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Abstract: Nosocomial diseases are becoming a scourge in hospitals worldwide, and new multidrug-
resistant microorganisms are appearing at the forefront, significantly increasing the number of deaths.
Innovative solutions must emerge to prevent the imminent health crisis risk, and antibacterial hy-
drogels are one of them. In addition to this, for the past ten years, photochemistry has become an
appealing green process attracting continuous attention from scientists in the scope of sustainable
development, as it exhibits many advantages over other methods used in polymer chemistry. There-
fore, the combination of antimicrobial hydrogels and light has become a matter of course to design
innovative antimicrobial materials. In the present review, we focus on the use of photochemistry
to highlight two categories of hydrogels: (a) antibacterial hydrogels synthesized via a free-radical
photochemical crosslinking process and (b) chemical hydrogels with light-triggered antibacterial
properties. Numerous examples of these new types of hydrogels are described, and some notions of
photochemistry are introduced.

Keywords: antibacterial hydrogels; photochemistry; free-radical photopolymerization; photody-
namic inactivation of bacteria

1. Introduction

For the past ten years, the use of antibiotics has led to the emergence of multidrug-
resistant microorganisms responsible for the exponential increase of nosocomial diseases
in hospitals, also known as healthcare-associated infections (HAIs). As an appalling
consequence, several million patients have contracted nosocomial infections during their
stay at the hospital annually. It has been estimated that among the nearly 1.7 million
hospitalized patients annually acquiring HAIs while receiving treatment for different health
issues in the US, 1 patient in 17 dies due to HAIs [1]. In advanced and emerging countries,
seven and ten hospitalized patients out of 100, respectively, acquire HAIs. As well as
these alarming statistics, the US government spent at least $10 billion annually to struggle
against HAIs, according to the Office for National Statistics and these additional costs are
directly charged to the hospital’s budget [1–3]. The proliferation of microorganisms should
be urgently restricted because the estimated mortality rate is expected to become higher
than that of cancers, inexorably raising the healthcare costs and social security debt [4,5].

To address this matter, the research and development of antibacterial materials sky-
rocketed over the last couple of years due to the imminent health crisis risk. Challenged by
the emergence of new pathogenic microorganisms, researchers have developed innovative
advanced strategies to eradicate resistant bacteria responsible for HAIs [6–16], and many
investigations [17–22] have been thus published. Antimicrobial materials could be classified
as (i) biocides materials or “active” materials when they provoke bacterial death either by
contact or from the release of biocidal agents and (ii) anti-fouling or “passive” materials
when adhesion and/or proliferation of bacteria onto their surface are prevented without
leading to death. Among the most relevant “active strategies”, we can cite the use of reactive
oxygen species [7,9], polymers with quaternary ammonium functional groups [23,24],
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natural peptides [25,26], phospho- and sulfo-derived polymers [27,28], phenol and benzoic
acid derived polymers [15], polyelectrolyte multilayers [29], or metal-based inorganic
antimicrobial compounds such as zinc oxide, TiO2, or metal nanoparticles [10,12,30,31]. On
the contrary, the use of PEG-containing or fluorinated-based materials is well-known to
hinder the adhesion or proliferation of bacteria according to a “passive strategy” [32,33].

Among all the most efficient described strategies, hydrogels have been considered as
excellent candidates for effective antibacterial applications. Hydrogels are a class of soft
polymeric materials that have been playing a significant role in numerous fields since they
first came to light in the mid-20th century [34–36]. Briefly, hydrogels are a hydrophilic
three-dimensionally crosslinked polymeric network. They are obtained through gelation, a
process that occurs when water-soluble monomeric units and polymeric chains physically
or chemically crosslink together to form a non-soluble 3D porous structure [34–37]. One
of their main characteristics is their ability to retain a substantial amount of water in their
swollen state because of hydrophilic entities such as hydroxyl, amino, ether or carboxylic
groups in their polymeric chains while being insoluble in water. Their preparation typ-
ically requires three components: monomers, oligomers or polymers, an initiator and a
crosslinker [34].

Hydrogels have been exhaustively described in the literature by several outstanding
reviews [34–38]. They are broadly classified into many subtypes based on:

Origin: hydrogels can be made from natural, semi-synthetic or synthetic substrates;
Durability: whether hydrogels are durable or biodegradable;
Composition of the polymers: homo-polymeric or copolymeric hydrogels;
Response to external stimuli: physical stimuli such as electric field, magnetic field,

temperature or light, and chemical stimuli such as pH conditions, solvent composition, or
ionic strength;

Physical state: hydrogels can be found in the solid, semi-solid or liquid state;
Structural details: physical configurations, amorphous, semi-crystalline or

crystalline systems;
Charges on the polymeric configurations: nonionic or neutral hydrogels, ionic—anionic

or cationic—hydrogels, ampholytic hydrogels or zwitterionic hydrogels;
Gelation type: whether hydrogels are physically or chemically crosslinked.
Owing to considerable variation of compositions, extensive scientific research on the

subject and advances in synthetic chemistry, hydrogels can be tailored to meet specific
needs depending on their field of application. Their tunable mechanical and rheological
properties, their sensitivity towards external stimuli and their ability to provide a moist en-
vironment and high levels of biocompatibility make them particularly interesting materials
in the pharmaceutical and biomedical worlds [34,37,38]. Their extensive usage ranges from
tissue engineering [39,40], wound dressing [37,41,42], antibacterial coatings [43–45], con-
tact lenses [46,47], drug delivery systems [48,49], super-absorbents [35,50,51], biomedical
implants [52] as well as a great number of other therapeutic applications [34,53], to miscel-
laneous applications such as biosensors [54], microelectromechanical devices [35], electrical
conduction [55], energy storage devices [56,57], purification of water and decontamination
of organic waste [50,56,58,59], food and agricultural applications [60].

Nowadays, hydrogels clearly appear as alternative materials for antibacterial applica-
tions. However, despite the existence of two types of hydrogels, i.e., physical hydrogels,
which crosslinking between polymer chains is due to non-covalent interactions (hydro-
gen bonding, ionic forces, Van der Waals interactions, polyelectrolyte complexation, or
hydrophobic forces), and chemical hydrogels, only the chemical ones will be highlighted in
this study. Indeed, chemical hydrogels involve strong covalent bonding between the poly-
mer chains, and the resulting hydrogels show excellent thermal, mechanical and chemical
properties while maintaining the 3D hydrogel network structure in a fully swollen state.

The antibacterial properties of hydrogels can be tuned either by simply modifying their
intrinsic properties such as hydrophilicity, porosity or by successfully selecting monomers
and crosslinkers. According to the classification of hydrogels matrices and the nature
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of the antimicrobial agents, two distinguished categories of antibacterial hydrogels can
finally be outlined: hydrogels that have intrinsic antibacterial properties when formulated
with cationic polymers or antimicrobial peptides and hydrogels that exhibit antibacterial
activity when loaded with antibacterial agents, such as antibiotics or metal nanoparticles
(NPs) [38,61]. In the latter case, the bactericidal effects occur and are often only effective
upon the slow leaching of the antibacterial agent into the surrounding environment [44].
This phenomenon constitutes one of several drawbacks of materials loaded with leaching
antibacterial agents, inducing environment contamination, and generating short periods of
bactericidal action due to rapid leaching at the beginning of use. In order to address this
matter, several approaches have been investigated to either make non-leaching antibacterial
agent-loaded materials [48] or material surfaces with intrinsic permanent biocidal activity
on contact [41,61,62]. Some of these research studies, associated with either one of these
strategies and sometimes even both [44], are further described in this review. Finally,
reactive oxygen species (ROS) such as oxygen, peroxide and hydroxide radicals or singlet
oxygen can also lead to the death of bacteria by oxidizing their cellular constituents and by
denaturing bacterial DNA, RNA and proteins [63]. This type of antibacterial action will
also be further explained in this work.

Interestingly, many of these investigations concern the design of antibacterial hydro-
gels [64] via thermal free-radical polymerization, and a few have exploited the striking
advantages of photochemistry over the thermal process [62,65–67]. Yet, photochemistry
is now well recognized as a green method and has attracted great attention because it
offers many advantages over thermal processes [68–70]. To the best of our knowledge,
and despite the advantages of the green photochemistry process [65], no review has been
made on the synthesis of antibacterial hydrogels by photochemistry technology yet. This
encouraged us to highlight and summarize how some recent studies within this framework
investigated and benefited from visible-light properties for the synthesis and application
of such hydrogels (Scheme 1). Specifically, we focus on the following two categories: (a)
antibacterial hydrogels obtained via a free-radical photochemical crosslinking process and
(b) hydrogels with light-triggered antibacterial properties. Some notions of photochemistry
have also been introduced for a better comprehension of the review.
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2. Light as a Promising Source of Energy
2.1. Why Use Photochemistry?

Most of the research that has been made on hydrogels over the year focused on their
synthesis using heat as a source of energy. It is only until recently that the synthesis of
antibacterial hydrogels by photochemistry has been described [61,62,69].

