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Teeth segmentation is a crucial technologic component of the digital dentistry system. *e limitations of the live-wire seg-
mentation include two aspects: (1) computing the wire as the segmentation boundary is time-consuming and (2) a great deal of
interactions for dental mesh is inevitable. For overcoming these disadvantages, 3D intelligent scissors for dental mesh seg-
mentation based on live-wire is presented. Two tensor-based anisotropic metrics for making wire lie at valleys and ridges are
defined, and a timesaving anisotropic Dijkstra is adopted. Besides, to improve with the smoothness of the path tracking back by
the traditional Dijkstra, a 3Dmidpoint smoothing algorithm is proposed. Experiments show that the method is effective for dental
mesh segmentation and the proposed tool outperforms in time complexity and interactivity.

1. Introduction

In the context of the emerging computer-aided medical,
it is possible to acquire the 3D digital model of dental and
to design and manufacture dental implant guides. Dental
implant guide design systems based on digital technology
have developed rapidly over the years. Typical processes
of dental implants design include the following: (1)
obtaining the digital model of the tooth through a tra-
ditional impression and 3D scanning and then obtaining
the patient’s cranial CT; (2) tooth segmentation from
dental mesh, tissue segmentation, and reconstruction
based on CT; (3) personalized dental implant guide
design; (4) engineering analysis and manufacture; (5)
implement treatment. *e teeth segmentation plays a
crucial role in digital dental systems (steps 2, 3, and 4).
*e quality of the digital dental mesh is mainly depen-
dent on the digital dental mesh acquisition method
(three-dimensional scanning technology). *erefore, it is
crucial to design a user-friendly specialised tooth seg-
mentation tool, whose quality of the segmentation is
controllable.

*ere are three types of segmentation methods based
on dental mesh: automated methods, semiautomated
methods, and manual methods. Automatic methods do
not require user interaction and are very convenient.
However, due to the lack of controlling the quality of
segmentation, such methods do not meet the accuracy
requirement. Although manual methods can obtain ac-
curate results through users’ intersection, they also have
many shortcomings, such as tedious and time-consuming.
Semiautomated methods can keep the balance between
the accuracy of segmentation and the user effort for in-
teraction. However, the general semiautomated methods
are not directly suitable for dental mesh segmentation
because of the unique geometry of teeth and multiple teeth
arrangements on dental mode. Moreover, existing semi-
automated methods proposed to handle dental mesh have
the shortcoming that the positions of interactions are not
suitable for improving the segmentation accuracy.

*is paper aims to develop an interactive tool for dental
mesh segmentation, called 3D intelligent scissors, motivated
by a user-friendly segmentation tool [1, 2].*e wire between
two points inputted by user interaction is regarded as a part
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of the segmentation boundary.*emain contribution of this
work is threefold:

(1) An improved intelligent scissors tool for triangle
mesh segmentation has lower time complexity, which
meets the requirements of real-time interaction and is
specially optimised for dental mesh segmentation

(2) *e tool requires less interaction and can acquire
better segmentation

(3) An algorithm of 3D discrete curve smoothing on
triangle mesh is proposed, which subtly transforms
the complex problem of smoothing the curve on the
surface into a simple problem of smoothing the curve
on the plane

2. Related Work

*e dental model is a triangle mesh and can be obtained by
3D scanning. Previous work about dental mesh segmenta-
tion and general mesh segmentation is reviewed. *e pro-
posed method depends on the geodesic line, and the review
of the geodesic line is given at the end of the section.

2.1. Mesh Segmentation Approaches. *ere are some specific
approaches [3–7] that fully exploit the dental characteristics.
*ese methods are either interaction-intensive or result-
inaccurate. Most approaches about the dental mesh seg-
mentation reference the methods of general mesh
segmentation.

