 45 features (morphology, 
4; histogram, 9; texture, 32) were extracted from the VOI of each sequence using the LIFEx open source software 
program (Supplementary Table 1)38.

Machine learning.  A Pearson’s correlation test was performed to analyze the correlation between the miR-1246 
expression and each imaging feature, in order to select correlated features. Imaging features with P values of 
<0.05 were selected. To construct a predictive model for the miR-1246 expression, a linear regression analysis 
was performed using the features selected in the correlation analysis. 10-fold cross-validation was performed to 
calibrate generalization ability of the model. The relationship between the real and predicted miR-1246 expres-
sion levels (miR-1246real and miR-1246pred) was shown in scatter plots and Pearson’s correlation coefficients were 
calculated.

Characteristics No. of Patients (%)

Sex

Male 80 (87.0)

Female 12 (13.0)

Age 65.9 (41–87)

pT category

T1a or b 28 (30.5)

T2 12 (13.0)

T3 or T4 52 (56.5)

pN category

N0 49 (53.3)

N1 28 (30.5)

N2 13 (14.1)

N3 1 (1.1)

M category

M0 5 (5.4)

M1 87 (94.6)

Stage

I 26 (28.3)

II 24 (26.1)

III 35 (38.0)

IV 7 (7.6)

SCC (ng/mL) 2.0 ± 4.5

CEA (mg/mL) 4.1 ± 4.7

Table 3.  Patient details and clinicopathological features. mean ± standard deviation.
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Threshold setting to distinguish the high and low expression of miR-1246, and the Survival analysis.  The threshold 
to distinguish the high and low expression of real miR-1246 was defined by an receiver operating characteristic 
(ROC) analysis of the 92 ESCC patients (survivors and non-survivors). The threshold was at the at the point of 
the maximum Youden index (sensitivity + specificity − 1). The survival curves of the two groups with serum miR-
1246 expression levels above and below the threshold were compared using a log-rank test.

Next, the high and low miR-1246pred expression groups were compared using a log-rank test. The threshold dividing 
the groups was same as the value calculated from miR-1246real. To evaluate the power of miR-1246pred as a prognostic 
factor, univariate and multivariate Cox regression analyses were performed. In the univariate analyses, clinical fac-
tors, including age, sex, tumor staging and tumor markers, miR-1246real and miR-1246pred were individually analyzed. 
Factors identified as significant in the univariate analyses were included in the multivariate analysis. miR-1246real and 
miR-1246pred were handled separately because the purpose of the present study was to evaluate whether the prognostic 
ability of miR-1246pred is equivalent to miR-1246real. Statistics and machine learning procedures were all performed 
using the R software program (version 3.5.1, R Foundation for Statistical Computing, Vienna, Austria).
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