Photochemistry is a very appealing green process attracting continuous attention
from scientists in the scope of sustainable development, as it exhibits many advantages
over other methods used in polymer chemistry, as exhaustively described by brilliant
reviews [69,71,72].

Among the benefits brought by photochemical processes [68,70,71], rapid curing is the
most notable one. Processes that do not readily occur or that are unable to occur at ambient
temperature on a reasonable timescale because they lack sufficient amounts of energy
to overcome the energetic barrier can rapidly occur upon exposure to the appropriate
light source. Upon heating, polymerizing systems can easily take hours to cure, whereas
photoinitiated systems occur under a few seconds or minutes.

Second, as one of the primary driving forces for the reaction to occur is the absorption
of a photon by a photosensitive compound, such photoinitiated processes can generally
be temporally controlled by simply switching on and off the light–source. This method
also requires very little energy as it can be done at very low light intensities. In addition,
the development of new performing light-emitting diodes (LEDs) and the wide range in
wavelengths and intensities of light sources available are supplementary assets contributing
to make photochemistry a very attractive field.

Initiating a reactive system by absorbing photons also enables such photoinitiated
processes to prevent the use of harsh environmental conditions, such as elevated tempera-
ture, the use of organic solvents or toxic components. Not only do these benefits render
photochemistry more likely to be compatible with biomolecules [62], but it also avoids the
release of volatile organic compounds. This also implies low levels of waste and low costs
of investment.

Finally, another advantage of photochemistry is the spatial control of the considered
reaction. Using masking or patterned illumination thanks to light-sources coupled to
mirrors, it is possible to focus light on a particular surface or within a specific volume to
achieve two-dimensional and three-dimensional spatial control, respectively.

2.2. Which Photoinitiating Systems Used for Hydrogel Synthesis?

While photochemistry brings great advantages to polymer science and chemistry in
general, another one of its assets consists of the broad range of generic reaction types that
can be photo-initiated for the synthesis of polymers [69]. The description, applications, ben-
efits and restrictions of these photo-initiated reaction types have already been exhaustively
outlined in compelling reviews [69,71,72].

Broadly, the two most common types of photopolymerization are free-radical pho-
topolymerization (FRP) and cationic photopolymerization (CP) [71,72]; however, FRP is
the exclusive process used in hydrogel synthesis. Only FRP will be evoked in the following
review, and special interest will be given to the thiol-ene process as well.

Basically, this formulation consists of: (i) a monomer/oligomer with photoactivable
groups, (ii) a photoinitiator (PI) or a photoinitiating system (PIS), which could initiate the
polymerization under light exposure and (iii) different additives (plasticizers, fillers, pigments)
to adjust and tailor the properties of the formulation. The mechanisms involved in the
photopolymerization reactions are described below. The discussion will focus here on the
most common photopolymerization reaction for hydrogel synthesis related to FRP and thiol-
ene processes. However, some essential notions of photochemistry will first be addressed.

According to the type of PIS chosen, different mechanisms can be expected, i.e., a
Norrish type I mechanism or a bimolecular mechanism called Norrish type II. Novel
Norrish type I and type II photocleavable systems, acting in the visible or infrared (IR)
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range, have been thus synthesized; their structures and photochemical properties have also
been extensively reviewed [68,70,71].

2.2.1. Norrish Type I Mechanism

Under light irradiation, if a photoinitiator (PI) can undergo a homolytic cleavage
generating two active radical species, the compound of this type is known as a Nor-
rish type I PI. This reaction is only possible if the dissociation energy of the PI in its
ground state is lower than the excitation energy. Most of the type I PIs (aryl ketones) are
composed of aromatic moieties containing carbonyl groups. For instance, 2-hydroxy-1-
[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959, Figure 1A) or lithium
phenyl(2,4,6-trimethylbenzoyl) phosphinate (Figure 1A) are well-established PIs used
in the synthesis of hydrogels under light irradiation with weak toxicity over a range of
mammalian species [73]. After the photoinduced α-cleavage reaction (homolytic cleav-
age) between an aromatic and a carbonyl group, two carbon-centered (or phosphinoyl)
radicals are produced, and their reactivity depends on the attached functional side-groups
(Figure 1B). Generally, only the generated alkyl (and phosphinoyl) radicals are reactive
toward the vinyl groups and may initiate FRP.
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2.2.2. Norrish Type II Mechanism

The Norrish type II reactions can occur according to two processes: the first one is a
hydrogen abstraction reaction (a bimolecular reaction) between a PI and a hydrogen donor
molecule (AH), forming thus two radicals; the second one concerns the electron/proton
transfer reaction between a PI and an electron-donating molecule with labile hydrogen
(DH) via a charge transfer complex (CTC or exciplex). The resulting A• or D• radicals can
initiate FRP. Sautrot et al. have recently used anthraquinone-2-sulfonic acid (AQS) coupled
with N-methyldiethanol amine (MDEA) as an H-donor molecule [61] (Figure 2).
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under light irraditation.

2.2.3. Free-Radical Photopolymerization Process

After considering the formation of radical active species, the overall simplified mecha-
nism of FRP with and without oxygen is represented in Figure 3. During the first stage of
the process, the initiating radical species (R•) are generated through mono or bimolecular
reactions as previously described. R• reacts, for example, with (meth)acrylate monomers
and leads to the monomeric radical (RM•). Subsequently, the propagation step occurs
when monomers additionally react with the growing macroradical. Finally, the termination
reaction can take place according to the mono or bimolecular process. The latter occurs
through recombination of macroradicals (coupling) or by disproportionation from a H-
abstraction reaction. The monomolecular termination is preferentially observed when the
formulation becomes highly viscous so that the diffusion of the radical species is prevented
and cannot combine together.
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Despite the use of FRP in many syntheses, oxygen inhibition stays a serious con-
cern. Indeed, oxygen reacts with monomeric or macroradicals to form peroxyl radicals
(ROO•) whose slow down or inhibit the polymerization. To address this issue, numer-
ous new systems have been designed, and new co-initiators have been introduced in the
photosensitive formulations, such as silanes, N-vinylcarbazole, halogen or bore-derived
compounds [68,71].

2.2.4. Initiation by the Thiol-Ene Process

Thiol-ene polymerization was first evidenced by Sharpless and is dedicated to the
addition of thiyl radicals to the double bond of multifunctional olefins (acrylate, methacrylate,
allyl or vinyl). Thiol-ene polymerization is characterized by striking features such as no oxygen
inhibition, fast reaction process and synthesis of highly crosslinked and dense networks
with high Tg, high rubbery modulus, high adhesion and reduced shrinkage [74–77]. Many
syntheses of hydrogels have been devoted to the thiol-ene polymerizations, and this technique
has been recently revitalized through many applications [78–80]. The so-called thiol-ene
mechanism is described in Figure 4: (i) Norrish type I or type II PI in combination with
thiols are appropriate to initiate the thiol-ene process according to an H-abstraction reaction,
generating thiyl radicals, (ii) propagation mechanism with the addition of thiyl radicals to
double bond and regeneration of thiyl radicals and (iii) bimolecular termination reaction
between two macroradical chains or between a thiyl radical and a macroradical chain.
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3. Photochemistry and Antibacterial Hydrogels: Biological Applications

Two topics can be underlined when talking about photochemical processes and an-
tibacterial hydrogels: on one hand, there are photoinduced antibacterial hydrogels, i.e.,
hydrogels whose synthetic process uses photochemistry as the triggering source of energy
for crosslinking; on the other hand, there are hydrogels whose bactericidal effects are due
to reactive oxygen species generated from light activation.

3.1. Photoinduced Antibacterial Hydrogels

The antibacterial part of such photoinduced hydrogels comes from intrinsic bacterici-
dal properties when formulated with cationic polymers or antimicrobial peptides (organic
photoinduced antibacterial hydrogels), or if the considered hydrogel is loaded with an-
tibacterial agents, such as metal NPs or metal–organic frameworks (MOFs), for instance
(hybrid organic–inorganic antibacterial hydrogels).

So far, most of the photoinduced antibacterial hydrogels have been investigated
within the scope of biomedical purposes, mainly regarding HAIs. To address this matter,
antibacterial hydrogels obtained using photochemical processes have recently gained
increasing interest owing to the many advantages brought by photochemistry [69,71,72].
The following studies investigated the photoinduced synthesis of polymeric networks
exhibiting antibacterial properties for in situ biomedical applications such as wound
dressings and injectable antibacterial hydrogels.

3.1.1. Organic Photoinduced Antibacterial Hydrogels

Thanks to rapid curing, light enables the investigation of photoinduced antibacterial
hydrogels for in-situ injectable wound dressings. It is also particularly interesting for
hydrogels synthesized using natural polypeptides and biomolecules considering the mild
reactional conditions. Sun et al. reported the synthesis of an in situ injectable light-
polymerized hydrogel based on γ-poly(glutamic acid) (γ-PGA), a poly-amino acid obtained
via microbial fermentation, and ε-poly-L-lysine (ε-PL), a water-soluble, biocompatible and
antibacterial polypeptide [41]. They mixed solutions of methacrylated (γ-PGA) and (ε-PL)
with a visible-light initiator, lithium phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP),
to obtain upon irradiation by visible light (405 nm) at room temperature a biocompatible
and biodegradable broad-spectrum antibacterial hydrogel (Figure 5). It was tested in vitro
against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), model microorganisms
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for testing bactericidal properties, and in vivo to treat models of subcutaneous infection
and damaged skin on rats. In parallel, they also assessed its mechanical properties as well
as its biocompatibility.
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Figure 5. Schematic representation of light-polymerized hydrogel based on γ-poly(glutamic acid) (γ-PGA)–ε-poly-L-lysine
(ε-PL) hydrogel synthesis. Reprinted with permission. Copyright 2021, NPG Asia Materials [41].