Mesh segmentation is a fundamental research topic in
geometry processing and computer graphics. Numerous
general mesh segmentation approaches have been proposed.
*e manual segmentation tool is user-unfriendly, usually as
a tool for obtaining benchmark segmentation [8]. Most of
the mesh segmentation algorithms are automated or sem-
iautomated and can be briefly classified as region-based and
boundary-based [9].

Region-based approaches include region growing
[10, 11], watershed segmentation [12, 13], and clustering
[14–17]. *ese methods [10–17] aim to partition different
regions based on similarity measures. Region-based
methods regard segmentation task as finding mesh regions
and grouping different regions. However, because dental
meshes from patients usually have teeth crowding problems,
defining a robust measure to apply region-classifying re-
mains a challenging task.

Boundary-based methods aim to find the boundary or
contour of each segmentation part. In order to select the best
boundary, Golovinskiy and Funkhouser [18] proposed a
method called randomized cuts. However, due to the lack of
user control, the segmentation quality is poor. Zheng and Tai
[19] proposed an interactive method, according to which the
user interacts with the segmentation process by drawing one
or more strokes across the desired boundary. Another in-
teractive boundary-based method, called dot scissor, is
discussed in [20].With the tool, the user’s effort is reduced to
placing only a single click where a cut is desired. Although
the interaction needed by the methods [19, 20] is little, the

segmentation boundary does not fit well with the user’s
intentions. Zhuang et al. [1] proposed a live-wire mesh
segmentation tool, with defining a wire through two end-
points entered by the user as the segmentation boundary
which is the shortest path-based anisotropic metric over the
surface. *e method balances the ability to control results
and the user effort for interaction, but the method is time-
consuming, which is intolerable as it is a real-time interactive
tool. In detail, the method needs mesh embedding and local
subdivision at initialisation, and computing wires is time
complex because it uses the exact method [21]. Moreover,
the tool fails in teeth segmentation when the seeds are far
apart (Figure 1).

2.2. Computing Geodesics Approaches. *e idea of the live-
wire based algorithm for mesh segmentation is to define a
wire between two points on the surface as a segmentation
boundary, and the critical problem is to compute the wire
quickly. *e geodesic-based suitable anisotropic tensor can
be used as the wire, and it is a special kind of geodesic on the
surface. Now, we review the work on geodesic based on
triangle mesh.*ere are two types of methods: exact method
and estimated method [21].

Chen and Han [22] proposed an exact algorithm
based on the idea of one angle one split. *is algorithm
complexity is O(n2). MMP [23] algorithm is another
method for computing exact geodesic-based continuous
Dijkstra, and its average time complexity is O(n1.5 log n)
but in the worst case is O(n2 log n). Ying et al. [24]
proposed the SVG (saddle vertex graph) algorithm, which
prebuilds the saddle vertex graph and can compute the
shortest path through the Dijkstra algorithm. *e time
complexity of the algorithm is O(D n log n), D << n. In
short, the exact method is time complex, although the
SVG algorithm is better in time complexity. Moreover, all
the above algorithms need to fulfil the triangle inequality
everywhere, and violation of the triangle inequality is the
typical behaviour especially for high degrees of anisot-
ropy [25].

Estimated methods generally obtain the approximate
solution of the discrete geodesic by solving the partial dif-
ferential equation. Generally, it is faster than the exact
methods. Among estimated methods, geodesic in heat
[26, 27] performs very well, but it is Euler metric based. Yang
and Cohen [28] extended the method by adding the variable
heat transfer coefficient, and it can lead the geodesic along
the feature area. Combining the anisotropic Laplace-Bel-
trami operators proposed by Andreux et al. [29] with the
heat method, the anisotropic heat equation can be solved
and then the features sensitive geodesic can be acquired. In
short, all the above algorithms are faster, but they have poor
robustness because solving PDE is unstable in the condition
of high degrees of anisotropy.

Another estimated method is named short-term vector
Dijkstra (STVD) [25]. *e method uses a new version of
update function by exploiting a vector-valued short-term
memory that aims to improve accuracy. However, the results
are unsmooth.
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*e conclusion of the literature review is that live-wire-
based segmentation tool is user-friendly, but existingmethods
are time-consuming and do not exploit dental characteristics.

