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Abstract

The rat adrenal pheochromocytoma PC12 cell line is one of the traditional models for the study of neurite outgrowth and
growth cone behavior. To clarify to what extent PC12 neurite terminals can be compared to neuronal growth cones, we
have analyzed their morphology and protein distribution in fixed PC12 cells by immunocytochemistry. Our results show that
that PC12 cells display a special kind of neurite terminal that includes a varicosity in close association with a growth cone.
This hybrid terminal, or ‘‘varicone’’, is characterized by the expression of specific markers not typically present in neuronal
growth cones. For example, we show that calpain-2 is a specific marker of varicones and can be detected even before the
neurite develops. Our data also shows that a fraction of PC12 neurites end in regular growth cones, which we have
compared to hippocampal neurites as a control. We also report the extraordinary incidence of varicones in the literature
referred to as ‘‘growth cones’’. In summary, we provide evidence of two different kinds of neurite terminals in PC12 cells,
including a PC12-specific terminal, which implies that care must be taken when using them as a model for neuronal growth
cones or neurite outgrowth.
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Introduction

The rat adrenal pheochromocytoma (PC12) cell line was

originally derived in 1976 from a tumor arising from adrenal

medulla chromaffin cells [1]. Since then, PC12 cells have become a

very popular model for studying the signaling pathways of cell

survival, proliferation and differentiation, resulting in the generation

of a large amount of knowledge on these processes [2–5]. An

interesting feature of PC12 cells, previously observed in their first

description, is their capacity to grow neurite-like processes in

response to nerve growth factor (NGF) [1]. The growth of neurites

can also be achieved by inducing cAMP elevation and it is

accompanied by other features in common with a neuronal

phenotype, such as cessation of proliferation, expression of neuronal

markers and secretion of neurotransmitters [3,6]. Because PC12

cells can be passaged indefinitely and are much easier to culture and

manipulate than their neuronal counterparts, they are a particularly

useful model for the study of neurite outgrowth.

Neurite outgrowth is the process whereby neurons extend long

processes during development to reach their targets, leading to the

establishment of neuronal connections. All growing neurites are

terminated at their distal end by growth cones, very motile

expansions containing filopodia and lamellipodia which are

capable of sampling the environment and guiding the neurite

[7]. Differentiated PC12 cells, together with sympathetic and

cortical neurons, are currently some of the most extensively used

models for the study of neurite growth and growth cone function

[8–10]. For example, PC12 cells were used to describe the role of

vinculin in mediating growth cone attachment to the substrate [8],

and also helped describe the crucial role of the Rho family of

GTPases in neurite formation, outgrowth and retraction [11–14].

Another characteristic feature of PC12 neurites, already noted

in the initial description of the cell line, is the presence of large

varicosities containing catecholamines [1]. These varicosities are

found in most growing PC12 neurites within 20 mm of the growth

cone and might participate in the process of neurite outgrowth in

these cells [9]. We noticed that often these terminal varicosities

associate so closely with the growth cone that they can be easily

mistaken for a part of it. Because of their high visibility, the

enlarged hybrid terminals can be favored for analysis over their

neighboring, less prominent, growth cones. Indeed, we detected an

extraordinary incidence of this structure, composed of a varicosity

in close association with a growth cone, in the literature referred to

as a ‘‘growth cone’’. On numerous occasions, protein enrichment

at the varicosity has been reported as ‘‘growth cone enriched’’, and

the data extrapolated to neuronal growth cones. To clarify to what

extent the neurite terminals observed in PC12 cells can be

compared to neuronal growth cones, we have analyzed the

different morphologies of these terminals and the distribution of

growth cone markers. We found that PC12 cells display two

different kinds of neurite terminals: while some neurites are tipped

by proper growth cones, most neurites display the enlarged hybrid

terminals that include a varicosity. This second terminal, which we

have referred to as ‘‘varicone’’, as opposed to growth cone,

appears to be the most characteristic terminal of PC12 cells. In

addition, using a varicone marker that we have identified, we have

characterized the appearance of this structure back to the initial

protrusions in the undifferentiated PC12 cell.
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Materials and Methods

PC12 cell culture
PC12 cells were obtained from the American Type Culture

Collection (ATCC) and cultured as described before [15]. Briefly,

PC12 cells were maintained undifferentiated in Dulbecco’s

modified Eagle’s Medium supplemented with 10% fetal bovine

serum and 5% normal horse serum (Invitrogen, Carlsbad, CA,

USA). To induce differentiation, cells were dissociated and plated

on collagen-I (Sigma) coated coverslips in low serum conditions

(1% normal horse serum) and 75 ng/ml of NGF (Invitrogen,

Carlsbad, CA, USA). Once PC12 cells developed neurites, around

day 5 after induction of differentiation, cells were fixed with 4%

paraformaldehyde and 4% sucrose in 0.1 M phosphate buffer for

15–30 min at room temperature and processed for immunocyto-

chemistry.