Their results showed a fast gelation step, 6 to 10 s, depending on the proportion
of methacrylated ε-PL, indicating promising injectable applications. The γ-PGA–ε-PL
hydrogel exhibited homogenous pore sizes enabling nutrient exchange and cell migration.
Additionally, high levels of antibacterial activities were obtained as the outcomes showed
that for some samples, over 99% of S. aureus and E. coli strains were killed. Cytotoxicity
and wound closure assessments indicated excellent hydrogel biocompatibility as well as
a good potential for wound healing applications. Overall, they obtained a visible-light-
induced, homogeneous and stable crosslinked hydrogel, which featured a high level of
biocompatibility, inhibited bacterial activity, showed killing capacity against S. aureus and
E. coli through cell membrane disruption and promoted wound repair.

Another study in the framework of HAIs using naturally occurring intrinsically
antibacterial polymers was conducted by Sautrot-Ba et al. [62]. They investigated chitosan
(CS), a natural polycationic linear polysaccharide frequently involved in the synthesis of
hydrogels, and more particularly for wound dressing materials and drug-releasing systems,
because of its biocompatibility, biodegradability, non-toxicity, relative abundance in nature
and natural antibacterial activity (fungistatic and bacteriostatic activities).

After chemical modification, primary amino groups located alongside the polymeric
chain of chitosan can be turned into quaternary ammonium (QA) functional groups [81]. QA
functional groups feature great antibacterial activity due to their positive charge, which is
more likely to interact with the negatively charged cell wall of the outer membrane of Gram-
positive and Gram-negative bacteria, causing pore formation in the cell membrane, severe
cell constituent leakage and inducing bacterial death via membrane disruption [61,62].
Chitosan is an interesting platform in the framework of antibacterial hydrogels as it can
be modified in photopolymerizable chitosan derivatives. These derivatives allow the
introduction of chemical crosslinks in polysaccharide hydrogels and/or the creation of new
hybrid materials via combination with synthetic entities [62].

In the scope of their study, Sautrot-Ba et al. synthesized in aqueous conditions a hybrid
antibacterial hydrogel composed of a chitosan-based polymer modified with methacrylic
acid, and poly(ethylene glycol) dimethacrylate (PEG-DA) in the presence of a photoinitiator,
1-hydroxy-cyclohexyl-phenyl-ketone, combining thus natural anti-fouling properties of
PEG and the natural antibacterial properties of chitosan (Figure 6). They irradiated their
mixtures for 100 s under a Hg–Xe lamp (250 W, 250–700 nm range) and used photo-
rheology and real-time Fourier-transform infrared spectroscopy to describe in detail the
photochemical behavior of such a system upon light irradiation. For the first time, they also
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studied the antibacterial activity of their hybrid hydrogels in the long-term, performing
bacterial adhesion experiments after 2 and 6 h and up to 6 months after having obtained
their hydrogels against both Gram-positive S. aureus and Gram-negative E. coli bacteria.
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Figure 6. Schematic representation of the free-radical photoinduced crosslinking between poly(ethylene glycol) dimethacry-
late (PEG-DA) and methacrylated chitosan (MA-Chitosan) and optical image of the resulting hydrogel. (1) Photolysis
of 1-hydroxy-cyclohexyl-phenyl-ketone, (2) radical addition on PEG-DA (initiation process) and (3) Reaction between
MA-Chitosan and radical species (crosslinking reaction) Reprinted with permission. Copyright 2019, Royal Society of
Chemistry [62].

According to their results, it seems that incorporating chitosan within the photo-
crosslinked structure slows down the photopolymerization, and the same goes when
they decrease the amount of PEG-DA. However, it does so without impacting their final
conversion rates, ranging from 90 to 100%. Their study also suggests that the introduction
of chitosan within the polymeric network decreases the crosslinking density, thus increasing
the swelling ratio of the resulting material. However, it also involves a decrease of the
water content at equilibrium due to the more hydrophobic character of the chitosan chain
compared to PEG. On the other hand, if a decrease of PEG content within the polymeric
network reveals the same trend in terms of crosslinking density and swelling capacity,
in that case, it implies a larger water content at the equilibrium of the hydrogel in its
swollen state. They also observed that the methyl acrylamide chitosan-PEG derivative
bridges forming during the photochemical process occur at the expense of the hydrogel
thermal and mechanical stability. Concerning the antibacterial properties of their material
post-synthesis, their data showed that the chitosan-containing gels featured an anti-fouling
capacity against both tested bacteria as well as bactericidal effects against E. coli. These
biocidal effects were less significant against S. aureus, which they explained by the difference
in thickness of the peptidoglycan layer between bacteria and the chitosan accessibility to the
bacteria depending on its repartition within the PEG network. After six months of storage in
a refrigerator at +2 ◦C, the results of their second antibacterial experiments showed that the
hydrogels suffered no loss of material during storage, indicating good chemical integrity,
although the hydrogels probably underwent some structure reorganization, including
chitosan chains accessibility on the hydrogel surface during that time period since they
observed a slight bactericidal efficiency loss.
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Recently, the same research group described the synthesis of antibacterial gels combin-
ing acrylamide- and allylated poly(ethyleneimine) (A-PEI)-based monomers using radical
photopolymerization in aqueous conditions under air. They described a water-based pho-
toinitiating system composed of anthraquinone-2-sulfonic acid (AQS), a photoinitiator
showing strong light absorption in near-UV, and N-methyldiethanol amine (MDEA), a
co-initiator [61]. The use of allylated PEI here is interesting as it is both used as a photo-
crosslinker and as an antibacterial agent with the presence of quaternary ammonium (QA)
functional groups. These QA functional groups are due to the presence of vinyl func-
tional groups on the PEI backbone and are obtained by nucleophilic substitution reactions
between the primary amino functional groups of PEI and allyl bromide. They mixed
bisacrylamide, acrylamide, AQS and MDEA with their modified PEI in water under UV
irradiation (385 nm) for 20 min (Figure 7). The mechanical and rheological properties, as
well as the in vitro biocide activities against S. aureus and E. coli of the resulting gels were
then tested. Their investigation showed that the addition of A-PEI in their photoreactive
system accelerated the crosslinking reaction and improved the flexibility of the resulting
network, thus increasing the swelling ratio (a flexible network physically allows water to
diffuse within the polymeric structure). A good swelling enables bacteria to come in contact
with the QA functional groups of the three-dimensional polymeric structure, increasing
the odds of bacterial death. As for the antibacterial tests, not only the A-PEI-based gel they
obtained showed antibacterial activity, but it also featured anti-adherence abilities, making
this photoinduced crosslinked hydrogel both a passive and active material.
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Figure 7. Schematic illustration of the photoinduced crosslinking between acrylamide, bisacrylamide
and allylated poly(ethyleneimine) forming an antibacterial hydrogel. Reprinted with permission.
Copyright 2020, Elsevier [61].

3.1.2. Hybrid Organic–Inorganic Photoinduced Antibacterial Hydrogels

On the topic of PEG-based photoinduced antibacterial hydrogels, Gwon et al. de-
scribed the synthesis of the antibacterial metal–organic framework (MOF)-embedded
hydrogel using PEG-DA and 4-arm thiolated PEG (4-arm PEG-SH) via thiol-ene photopoly-
merization upon UV irradiation [48]. MOFs have recently gained interest from the scientific
community as an efficient trapping structure for transition metal ions showing excellent
antibacterial activities that could not be used as such due to excessive metal ion leaching,
inducing cytotoxicity to host tissues as well as to bacteria [82]. Via the coordination of
bioactive metal ions to organic bridging ligands, scientists hope to efficiently trap metallic
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entities within MOFs, avoiding thus metal ion leaching while ensuring effective antibacte-
rial activity. Lipids present in bacterial membranes can easily be oxidized by active metal
sites of MOF crystal surfaces interacting with the membrane, inducing then disruption
and bacterial deactivation. Nevertheless, such structures still release significant amount
of bioactive metal ions into the media through the decomposition of metal–ligand bonds,
causing harm to host tissues [48].

Through surface coating, Gwon et al. hoped to increase the stability of metal–ligand
bonds within MOFs to prevent excess metal ion release in MOF-based drug delivery systems.
After having synthesized copper, cobalt and zinc MOFs, they added UV photoinitiator
Irgacure 2959 to a polymeric aqueous solution composed of PEG-DA and 4-arm PEG-SH in
a 1:1 molar ratio. Each MOF was then added to the prepared polymer precursor solutions
and photo-crosslinked under UV light (365 cm) for 5 min to generate crosslinked bioactive
MOF-based hydrogels. The mechanical properties, the cytotoxicity as well as the antibacterial
activity against E. coli and S. aureus of the resulting materials were then investigated.