3. Our Method

Inspired by the intelligent scissors [2] in image segmenta-
tion, Zhuang et al. [1] proposed a live-wire method for mesh
segmentation. In the method, the geodesic between two
points on the surface is defined as a part of the segmentation
boundary. However, it consumes time in computing exact
geodesic and is meaningless in the segmentation application.

Similar to the live-wire segmentation, in this paper, the
proposed teeth segmentation tool starts with a single click on
the triangle mesh to select a seed point. *en, the program
traces back a smooth path between the seed point and the
current position of the mouse in real time.

For real-time interaction, a method to fast compute the
geodesic is presented. Besides, two anisotropic metrics are
defined, which can force the geodesic line lying at the feature
of the surface. Unfortunately, because of using an inexact
method based graph search [30], the path along the edge is
often unsmooth, so a 3D curve smoothing algorithm is
proposed. *e steps of obtaining a complete segmentation
boundary are shown in Figure 2, which mainly include the
following ones:

(1) Initialization: computing the minimum and maxi-
mum curvature and the normal and the tensor-based
anisotropic metric vertex (Section 3.1)

(2) Computing the anisotropic geodesic (Section 3.2)
(3) Tracking back the shortest path
(4) Smoothing the path with a proposed method (Sec-

tion 3.3)

3.1. Anisotropic Metrics. In this paper, the “shortest” path
between two points (geodesic) as a part of the segmentation
boundary is used. Obviously, the “shortest” is not the
shortest in the usual sense (Euler metric). In order to define
the concept of the “shortest”, a metric tensor g is introduced.
In a Riemannian manifold M, tangent plane TaM is local
Euclidean representation of manifold M around point a.
Moreover, in M, b is another point around a. *en, the
length between a and b in M based the metric tensor ga is
approximately defined as follows:

x � a − b,

dg(a, b) �

������

xTgax

􏽱

.
(1)

*e metric tensor ga is regarded as a local orthogonal
coordinate system in the tangent plane TaM (Figure 3),
where e1 and e2 are the eigenvectors of ga, λ1 and λ2 are the
eigenvalues of ga, and θ is the angle formed between x and e1,
then formula (1) can be rewritten as follows:

dga
(a, b) � ‖x‖

�������������������

λ1 cos (θ)2 + λ2 sin (θ)2
􏽱

. (2)

Our method + valley metric
Zhuang’s method + min metric
Zhuang’s method + max metric

(a)

Our method + valley metric
Zhuang’s method + min metric
Zhuang’s method + max metric

(b)

Our method + valley metric
Zhuang’s method + min metric
Zhuang’s method + max metric

(c)

Our method + valley metric
Zhuang’s method + min metric
Zhuang’s method + max metric

(d)

Figure 1: Comparison between wires obtained by our method + valley metric and Zhuang’s method +Min and Max metrics.
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If the eigenvectors are fixed, the length is determined
by λ1 and λ2. *erefore, controlling the value of λ1 and λ2
can diminish the distance between two points a and b in
the feature area. Previous researches [1, 31] suggested that
the eigenvectors should be aligned with the local cur-
vature directions (minimum curvature and maximum
curvature).

In this paper, e1 is aligned with the direction of
minimum curvature and e2 is aligned with the direction
of maximum curvature. kmin and kmax denote the min-
imum and maximum curvature at a point of the triangle
mesh. |kmax| − |kmin| is smaller in ridges and bigger in
valleys, and |kmax| + |kmin| is smaller in valleys and planar
area (Figure 4). *e tangent direction of wire along
valleys is similar to the direction of the minimum cur-
vature (Figure 5(a)). So for valleys, λ1 and λ2 are set in
formula (3), which is named as valley metric. Dividing by
kmax makes λ1 and λ2 scale-independent. It is obvious λ1
(Figure 4(b)) and sin(θ) (Figure 5(a)) are small in valleys,
and according to formula (2), the above eigenvalues
make the wire along the valleys shorter than that along
others:

λ1 �
kmax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + kmin

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 kmax
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

λ2 �
kmax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − kmin

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 kmax
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(3)

For ridges, λ1 and λ2 are set in formula (4), which is
named as ridge metric. In ridges, kmax is similar to kmin
(Figure 4(a)), which means λ2 is close to 1. Furthermore, in
other regions, λ2 is much more than 1. Besides, because the
direction of wire along ridges is similar to the direction of
maximum curvature (Figure 5(b)), the smaller λ2 makes the
wire along the ridges shorter. ε (10− 4 in the paper) prevents
division by zero. *e definitions of λ1 and λ2 reveal their
scale-independency:

λ1 � 1,

λ2 �
kmax

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

kmin
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ε
.

(4)

3.2. Anisotropic Dijkstra. In order to fast compute the
geodesic from all vertices to the source, an anisotropic
Dijkstra algorithm is proposed. Its pseudocode is shown in
Algorithm 1.

*e data structure of the triangle mesh of the teeth as one
input of the algorithm is half-edge [32]. Every vertex of the
triangle mesh has a set of triples expressed as (dist, final, and
pred), where dist is the distance between the vertex and the
source, and final marks whether the vertex is visited and pred
represents the previous vertex of the vertex in a path.

In the initialisation, dist of source point is zero and all
other vertices are infinity. A priority queue Q is employed,
which is ordered by dist. In the beginning, there is only
source vertex in Q. *en, until Q is empty and in the process
dist and pred of all vertices are updated, the main loop is
running. In the main loop, the distance between two ad-
jacent vertices-based anisotropic metric is calculated. *e

e1

e2TaM

a b
θ

M

Figure 3: *e metric tensor on the surface.
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Figure 2: *e steps of our method.
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(a) (b)

Figure 4: *e visual result of (a) |kmax| − |kmin| and (b) |kmax| + |kmin|.

(a) (b)

Figure 5: *e red line is the direction of minimum curvature, and the green line is the direction of maximum curvature. *e blue wires in
(a) and (b) are the wires we need.

Input: triangle_mesh, vertex based anisotropic metric g, a vertex
source

Output: vertex based geodesic distance to source
(1) source.dist = 0, all other distance values initially ∞;
(2) source Q, Q is a priority queue ordered by dist;
(3) while not Q empty do
(4) υ Q;
(5) υ.final = true;
(6) for w adjancen υ and w.final ≠ true do
(7) if w.dist > υ.dist + lg(υ, w) then
(8) w.dist = υ.dist + lg(υ, w);
(9) w.pred = υ;

(10) if not w in Q then
(11) w Q;

ALGORITHM 1: Anisotropic Dijkstra.

Computational and Mathematical Methods in Medicine 5



metric tensors of the two vertices v and w are gv and gw, and
distance between v and w is computed as follows:

lg(v, w) �
dgv

(v, w) + dgw
(w, v)

2
. (5)

*e geodesic between any vertices and the source vertex
is tracked back by pred as shown in Figure 6(a).

3.3. Smooth 3D Curve on Dental Mesh. As shown in
Figure 6(a), the wire we trace back is jagged, because it
consists of the edges of the triangle mesh determined by the
Dijkstra algorithm. However, for teeth segmentation, the
geodesic should be smooth as the boundary is smooth. To
achieve this goal, Polthier and Schmies [33] proposed the
“Geodesic Euler Method” and “Geodesic Runge–Kutta
Method” based on the gradient of the geodesic field. *e
methods regard the geodesic tracking back problem as an
ordinary differential equation (ODE) solving problem with
the initial value, which requires the geodesic field is smooth.
However, the geodesic field computed by “Anisotropic
Dijkstra” does not satisfy the smooth condition because of its
strong anisotropy and weak accuracy. *erefore, Polthier’s
methods cannot get the correct geodesic. Inspired by
common sense that replacing the two endpoints with the
midpoint makes polyline smooth on the plane, a 3D mid-
point algorithm to smooth curvature on triangle mesh is
proposed and the pseudocode is shown in Algorithm 2.