Their analysis confirmed the homogeneous encapsulation of MOFs within the hy-
drogel networks during the photo-crosslinking process, and they reported the obtention
of a biocompatible, stable, bioactive Cu-based MOF-embedded hydrogel with high an-
tibacterial activity against both E. coli and S. aureus. In their analysis, they pointed out
that the central metal and structure of MOFs encapsulated in the polymers influenced the
PEG-based hydrogel structures. Indeed, Cu-MOF featured stable chemical bonding with
the PEG network as opposed to Zn-MOF and Co-MOF, which showed relatively unstable
chemical bonding with their PEG structures. In terms of antibacterial activity, the Cu-MOF-
encapsulated hydrogel showed stronger bactericidal properties than the other two MOFs
(Figure 8), mainly due to a stable 3D framework with a higher surface area to volume
ratio than the other MOFs investigated. They realized the much more significant impact
of the central metal and the structure of the MOF over the type of ligand in determining
antibacterial effects (Figure 9).
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plates treated with MOFs (E. coli and S. aureus at 108 and 107 cfu mL−1, respectively). Reprinted with
permission from ACS Appl. Mater. Interfaces 2020, 12, 20234−20242. Copyright 2020, American
Chemical Society [48].

Their hydrogels exhibited swelling ratios 20 times greater than that of the control
hydrogel. Yet, it also lowers the MOF concentration more than 20-fold after encapsulation
compared to the free MOF, resulting in a significant decrease in the antibacterial activity
of the hydrogels (Figures 8 and 9). Furthermore, direct contact between the MOF and the
bacterial membrane was blocked by steric hindrance of the MOF-containing hydrogels,
disturbing the antibacterial efficiency of the MOFs and resulting in highly reduced bacte-
ricidal effects of MOF-embedded hydrogels compared to free MOFs. However, they still
observed better antimicrobial activities than some of the previously reported antibacterial
hydrogels in the literature thanks to the high surface area to volume ratio derived from
the 3D framework of Cu-based MOF-embedded hydrogel and the natural antibacterial
property of copper.

Other groups of scientists also focused on the synthesis of antibacterial hydrogels
containing bactericidal agents, such as silver NPs, via free radical photopolymerization.
Uygun et al. reported the synthesis of such material using photoinduced free radical
polymerization [65]. In their study, they described an in situ synthesis of an acrylamide-
based hydrogel loaded with silver NPs using on-site precipitation of silver salt to metal
NPs and simultaneous polymerization of acrylamide monomers and crosslinkers afforded
by the photolysis of a benzoin-type photoinitiator (PI). The latter generates free radicals
upon irradiation, simultaneously inducing the polymerization and the salt reduction to
metal NPs (Figure 10).
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For the synthesis of their hydrogels, they mixed nitrogen-flushed samples of acry-
lamide, bisacrylamide, AgNO3 and citrate with photoinitiator Irgacure 2959 in various
quantities before irradiating them at 350 nm for 15 min at room temperature. They further
investigated water uptake, thermal stability and the porosity of the structures of the gels
alongside their antibacterial activities against both pathogenic and nonpathogenic E. coli
and S. aureus.

They reported a homogeneous size distribution of the silvers NPs that were incorpo-
rated and stabilized within a highly crosslinked hydrogel network thanks to citrate and
noticed that their incorporation did not affect the honeycomb-like morphology and pore
size of the hydrogel. Moreover, they observed greater water uptake than that of pure
hydrogel due to citrate, which interacts more with water and enhances the hydrophilicity
of the hydrogels, thus showing promising water-based applications. Silver NP-containing
hydrogels featured better thermal stability and high antibacterial activity against both types
of E. coli bacteria. However, they exhibited a lower bactericidal effect against the S. aureus
strain due to a facilitated interaction between NPs and the cell wall of Gram-negative
bacteria. Owing to the relative abundance of negative charges on the cell membranes of
such types of bacteria, silver NPs can easily penetrate the cell and strongly interact with
the cellular components, causing efficient bacterial growth inhibition.

In another study, Palantoken et al. reported the use of modified cationic PEI for the
development of a novel antimicrobial hydrogel loaded with silver NPs as well, acting thus
on a dual bactericidal mechanism and with potential long-lasting antibacterial activity
toward both Gram-positive and Gram-negative bacteria [44]. They described the addition
of methacrylate functions on the free amine substituents of the PEI polymeric backbone
using 3-(acryloyloxy)-2-hydroxypropyl methacrylate in ethanol under a nitrogen atmo-
sphere before obtaining a UV-curable cationic PEI (Quv-PEI) by mixing methacrylated PEI
and methyl iodate in the same conditions (Figure 11). They obtained the Quv-PEI-based
silver-loaded hydrogels by stirring acrylamide, bisacrylamide and silver nitrate AgNO3
in different amounts with Quv-PEI in water (Figure 12). On-site precipitation was used
to incorporate the silver-based biocidal agent within the polymeric network, the reduc-
tion of silver salt to silver being afforded by the UV-curable system (Figure 10). After
adding photoinitiator Irgacure 2959 to the mixture, it was irradiated for one hour at room
temperature at 300 nm to afford a free radical photo-crosslinking copolymerization. They
assessed the cytotoxicity in vitro as well as determined the dual antibacterial effects of the
studied hydrogels against E. coli and S. aureus using airborne testing and Kirby–Bauer disk
diffusion method.
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Their results indicated high antibacterial effects on surfaces and in a solution of the
resulting hydrogels toward both bacterial strains tested that were due to the dual action of
membrane disruption afforded by the presence of cationic PEI at the surface of the hydro-
gels and the biocidal effects of leached Ag+ ions. This antibacterial effect was, however,
higher against E. coli than S. aureus, which they also explained by the difference in thick-
ness and composition of the external structures of the bacterial membranes between the
Gram-positive and Gram-negative bacteria. They demonstrated in vitro biocompatibility
of their hydrogels, despite a sustained release of silver ions in aqueous media. The leaching
rate of Ag/Ag+ ion could otherwise be controlled by varying the concentration of AgNO3
in the hydrogel formulation.

These last studies demonstrated that NPs of silver play thus a dual antibacterial role:
for colloidal silver NPs, the bactericidal action would be due to the formation of Ag+ cations
from the NPs by an oxidation reaction, given that Ag+ ions disrupt bacterial cell membranes
and inhibit the enzymatic activity of bacterial cells [43]. In addition, silver NPs themselves
feature antibacterial properties; they could, however, be harmful to host tissues, making it
of the utmost importance to prevent the release of silver NPs within infected areas.

If the last two studies introduced silver NPs via an in situ approach, by reducing
Ag+ cations into metal NPs during the crosslinking step of the polymerization, ensuring a
homogeneous dispersion of NPs within hydrogels, Zakia et al. used an ex situ approach,
consisting of the mixing of presynthesized silver NPs and monomer units before the
crosslinking [43]. To prevent NP agglomeration from occurring during the crosslinking
process, reducing hence the antibacterial efficacy of silver NPs, their surface can be modi-
fied, by proteins such as collagen, for instance, to enhance stabilization within hydrogel
networks before gelation occurs [83].

In their study, Zakia et al. investigated alginate-based hydrogels loaded with ex situ
synthesized silver NPs. To prevent NP agglomeration in the presence of silver NPs upon
the addition of divalent cations, such as Ca2+, for the classic cation-assisted crosslinking of
the linear brown algae derived-polysaccharide, they aimed for a photo-crosslinking process
afforded by the introduction of methacrylate functions onto the alginate backbone using a
carbodiimide agent. They obtained an alginate-based hydrogel featuring a homogenous NP
distribution within its network by dissolving the methacrylated alginate and photoinitiator
Irgacure D2959 in the silver NP aqueous solution, which they irradiated with a 365 nm
UV light for 15 min (Figure 13). They tested the resulting hydrogels against E. coli for
antibacterial assays.
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Figure 13. Illustration of the preparation of a methacrylated-alginate-based hydrogel using free-
radical photopolymerization in a silver nanoparticle aqueous solution and its antibacterial activity
(left: hydrogel without silver NPs; right: hydrogel obtained using a 1.5 nM silver NP aqueous
solution). Reprinted with permission. Copyright 2020, Taylor and Francis Online [43].

They reported the size and shape homogeneity of the synthesized silver NPs with a
noticeable stable colloidal state, probably due to citrate molecules, alongside a uniform
dispersion of Ag NPs within the polymer network of the gels. They also observed a silver
NP dose-dependent antibacterial activity of their hydrogels, as their results range from a
negligible bactericidal effect for an NP concentration of 0.5 nM to complete bacterial growth
inhibition for an NP concentration of 1.5 nM. This behavior can be explained by the release
of Ag+ cations from the hydrogel, whose effect is restricted when the NP concentration
is low because of the favorable interaction between Ag+ ions and the -COO− groups on
the polymeric alginate chain. Working on the preparation of micro-/nanosized hydrogels
would eventually provide a larger surface area, facilitating thus the release of silver cations
into the medium, but it would also decrease the antibacterial activity of the system due to
a fast release rate. The goal achieved is to exert long-term effective bactericidal effects via
the control of the release of Ag+ cations by adjusting the hydrophilicity of the hydrogel
network through its chemical nature and physical structure.

In another study conducted by Chen et al. on metal-ion-loaded photoinduced hydro-
gels as bio-interactive dressings, the group of scientists demonstrated that the hydrogels
they investigated featured far greater mechanical properties when obtained via a photo-
chemical process rather than by conventional thermal methods [84]. In their work, they
reported how they obtained a hydrogel with a well-defined network morphology and an
optimal healing efficiency of 85% in 30 s, alongside highly stretchable and mechanically
robust properties, using an organic crosslinking agent containing a UV-responsive disulfide
bond. When exposed to external stimuli such as UV light, disulfide derivatives are prone
to cleavage of the S-S and the C-S bonds, producing thiyl or perthiyl radicals. Chain
exchange reactions allow then the formation of energetically favorable structures [85].
By integrating disulfide bonds into the free-radical polymerization crosslinking agent,
Chen et al. expect to optimize the potential irregular hydrogel network in order to get
a well-distributed polymeric structure. To do so, they dissolved acrylamide (AM), N,N′-
bis(acryloyl), cysteamine (BACA) and Irgacure 2959 in water in ultrasonication conditions
for 5 min. After flushing the atmosphere with nitrogen, they irradiated their mixture for
20 min at 365 nm before adding the resulting photoinduced hydrogel (PI-PAM/BACA) in
their silver salt aqueous solution to achieve their metal ion loaded gel (PI-PAM/BACA/Ag)
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using a deswelling/swelling method (Figure 14a). In the scope of their study, they also pre-
pared a control sample of their hydrogel through thermal polymerization (TI-PAM/BACA).
The antibacterial action of the investigated gels was tested against E. coli, S. aureus as well
as Candida albicans (CA), and in vitro biocompatibility assays as well as in vivo wound
healing applications were also studied.
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Figure 14. (a) Illustrations of the preparation of AM/BACA-based hydrogels using either thermal or photoinduced
free-radical polymerization. The introduction of silver cations in the photoinduced network was achieved through a
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irradiation. Reprinted with permission. Copyright 2021, Elsevier [84].

Direct comparisons between photoinduced and thermally initiated networks were
studied throughout the different analyses. Thorough imaging analysis indicated that the
photo-initiated networks showed a well-distributed honeycomb-like polymeric structure
with uniform pore sizes and homogenous Ag+ distribution, whereas the thermally induced
networks displayed a broad distribution in pore morphology, ranging from 200 nm to 5 µm.
The evenly distributed polymeric network afforded by photopolymerization exhibited
excellent stretchable and elastic behavior, undergoing high-level deformations such as
twisting, knotting, extensive stretching (>2500%), high compressions, and notches and
slices with a blade without breakage. In addition, the introduction of Ag+ cations in the
polymer structure containing disulfide bridges generated the formation of Ag+-disulfide
metal coordination interactions, giving the material highly efficient healing properties
(Figure 14b), and the healed samples still presented highly efficient stretchable properties
as compared with those of their original samples. The introduction of metal ions also
enabled the improvement of mechanical strength, notch insensitivity and elastic behavior
via the efficient energy dissipation from dynamic metal crosslinks. On the contrary, uneven
networks obtained using conventional thermal methods gave brittle structures.

Antibacterial activity and biological compatibility assays carried out on the photoin-
duced hydrogels demonstrated a positive relationship with the concentration of silver
cations introduced as well as good biocompatibility. In vivo studies showed a great affinity
of the investigated hydrogel on wound surfaces alongside improved wound healing per-
formances, thanks to efficient bactericidal effects from Ag+ ions and moisture features of
the hydrogels.
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3.2. Light-Triggered Antibacterial Activity of Hydrogels

When it comes to hydrogels for which antibacterial properties are light-sensitive, their
mechanism of action falls in line with photodynamic therapy (PDT). On this topic, several
most interesting reviews dealing with PDT, hydrogels and their use in medicine have been
published [34,53]. Briefly, the antibacterial mechanism of action is based on the generation
of reactive oxygen species (ROS) because of an energy transfer from a light-absorbing
chromophore-based compound called photosensitizer (PS) in its excited triplet state to
molecular oxygen (Figure 15) [34,53,63,86]. The photosensitizer goes from its fundamental
electronic singlet state to a short-lived excited singlet state (1PS*) upon irradiation under
an adequate wavelength. The photosensitizer either reverts back to its ground state, thus
emitting the corresponding energy via fluorescence, or sustains intersystem crossing to an
excited triplet state (3PS*), which is sufficiently long-lived to undergo different chemical
reactions or to enable the transfer of excitation energy to another compound such as triplet
oxygen [3O2]. It consequently generates cytotoxic reactive oxygen species or gives rise to
singlet oxygen [1O2], a highly reactive form of oxygen, all of which induces damage to cells
or bacteria [87]. From the excited triplet state, the photosensitizer goes back to its ground
electronic state via phosphorescence.

Materials 2021, 14, x FOR PEER REVIEW 19 of 34 
 

 

3.2. Light-Triggered Antibacterial Activity of Hydrogels 

When it comes to hydrogels for which antibacterial properties are light-sensitive, 

their mechanism of action falls in line with photodynamic therapy (PDT). On this topic, 

several most interesting reviews dealing with PDT, hydrogels and their use in medicine 

have been published [34,53]. Briefly, the antibacterial mechanism of action is based on the 

generation of reactive oxygen species (ROS) because of an energy transfer from a light-

absorbing chromophore-based compound called photosensitizer (PS) in its excited triplet 

state to molecular oxygen (Figure 15) [34,53,63,86]. The photosensitizer goes from its fun-

damental electronic singlet state to a short-lived excited singlet state (1PS*) upon irradia-

tion under an adequate wavelength. The photosensitizer either reverts back to its ground 

state, thus emitting the corresponding energy via fluorescence, or sustains intersystem 

crossing to an excited triplet state (3PS*), which is sufficiently long-lived to undergo dif-

ferent chemical reactions or to enable the transfer of excitation energy to another com-

pound such as triplet oxygen [3O2]. It consequently generates cytotoxic reactive oxygen 

species or gives rise to singlet oxygen [1O2], a highly reactive form of oxygen, all of which 

induces damage to cells or bacteria [87]. From the excited triplet state, the photosensitizer 

goes back to its ground electronic state via phosphorescence. 

 

Figure 15. Schematic illustration of the generation of reactive oxygen species (ROS) via the transfer of excitation energy 

between a photosensitizer in its excited triplet state and molecular oxygen under irradiation. Reproduced by permission 

of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry 

Association, and RSC [34]. 

Depending on the reactive species formed, two types of PDT can be distinguished 

[34,53,63,86]. Redox reactions between 3PS* and substrates in the studied environment 

leading to the generation of radicals, which ultimately interact with molecular oxygen and 

other compounds in the environment to form oxygen, peroxide or hydroxide radicals, 

constitutes type I. Type II relies on the direct interaction between 3PS* and molecular ox-

ygen, generating singlet oxygen [1O2], which is able to diffuse within cellular matrices and 

to induce apoptosis by denaturing DNA/RNA or proteins via the oxidation of their con-

stituents. 

For hydrogels for which antibacterial properties are based on the light-triggered gen-

eration of ROS or [1O2], photosensitizers are usually included in the preparation mixture 

and embedded in the final 3D polymeric network, either by grafting them onto oligomeric 

Figure 15. Schematic illustration of the generation of reactive oxygen species (ROS) via the transfer of excitation energy
between a photosensitizer in its excited triplet state and molecular oxygen under irradiation. Reproduced by permission of
The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry
Association, and RSC [34].

Depending on the reactive species formed, two types of PDT can be
distinguished [34,53,63,86]. Redox reactions between 3PS* and substrates in the stud-
ied environment leading to the generation of radicals, which ultimately interact with
molecular oxygen and other compounds in the environment to form oxygen, peroxide or
hydroxide radicals, constitutes type I. Type II relies on the direct interaction between 3PS*
and molecular oxygen, generating singlet oxygen [1O2], which is able to diffuse within
cellular matrices and to induce apoptosis by denaturing DNA/RNA or proteins via the
oxidation of their constituents.

For hydrogels for which antibacterial properties are based on the light-triggered gen-
eration of ROS or [1O2], photosensitizers are usually included in the preparation mixture
and embedded in the final 3D polymeric network, either by grafting them onto oligomeric
backbone units [42], by covalently conjugating them with monomeric units during crosslink-
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ing [87] or by encapsulating them within the hydrogel crosslinked network [88]. Upon
irradiation, such a hydrogel is thus able to generate ROS or [1O2].