“Midpoint method” is not suitable for smoothing the
curve on the 3D triangle mesh because the midpoint of two
points in the curve may not locate on the triangle mesh in 3D
space. *erefore, in the proposed algorithm, k (usually 3 to
5) neighbourhoods of the curve C on triangle_mesh are
extracted (Figure 6(a)), named k_ring_mesh. Using the
method of least squares conformal maps (LSCM) [34], the
expanded triangle mesh on the plan is named by k_ring_-
mesh_2D (Figure 6(b)). C is constructed by the vertices of
triangle_mesh. *e curve C is mapped to a 2D curve C2D that
is constructed by the vertices of k_ring_mesh_2D. C2D is
smoothed with the “midpoint method” to S_C2D

(Figure 6(c)). S_C2D is mapped back to a smooth curve S_C
(Figures 6(d) and 6(e)). *e method mainly includes the
following steps.

Firstly, the interactions of each edge of k_ring_mesh_2D
and S_C2D are computed.

Secondly, one edge of k_ring_mesh_2D intersects S_C2D

at pt_int2D. Two vertices of this edge are defined as index1
and index2, respectively. *en, the information of inter-
section is recorded in a set of triples (index1, index1, and α),
where α is calculated by the following formula:

pt int2D � (1 − α) · pt2D index1( 􏼁 + α · pt2D index2( 􏼁. (6)

Finally, S_C2D is mapped back to S_C by the following
formula:

pt int3D � (1 − α) · pt3D index1( 􏼁 + α · pt3D index2( 􏼁. (7)

Additionally, pt2D and pt3D are the vertices of
k_ring_mesh_2D and k_ring_mesh_3D, respectively. And,

all the pt_int3D form S_C. s is a parameter of the algorithm to
control the smooth strength.

3.4.User Interface. Our teeth segmentation tool is developed
in C++, depending on libigl [35] and OpenMesh [32].
OpenMesh and libigl mainly provide functions such as half-
edge data structure, reading and writing the file, rendering,
UI components, and computing some discrete geometry
quantities. To begin with, the user holds the Ctrl key and
presses the left button of the mouse on the triangle mesh of
the teeth model and then a seed is selected. When the Ctrl
key is held and the mouse is moving on the triangle mesh,
the “shortest” path between the seed and current position of
themouse is acquired and rendered in real time. If the path is
realised as “good,” it is confirmed with the Ctrl key and the
left mouse button click. When a previous path is regarded as
not “good,” it is cancelled by the right mouse button click
with holding the Ctrl key, and the previous seed becomes the
current one. It is ended by the right button click with
Ctrl + Shift holding. Our program stores all the seeds. When
the mouse hovers over the seed and the seed is highlighted,
then the seed can be dragged to modify the path. During this
process, the path is rendered in real time. When the Ctrl key
is not held, the mouse is responsible for common 3D in-
tersections including translating, rotating, and scaling.

All the tasks of teeth segmentation, including segmen-
tation between teeth and gums, teeth and teeth, the occlusal
surface of the teeth, need the path along valleys or ridges. A
radio button is employed to switch the mode (along valleys
or ridges). A radio button is to change the metric (formula
(3) and (4)) defined in Section 3.1.

4. Result and Discussion

4.1. Setting. We conducted experiments on clinical dental
meshes which are acquired by traditional impression and
then 3D scanning using AutoScan-DS100+. All the pro-
grams are implemented in C++ and compiled in Microsoft
Visual Studio 2017 and run on a computer with 8GB RAM,
Intel® Core™ i7-4790 3.6GHz CPU, andWindows 10 64 bits
system. Real-time interactivity and easy-to-use are signifi-
cant for the segmentation tool, so they are evaluated in our
experiments by comparing with Zhuang’s method. In order
to evaluate our method, seven dental meshes are used and
their information is listed in Table 1.