The following studies focused their energy on the investigation of photosensitive
antibacterial hydrogels, integrating thus the principle of PDT at the heart of their work via
the incorporation of photosensitizers and other substances with excellent photocatalytic
activities into their hydrogels for antibacterial PDT applications.

3.2.1. Light-Sensitive Antibacterial Hydrogels Loaded with Metal Nanoparticles

Mao et al. recently reported the synthesis of a hydrogel embedded with
Ag/Ag@AgCl/ZnO nanostructures featuring a photo-inspired antibacterial activity [88].
Their composite hydrogel is based on carboxymethyl cellulose (CMC), a naturally occur-
ring biocompatible polysaccharide with good solubility and high chemical stability, and
Ag/Ag@AgCl/ZnO hybrid nanostructures embedded in the polymeric network. Zinc ox-
ide is a semiconductor nanomaterial exhibiting an excellent photocatalytic activity as well
as antibacterial properties via the generation of ROS, the release of zinc ions from ZnO or by
direct contact with ZnO particles [89]. Upon exposure to light, the photocatalytic reaction
of ZnO NPs leads to the generation of hydroxyl radicals, superoxide radicals and singlet
oxygen, which cause serious damages to cellular constituents such as lipids, proteins and
DNA. Additionally, the incorporation of metal NPs such as silver on ZnO nanostructures
not only significantly enhances the antibacterial efficacy of ZnO particles but also adds
bactericidal properties of these metal NPs [88,89]. It also prevents the recombination of
photoexcited electrons and protons generated along with the ROS, which tends to reduce
the photocatalytic activity of ZnO, hence reducing its antimicrobial activity along with it.

In their study, Mao et al. prepared their hydrogels by adding epichlorohydrin to
CMC previously dissolved in a basic aqueous solution under continuous stirring. They
afforded their prepolymer by heating the stirred mixture to 80 ◦C for 2 h. The metal
embedded hydrogels were obtained by immersing the swollen gel samples in solutions of
silver nitrate (AgNO3) before illuminating them with UV light (365 nm) for 2 h to afford
the reduction of silver cations to Ag NPs. ZnO nanostructures were then incorporated by
successively immersing the Ag/Ag@AgCl embedded gels previously obtained in a solution
of zinc nitrate (Zn(NO3)2) and in a solution of sodium hydroxide followed by freeze-drying
overnight to obtain the Ag/Ag@AgCl/ZnO nanocomposite hydrogels (Figure 16).
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Figure 16. Schematic illustration of the antibacterial action of the Ag/Ag@AgCl/ZnO nanocomposite
hydrogel under visible light irradiation on E. coli and S. aureus bacteria strains. Reprinted with
permission from ACS Nano 2017, 11, 9, 9010–9021. Copyright 2017, American Chemical Society [88].

Mao et al. tested their hydrogels against E. coli and S. aureus. Although they observed
clear inhibition zones for their nanocomposite hydrogels used as such, attesting to good
antibacterial effects, they noticed a significant increase of bactericidal effect after irradiating
their samples with simulated sunlight for 20 min, certainly due to the formation of ROS
resulting from the photoexcitation of ZnO. Their results showed broad antibacterial activity
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against both bacteria strains tested as well as accelerated wound healing properties. In
addition, the light-sensitive antibacterial activity of metal embedded hydrogels is enhanced
by metal cations leaching from silver and zinc NPs. Through electrostatic forces, metallic
cations can strongly adsorb to the cell surface of bacteria and cause the destruction of
charge balance and the deformation of the cells up until the death of the bacteria. They
can also interact with functional groups of cellular proteins after entering the cell and
lead to the death of the bacteria due to unbalanced metabolism [89]. Direct contact with
ZnO particles may also play a role in the overall antibacterial activity of the hydrogels
considered in this study.

Recently, hydrogels have therefore been studied as carriers for photosensitizers. Fur-
thermore, working on zinc-containing structures, Bayat et al. described the development
of a chitosan-based hydrogel using a photosensitizer as a crosslinker, zinc phthalocyanine
tetra-aldehyde (ZnPcTa), conjugated with colistin [87]. When exposed to visible light, the
excited photosensitizer covalently attached to the hydrogel network is able to transfer its
energy to molecular oxygen, resulting thus in the formation of radicals and singlet oxygen,
deadly species for bacteria.

In order to enhance zinc phthalocyanine (ZnPc) bioavailability and solubility in
aqueous solution, as well as the efficiency of the photo-inspired antibacterial activity
(also called antibacterial photodynamic therapy (aPDT)), Bayat et al. investigated the
incorporation of a ZnPc–colistin conjugate within their chitosan-based hydrogel network
(Figure 17). Colistin is an amphiphilic antibacterial polypeptide exerting its bactericidal
action via the disruption of the bacterial outer membrane and is particularly active against
Gram-negative bacteria [90]. In the scope of their study, Bayat et al. prepared their ZnPc–
colistin conjugate by successively adding an aqueous solution of NaOH and a solution of
ZnPcTa in DMF in an aqueous solution of colistin sulfate, in a molar ratio of 1:3 of ZnPcTa
and colistin. They left their mixture under continuous stirring for four days to afford the
desired conjugate. To obtain the covalently crosslinked hydrogel, they added solutions
of ZnPc–colistin conjugate and glutaraldehyde in acetic acid to a solution of chitosan
also dissolved in acetic acid, and gelation occurred upon shaking. They investigated the
morphology, mechanical properties as well as photodynamic antibacterial properties of the
resulted in hydrogels against Pseudomonas aeruginosa and studied the generation of singlet
oxygen to assess their photocatalytic activity.

They observed a sponge-like interconnected porous network with tunable pore size
and viscoelastic properties controlled by the amounts of ZnPc–colistin conjugate and
glutaraldehyde used for the synthesis.

The bactericidal effect, hence, the generation of singlet oxygen, occurred upon release
of the ZnPc–colistin conjugate from the hydrogel matrices, which again can be tuned by
controlling the crosslinking degree with glutaraldehyde—a higher crosslinking degree
induced a slower release rate of phthalocyanine, meaning lower significant antibacterial
activity and singlet oxygen production. Hydrogels based on modified ZnPc–colistin
conjugates exhibited improved bactericidal effect under light against the bacteria strain
tested, whereas chitosan-based hydrogels containing ZnPcTa showed no antibiotic activity
during tests under both dark and light conditions. The binding of the photosensitizer
to the bacterial membrane is required for the photodynamic antibacterial effect to occur,
and it appears that ZnPcTa alone is not able to permeate on outer bacterial membranes
due to a lack of cationic unit. Overall, they obtained a biocompatible chitosan-based
hydrogel incorporated with zinc phthalocyanine–colistin conjugates exhibiting enhanced
antibacterial activity under light due to the photocatalytic generation of singlet oxygen and
showing promises for potential use as wound dressings.
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3.2.2. Organic Light-Sensitive Antibacterial Hydrogels

Another group worked on photodynamic inactivation of bacteria causing inflam-
matory skin lesions, using chitosan-based hydrogels incorporated with a photosensitizer
for aPDT applications [91]. Chitosan is once again an alternative of choice in this study,
as it is a biocompatible and biodegradable biomaterial exhibiting intrinsic antibacterial
and anti-inflammatory properties as well as the ability to serve as a vehicle for active
compounds. In their study, Frade et al. worked on the in vitro aPDT efficacy against
Propionibacterium acnes in planktonic and biofilm phases of a chitosan-based hydrogel con-
taining methylene blue (MB) as a photosensitizer to be irradiated under a red light (660 nm).
P. acnes bacterium is one of several factors whose interaction results in the development
of acne, a common disease causing non-inflammatory to inflammatory skin lesions. In
addition, it is known to form a biofilm, a cellular organization in which cells are more
resistant to antibacterial agents compared to bacterial suspensions. In their work, Frade
et al. prepared their chitosan hydrogel by dispersing chitosan in acetic acid solutions under
magnetic stirring for 24 h before adding poloxamer 407 under continuous agitation. To
obtain their MB-loaded hydrogel, they finally incorporated MB at different concentrations
to the previously obtained gels. They studied rheological properties of their chitosan-based
samples and compared in vitro bactericidal effects against P. acnes in both planktonic and
biofilm phase of a chitosan hydrogel alone, of an aqueous solution of MB associated with a
red LED system alone, and of a chitosan-based hydrogel incorporated with MB under the
same irradiating system for assessment of aPDT.

They observed bacterial reduction for chitosan evaluated separately on both bacterial
phases tested, although without complete elimination of the bacterial strain, highlighting
thus natural antibacterial properties of this polysaccharide. Their results also showed
bacterial reduction ranging from slight bactericidal effects for low concentrations of MB
in solution to complete bacterial elimination for concentrations of MB of 37.5 µg mL−1

and higher against P. acnes in bacterial suspensions (Figure 18A). However, no significant
bacterial reduction was obtained using aqueous solutions of MB for mediated aPDT against
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P. acnes biofilm for all the MB solutions evaluated (up to 150 µg mL−1; Figure 18B). Con-
cerning tests conducted on a chitosan-based hydrogel incorporated with MB, not only total
microbial reduction was achieved against P. acnes bacterial suspensions, but also there
seems to be a synergistic effect of aPDT with chitosan as total bacterial reductions were
achieved with concentrations in MB three-fold lower when compared to aPDT with MB
alone. As for aPDT effects of chitosan hydrogel loaded with MB against P. acnes biofilm, all
three concentrations tested exhibited enhanced antibacterial properties when compared to
MB solutions alone but were nevertheless similar to that observed when the biofilm was
treated with chitosan hydrogel alone, hence ruling out the synergistic effect possibility.
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Figure 18. Antibacterial photodynamic therapy (aPDT) mediated by methylene blue (MB) in solution and by MB incorpo-
rated into 0.25 chitosan hydrogel over the standard suspension of P. acnes (A) or biofilm of P. acnes (B). Columns represent
the average of three independent assays, and bars represent the standard deviation. The asterisks indicate where there
is a statistical difference in comparison with the groups treated and the group non-treated (NT); (two-way ANOVA with
posttest Bonferroni), ** p < 0.01; *** p < 0.001. Reprinted with permission. Copyright 2018, MDPI [91].
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3.2.3. Hybrid Organic–Inorganic Light-Sensitive Antibacterial Hydrogels

In the framework of using dyes as photosensitizers, Li et al. studied the introduction of rose
bengal (RB), a well-known dye and photosensitizer, into graphene oxide (GO) based-hydrogel
matrix in order to benefit from a synergistic antibacterial effect of photothermal therapy and
photodynamic therapy [42]. They described the development of a hybrid hydrogel based on
GO modified with a β-cyclodextrin aldehyde (β-CD-DA), RB grafted on chitosan microspheres
via covalent immobilization and poly(vinyl alcohol) (PVA), with the purpose of obtaining a
biocompatible and antibacterial material for wound dressing applications

For the preparation of their hydrogel, they started by modifying GO with β-CD-DA
to get β-GO, a multipurpose inorganic network intertwined with the porous hydrogel
structure, simultaneously fixing GO nanosheets and preventing the release of GO NPs.
They dispersed GO in 80% ethanol using an ultrasonic bath and added (3-aminopropyl)
triethoxysilane to the GO dispersion. After a washing step using anhydrous ethanol and a
centrifugation step, they obtained a GO-NH2 precipitate, which was dispersed in DMSO
using ultrasonic methods. A uniform β-GO solution was obtained by adding β-CD-DA
to the GO-NH2 dispersion solution under continuous stirring. In parallel, they prepared
chitosan microspheres (CM) by adding tripolyphosphate to a stirred chitosan solution.
After a centrifugation step, the supernatant was removed, and the resulting solids were
freeze-dried. To obtain chitosan microspheres grafted with RB, they added previously
obtained CM to RB chemically modified with N-ethyl-N′-(3-dimethyl aminopropyl) car-
bodiimide (EDC) and N-hydroxysuccinimide (NHS) to perform an EDC/NHS covalent
immobilization (Figure 19). Finally, they added CM grafted with RB and PVA to the β-GO
dispersion solution, which was then degassed under vacuum before undergoing 4 freeze–
thaw cycles to obtain the final hybrid β-GO/RB/PVA hydrogel. They also prepared PVA,
GO/PVA and β-GO/PVA hydrogels to serve as a reference. Within the scope of wound
dressing applications, they analyzed the mechanical properties, swelling behavior, biocom-
patibility as well as wound healing capabilities of the resulting gel. They assessed in vitro
photothermal effects, ROS generation, in vitro and in vivo photodynamic antibacterial
properties against E. coli and S. aureus of the hydrogel samples.

Thanks to the addition of a modified graphene oxide inorganic network within a
PVA porous structure, the mechanical properties of the resulting hydrogels are enhanced,
although the addition of RB grafted on CM seems to reduce compressive properties. Li et al.
also reported a good water-absorbing capacity of the composite hydrogel. Concerning
photothermal effects, the hybrid hydrogel exhibits an excellent photothermal conversion
capacity under an 808 nm light irradiation with no significant changes when compared
to non-modified GO/PVA reference hydrogel, suggesting that photothermal properties
of GO remain unchanged, even in the presence of RB and if GO has been chemically
modified. In terms of the generation of ROS, they observed the production of hydroxide
radicals under irradiation at both 550 and 808 nm, with the best result under dual light
illumination. Singlet oxygen [1O2] is generated by the hybrid hydrogels only under
irradiation at 550 nm and under the dual light illumination. Finally, they noticed that the
chemical modification of GO decreases the photocatalytic activity of the hydrogels, which
is, however, greatly improved by the introduction of RB. Regarding antibacterial effects, the
hybrid hydrogel benefits from a synergistic bactericidal effect of hyperthermia brought by
GO under irradiation at 808 nm, combined with a small generation of hydroxide radicals
and ROS generated by RB under irradiation at 550 nm. The best antibacterial results are
obtained under a dual light illumination over a 10 m time period, combining thus both
bactericidal mechanisms, with an antibacterial efficiency against E. coli and S. aureus of
99.3% and 97.7%, respectively. In vivo experiment outcomes showed consistency with
in vitro results, with the composite hydrogel presenting a fast healing capacity and rapid
quenching of the inflammatory response. Overall, Li et al. obtained a biocompatible and
biosafe modified graphene oxide-based hydrogel incorporated with rose bengal grafted on
chitosan microspheres, featuring excellent antibacterial properties (Figure 20).
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hydrogel and the promotion mechanisms of mechanical property, antibacterial activity and wound healing. Reprinted with
permission. Copyright 2021, Elsevier [42].

Also working on GO-based hydrogels, Lima-Sousa et al. investigated graphene oxide
and reduced graphene oxide (rGO) in the scope of cancer photothermal therapy (PTT)
and near-infrared (NIR) light-enhanced antibacterial applications [92]. The PTT rests
on a similar principle to PDT: a NIR light irradiation on particular materials capable of
absorbing such beams produces a harmful temperature increase for cancer cells (Figure 21).
In their work, they studied a formulation of chitosan and agarose containing GO or rGO
for injectable thermo-responsive in situ hydrogel formation in the framework of GO/rGO
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local deliveries at tumor sites while avoiding rapid clearance from blood circulation.
They chose to work with natural and biocompatible polymers such as chitosan for its
natural antibacterial effect, while agarose was chosen to mediate a thermo-responsive
crosslinking. They prepared their hydrogel samples by mixing heated solutions of agarose
dissolved in water with chitosan dissolved in 1% acetic acid solutions. In parallel, rGO was
obtained by treating GO with L-ascorbic acid. They mixed GO and rGO nanoparticles with
agarose-chitosan solutions before an extrusion step, enabling them to afford hydrogels with
uniform macroscopic features. They finally characterized the physicochemical properties,
biocompatibility, photothermal effects as well as the light-mediated antibacterial activities
against E. coli and S. aureus of their hydrogel samples.
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Figure 21. Schematic representation of photothermal therapy (PTT) mediated by thermogel–GO and
thermogel–rGO. Reprinted with permission. Copyright 2020, Elsevier [92].

The resulting GO and rGO-based hydrogels featured highly porous interconnected
inner structures with uniform and well-ordered networks. The introduction of graphene
nanomaterials to the hydrogel formulations did not affect their gelation time, their in-
jectability capacity, nor did it affect their cytocompatibility. The photothermal capacity of
the samples was investigated by exposing the thermo-hydrogels to NIR-light for 10 min
(808 nm) while measuring the temperature. GO-based hydrogels generated a 2.2 ◦C temper-
ature increase, whereas rGO-based hydrogels produced a temperature increase of 8.1 ◦C,
underlining promising potentials for reduced graphene oxide in cancer PTT. Their tests
showed a breast cancer cell viability reduction to about 60% after irradiation with a NIR
light at 808 nm for 10 min. As for antibacterial effects, the thermo-gels exhibited natural
bactericidal activities thanks to chitosan being incorporated within their matrices, with
stronger effects against S. aureus than against E. coli (Figure 22). In addition, the irradiation
of the graphene-based thermo-gels with NIR light (808 nm for 10 min) further enhanced
bactericidal effects, which Lima-Sousa et al. explained by the so-generated heat causing
a possible chitosan dissolution from the polymeric matrix. Ultimately, they reported a
stable, biocompatible and biodegradable thermo-responsive graphene-based hydrogel with
suitable physicochemical properties to be studied as in situ forming injectable polymeric
matrices for light-mediated biomedical applications.
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Figure 22. Characterization of the near-infrared (NIR)-light enhanced antibacterial activity of the different hydrogel
formulations. Analysis of the inhibition area obtained for thermogel, thermogel–GO and thermogel–rGO in contact with
S. aureus (A) or E. coli (B) without NIR (W/O NIR) or with NIR (W/ NIR) laser irradiation (808 nm, 1.7 W cm−2, 10 min).
Values are presented as mean± SD, n = 3. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = non-significant). Reprinted
with permission. Copyright 2020, Elsevier [92].