4.2. Results and Analysis. *e results of our method are
shown in Figure 7. In this experiment, the valley metric is
used to segment the teeth and gums from dental mesh with
parameters k� 3 and s� 5. *e results of Zhuang’s method
with his Max metric are given in Figure 7. Furthermore, the
parameter settings follow the author’s suggestion. Both
methods contain three operations: initialisation, seedling,
and tracking back path. *e running time for every oper-
ation is listed in Table 2. In the experiment, the principle of
seeds selection is that the wire between two seeds with the
furthest distance is as close as possible to the valleys.
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As shown in Figure 7, the qualities of the segmentation
boundaries acquired by our and Zhuang’s method are
similar. However, the number of seeds acquired by our
method is less than that of Zhuang’s method (shown in

Table 3). It is evident that, in most cases, the seeding time is
much less than one second.*e tracking back time is slightly
longer than that of Zhuang’s method, but a few milliseconds
of tracking time does not affect the real-time interaction. So

Expand Smooth Recompute the points Map back

Split

(a) (b) (d) (e)(c)

Figure 6: *e steps to smooth the 3D curve on the dental mesh.

Input: triangle_mesh, C the curve on the triangle_mesh, smooth
strength s

Output: points pt_int3D on the smoothed curve
(1) k_ring_mesh = split(triangle_mesh, C, k);
(2) (C2D, k_ring_mesh_2D) = LSCM(k_ring_mesh, C), Least Squares

Conformal Maps;
(3) initialize pts as a point array;
(4) for m = 1 : s do
(5) initialize pts as a point array;
(6) foreach pti

2D in C2D do
(7)
(8) update C2D using temp_pt;
(9)

(10)
k_ring_mesh_2D;

(11) compute α based Equation (6);
(12) (index1, index2, α) info_int2D;
(13) initialize S_C as a point array;
(14) foreach (index1, index2, α) in info_int2D do
(15) compute pt_int3D based Equation (7);
(16) pt_int3D S_C

(pti
2D + pti+1)/22D temp_pt;

foreach pti
2D and pti+1 in C2D do2D

compute intersection pt_inti
2D of line pti

2D pti+1 and edges of2D

ALGORITHM 2: 3D midpoint smoothing algorithm.

Table 1: *e information on the dental meshes.

Name Number of vertices Number of faces Number of edges Position
DM1 35473 70942 106413 Mandibular
DM2 113489 226843 340325 Maxillar
DM3 84091 168194 252291 Maxillar
DM4 140251 280498 420747 Mandibular
DM5 156257 312510 468765 Maxillar
DM6 226232 452460 678690 Mandibular
DM7 62301 124598 186897 Mandibular

Computational and Mathematical Methods in Medicine 7



our tool is a WYSIWYG (What You See Is What You Get)
program, and the user interface has a pleasant experience.
Moreover, the initialisation time of our method is less than
that of Zhuang’s method. *is is because that local sub-
division is not required and mesh normalization does not

execute with the benefit from our scale-independent
metric.

*e comparison between our wire and Zhuang’s wire is
demonstrated in Figure 1.*e blue wire is obtained by valley
metric. *e red and the dark red wires are obtained by

Model
name

The result of our method 
View 1 View 2 The result of Zhuang’s method 

DM1

DM2

DM3

DM4

DM5

DM6

DM7

Figure 7: *e segmentation boundaries obtained by our method with valley metric and Zhuang’s method with his Max metric.
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Zhuang’s method using his Min and Max metric, respec-
tively. *e red points are the seeds, and there are only two
seeds at the ends of the wire. *e blue and dark red wires
overlap each other in Figure 1(a). *e wire obtained by the
valley metric is closer to the real parting of teeth and
gums, especially when the two seeds are far apart, as
shown in Figures 1(b)–1(d). It means that the valley
metric is more effective than Zhuang’s method. Although
the performance of ridge metric is close to Zhuang’s Min
metric shown in Figure 8, our method is faster than
Zhuang’s method.