In the area of aPDT, the most classically studied photosensitizers are porphyrins and
their derivatives, a class of hydrophobic and heterocyclic organic photosensitizers composed
of four pyrrole subunits [34]. Porphyrins are naturally occurring compounds since they are
key constituents for the respiratory system in living organisms [53,86]. In their investigation,
Kumari et al. described the synthesis of a hybrid hydrogel based on DNA containing
carbon dot (CD) nanoparticles and protoporphyrin IX (PpIX), a photosensitizer for potential
sustained aPDT applications [93]. Porphyrins constitute the elementary chemical structure
of heme, the blood pigment responsible for iron homeostasis in living cells and co-factor in
the biosynthesis of hemoglobin [53,86]. The most widespread heme-type is b-heme, also
known as iron–protoporphyrin IX [94]. Carbon dot refers to carbon nanoparticles smaller
than 10 nm, which were fortuitously discovered in 2004 throughout the purification of
single-walled carbon nanotubes [95,96]. They consist of fluorescent carbon nanomaterials
with amorphous to nanocrystalline cores and abundantly functionalized surfaces.

In their work, Kumari et al. investigated CD as both a crosslinker and as a way to
incorporate fluorescent-based tracking while improving the PpIX-mediated ROS generation
capacity of the DNA-based hydrogel through Forster resonance energy transfer (FRET)
for advanced aPDT applications [93]. Succinctly, they covalently immobilized ethylene
diamine on PpIX using an EDC/NHS synthetic pathway (Figure 19). They then conjugated
PpIX–ethylene diamine with phosphorylated cytosine-rich single-stranded DNA (ssDNA)
via an EDC/1-methyl imidazole activation step. CD containing surface primary amine
functional groups were concomitantly conjugated with cytosine-rich ssDNA through the
same EDC/imidazole chemistry. Finally, the hybrid hydrogel was obtained by mixing
equal volumes of PpIX–DNA and CD–DNA conjugate solutions in a heated NaCl buffer
(Figure 23). Post-synthesis analyses consisted of in vitro PpIX release measurement, ROS
generation from leached out PpIX assessment and antibacterial activity against E. coli et
S. aureus evaluation.
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Figure 23. DNA-carbon dot–protoporphyrin IX hybrid hydrogel formation and its antibacterial photodynamic therapy
applications. Reprinted with permission. Copyright 2019, Elsevier [93].

The loading of PpIX within the polymeric matrix, either free or conjugated with
DNA, can be confirmed by a change in fluorescence emission. The CD–DNA hydrogel
caused an intense blue fluorescence when viewed under UV light, whereas PpIX–DNA,
CD–DNA–PpIX and CD–DNA hydrogels (incubated with free PpIX for the latter) appeared
red when observed under UV light. This feature helps to track the photosensitizer loading
and release in the scope of PDT, which works as a therapy efficiency indicator. Regarding
the ROS generation assessment, results showed a sustained release of PpIX over ten days
through excitation under both UV (302 nm for 5 min) and visible light (300–900 nm for
5 min)—PpIX absorption in the UV range, where PpIX does not usually absorb, being
possible thanks to a Forster resonance energy transfer (FRET) caused by CD. Basically,
the energy absorbed by CD upon irradiation under UV light is ultimately transferred to
PpIX. Nevertheless, ROS generation gradually decreased over time three times as less
ROS were generated on the last day as compared to the first day. The conjugation of
PpIX with DNA along with the CD–DNA crosslinking allowed the inhibition of the usual
aggregation-induced PpIX self-quenching. Concerning bactericidal activity, the hybrid
CD–DNA–PpIX hydrogel exhibited a significant antibacterial action after photoactivation
by UV irradiation against S. aureus (302 nm), which was, however, dose-dependent. Once
again, FRET between CD and PpIX enabled the PpIX excitation under UV irradiation
and, thus, the generation of ROS. When irradiated under visible light (300–900 nm), over
99.99% of efficiency was observed in bacteria inactivation for the CD–DNA–PpIX hybrid
hydrogel. The comparison of bacteria inactivation efficiency between the hydrogel and
a solution of free PpIX tended to highlight the benefit of covalently immobilizing PpIX
onto DNA to avoid PpIX self-quenching and hence increase the ROS generation efficiency.
Their research group noticed a decreasing trend in killing efficacy over the days of the
study, under exposure to both UV and visible light. No significant results were recovered
concerning the killing efficacy of E. coli strains, which they explained by the membrane of
Gram-negative bacteria being impermeable to neutral porphyrins. Overall, Kumari et al.
designed a DNA, CD NPs and protoporphyrin IX hybrid polymeric network exhibiting
tunable excitation energy-absorbing properties through FRET for ROS generation. The
CD–DNA–PpIX hydrogel matrix was found to generate more ROS than free PpIX while
avoiding aggregation-induced self-quenching of the photosensitizer through a sustained
release of PpIX for enhanced aPDT applications.
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4. Conclusions and Future Directions

Since their earliest investigation, the scientific interest in hydrogels and their appli-
cations has exponentially escalated over the years. Because they provide moisturizing
environments, exhibit good biocompatibility, soft tissue-like viscoelastic properties, and
excellent water retention capacity thanks to their three-dimensional porous network, hy-
drogels are particularly attractive candidates that have been extensively investigated as
support matrices for biomedical applications. Antibacterial hydrogels either exhibit anti-
fouling properties, cytotoxic activities or serve as antibacterial agent delivery systems,
sometimes several of these characteristics at the same time. Their design is such that
bactericidal effects can be the result of intrinsic antibacterial activities, the consequence of
loaded antimicrobial agents slowly leaching into the environment or the outcome of an
exterior factor such as light applied on the hydrogel surface.

However, the bactericidal action of antibacterial hydrogels tends to strongly de-
cline over time, particularly for hydrogels loaded with antibacterial agents and inorganic
nanoparticles, since their antimicrobial effect is often only effective upon the slow leaching
of the bactericidal agent into the surrounding environment. Because of prompt leaching
at the beginning of use and the rapid consumption of the antimicrobial agent, this phe-
nomenon constitutes a major drawback for long-term antibacterial applications and raises
environmental issues as toxic compounds can be released in various ecosystems. In the
framework of long-lasting bactericidal effects and reusable/recyclable antibacterial hydro-
gels, the durability of each material and its antimicrobial effect duration must undergo
systematic evaluation after several experimental bactericidal cycles.

The combination of antibacterial hydrogel and photochemistry came to light with
photodynamic therapy. Upon irradiation under a specific wavelength, thanks to energy
transfers between a chromophore-based photosensitizer in its excited state, which has been
previously loaded into the hydrogel structure, and surrounding substrates and molecular
oxygen, cytotoxic reactive oxygen species such as radicals and singlet oxygen are generated.
Via denaturation of DNA, RNA and cellular proteins, reactive oxygen species induce apop-
tosis for surrounding bacteria. The study of photochemical processes further expanded
in the scope of sustainable development and green chemistry with the investigation of
photoinduced polymerization. Owing to the use of a photosensitive catalyst, the irradiation
of a photocurable system at a given wavelength enables the crosslinking process to occur.
Upon exposure to the appropriate light source, such a system is often solvent-free, offers
quantitative results within minutes at ambient temperatures, allows spatial and temporal
control, prevents the use of toxic substrates, the release of volatile organic compounds and
harsh reactional environments while generating low levels of waste. It also usually calls
for low costs of investment as photo-crosslinking can occur at low light intensities. The
broad range of generic reactions which can be afforded by photoexcitation and the various
kind of photopolymerizations available render the field of photochemistry all the more
interesting in the framework of antibacterial hydrogels.

In future perspectives, the focus around photochemistry and antibacterial hydrogels
should be put on the synthesis of new water-soluble photoinitiators, which would enable
the use of eco-friendly and safe photocurable systems while avoiding the generation of
phototoxic substances. The design of these photoinitiators would be such that they would
be covalently incorporated within the final polymeric network in order to avoid their
slow leaching out of the hydrogel structure and into the environment while ensuring the
antibacterial hydrogel biocompatibility by preventing a local toxicity increase. Additionally,
the use of photo-stable naturally occurring and easily modifiable dyes as synthons for the
green synthesis of photosensitizers should further broaden the path to the generation of
eco-friendly antibacterial hydrogels.

As briefly introduced in this review, the field of light-responsive antibacterial hydro-
gels is again widened by the concept of photothermal therapy (PTT). PTT enables the use
of near-infrared light, a promising tool in the biomedical field as it can lead to novel mate-
rials with high antibacterial efficiencies thanks to deep tissue penetration, non-invasive
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treatment methods, low background scattering, low phototoxicity and accurate remote
control. Future prospects on the union of light and antibacterial hydrogels may also lie on
a hybrid approach between photodynamic and photothermal therapy; the antibacterial
effects of the ROS generated by PDT combined with light converted into heat and thus
inducing bacterial lysis through PTT is implied here. These techniques benefit from the use
of visible light, non-invasive treatment methods, excellent availability of energy sources,
spatial and temporal control, rapid results and mild environmental conditions. Hybrid
materials containing dyes, photosensitizers and photothermal transduction entities benefit
from the numerous advantages of these techniques described alongside this review.
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