*ere are two parameters in the proposed method for
smoothing 3D curve. *e parameter k controls the mag-
nitude of k_ring_mesh, which is usually set between 3 and 5.

A smaller value of kmay cause that the smoothing curve goes
beyond the boundary of the mesh. Moreover, a larger value
of k inevitably leads to reduction in efficiency because in-
tersections between the curve and the mesh need to be
computed. In our tests, when k is set to 3, the algorithm
performs better. *e parameter s is the smoothing strength,
which affects the times of the taken midpoints. On the plane,
the polyline will become a straight line by taking the
midpoint enough times. It is also suitable for our 3D curve
smoothing method on a triangle mesh. An appropriate value
of s makes the wire smooth and not far from the original
polyline (Figure 9). In our tests, the parameter performs well
from 2 to 10. Experimental results show that our method is
insensitive to parameters.

Table 2: Running time of every step of our method and Zhuang’s method (ms).

Model name
Our method Zhuang’s method

Initialisation
time

Seeding
time

Trackback
time Total time Initialisation

time
Seeding
time

Trackback
time Total time

DM1 1206 28 6 2260 1909 654 0.1 35268.1
DM2 3647 92 6 6881 4071 4334 0.2 207778.4
DM3 2707 70 6 5367 3728 2190 0.2 106667.4
DM4 4809 122 8 8449 6108 5432 0.2 266853.6
DM5 5624 140 7 10034 6858 8851 0.2 511376.4
DM6 8505 203 8 13991 9999 10225 0.2 408781.8
DM7 2049 57 5 4281 2306 1208 0.1 60294.8

Table 3: *e number of seeds used by our method and Zhuang’s method.

DM1 DM2 DM3 DM4 DM5 DM6 DM7
Number of seeds used by our method 31 33 35 28 30 26 36
Number of seeds used by Zhuang’s method 51 47 47 48 57 39 48

Our method + ridge metric 
Zhuang’s method + min metric 

(a)

Our method + ridge metric 
Zhuang’s method + min metric 

(b)

Our method + ridge metric 
Zhuang’s method + min metric 

(c)

Figure 8: Occlusal surface segmentation of using our method + ridge metric and Zhuang’s method +Min metric. *e dark blue wire is
obtained by our method+ ridge metric, and the red one is obtained by Zhuang’s method +Min metric.
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Our method is proposed for dental mesh segmentation.
Meanwhile, it can work well on other triangle meshes with
visible valleys or ridges as shown in Figure 10.

5. Conclusion

An intelligent scissors tool for teeth segmentation in the
dental mesh is proposed, which is inspired by Zhuang’s live-

wire method. Valley metric and ridge metric are defined to
lead the wires along the valleys and the ridges. To quickly
compute the geodesic, we adapt the Dijkstra algorithm for
the anisotropic metric. *erefore, in order to solve the
problem that the path tracked back by Dijkstra is unsmooth,
a 3D midpoint smoothing algorithm is proposed. *e ex-
periments show that the tool is effective for tasks of teeth
segmentation in the dental mesh. Compared to Zhuang’s

(a) (b)

(c) (d)

(e) (f )

Figure 9:*ewires using different smoothing strengths. (a)*e original wire, which is not smooth. (b) s� 2. (c) s� 5. (d) s� 10. (e) s� 20. (f) s� 80.

(a) (b)

Figure 10: *e blue wire is obtained by our tool, and the red points are the seeds.
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method, our method is better in time complexity and
interactivity.

However, the tool is poor in the segmentation of the
mesh without prominent valleys or ridges. In future work, it
is attractive to design a more versatile metric and to extend
the tool for interactive texture mapping.
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