Hippocampal neuron cell culture
Neurons were isolated from the hippocampus of CD1 mouse

embryos at 16–18 days postcoitum or postnatal day 0 (Charles

River, Wilmington, MA, USA) and were cultured on poly-D-lysine

coated coverslips (Sigma Oakville, ON, Canada). Mouse primary

neurons were maintained in Neurobasal medium supplemented

with glucose, glutamine and B27 (Invitrogen, Carlsbad, CA, USA),

and fixed after one day in vitro with 4% paraformaldehyde and

4% sucrose in 0.1 M phosphate buffer for 15–30 min at room

temperature [16].

Immunocytochemistry
For immunocytochemistry, fixed cells were washed in phos-

phate buffered saline (PBS) 0.1M and PBS-0.1% Triton X-100

and then blocked for 30 minutes in PBS-0.2% gelatin, 0.1%

Triton X-100 and 2% fetal bovine serum [16]. Cells were then

incubated with primary antibodies (2 hours room temperature)

and secondary antibodies (45 minutes to 1 hour, room tempera-

ture) in the same solution, washing with PBS-0.1% Triton X-100

before and after incubation. Fluorescently labeled Phalloidin was

included in the incubation with secondary antibodies. After this,

cell nuclei were labeled with Hoechst diluted in PBS and mounted

in slides with Mowiol (VWR Canlab, Mississaga, ON, Canada).

Antibodies
The primary antibodies used where: mouse anti-bIII tubulin

(Covance, Laval, QC, Canada); mouse anti-cortactin 4F11 and

rabbit anti GAP-43 (Millipore, Billerica, MA, USA); goat anti-

Arp3 (Santa Cruz); rabbit anti-calpain-2 (Cell Signaling Technol-

ogies, Danvers, MA, USA); mouse anti-synaptophysin (Sigma

Aldrich Canada, Ontario, Canada). Alexa 488 and 546-conjugat-

ed phalloidin and Alexa 488 and 546-conjugated goat antibodies

to mouse or rabbit immunoglobulin G (IgG) were from Molecular

Probes (Invitrogen, Carlsbad, CA, USA).

Image acquisition
Calpain-2 fluorescent images were obtained with an Olympus

inverted confocal microscope IX81 controlled by FluoView 1000

(Olympus). For the generation of axial projections, several stacks

were acquired and then projected to generate the ‘‘side views’’

shown in the figure. All additional images were obtained with a

Zeiss Axioplan 2 Imaging microscope using a Retiga 1350EX

camera (Quantitative Imaging Corporation, Surrey, BC, Canada)

with Northern Eclipse software (Empix Imaging, Mississaga, ON,

Canada). Negative controls in which the secondary antibody or

the phalloidin were omitted were included in every experiment.

Analysis of the literature
To survey the incidence of varicones in images in the literature

and their correct identification as varicosity-containing terminals,

we performed a PubMed search using the terms ‘‘growth cone

PC12’’ and retrieved 229 articles, from which the most recent 25

that included clear pictures of PC12 terminals were used (ranging

from 1994 to 2008). Two people classified each terminal as

‘‘varicone’’ or ‘‘growth cone’’ based on its morphology, and the

notation used by the authors was noted. After removing those that

were unclear, a total of 213 terminals were used for analysis. These

included ‘‘varicones’’ referred to as ‘‘growth cones’’ or as

‘‘varicosities’’, and ‘‘growth cones’’ referred to as ‘‘growth cones’’.

We found no ‘‘growth cone’’ misidentified. The number of articles

studying neurite outgrowth or varicosities/exocytosis was also

counted. We also applied the same criteria to images from our own

cultures (351 terminals, 3 different experiments). Data was

represented as % of total.

Results

Morphological characterization of PC12 growth cones
and varicones

PC12 cells grown in the presence of NGF have a polygonal

shape and extend processes of different morphologies (Figure 1).

Using Differential Interference Contrast (DIC) microscopy, the

presence of numerous big and elongated varicosities was very

noticeable (Figure 1A–C, ‘‘v’’), as these appeared extraordinarily

thick in comparison to the rest of the cell processes (Figure 1A–B,

‘‘gc’’). Because these structures were not present in every neurite,

and seemed to vary in shape, we resolved to analyze the different

morphologies of PC12 neurite terminals by looking at the

distribution of tubulin and actin within fixed cells. We found that

PC12 cells had two kinds of terminals, based on their cytoskeletal

composition and morphology. First, some neurites of PC12 cells

have ends that closely resemble neuronal growth cones, with a

neurite shaft and growth cone central domain rich in tubulin

surrounded by actin-rich lamellipodia and filopodia (Figure 1D). A

second kind was characterized by the presence of a large varicosity

very near the neurite tip and a more or less visible growth cone

(Figure 1E–G). The varicosities were surrounded by a net of

microtubules, but did not contain actin-rich structures, which are

also properties of the neurite shaft (Figure 1E). On occasions it was

easy to identify both the varicosity and an associated growth cone

(Figure 1F, compare to Figure 1 in [9]), although they might also

appear as a connected structure (Figure 1G). In other instances,

the existence of a growth cone was not evident and a varicosity

seemed to be the only terminal structure, but the frequent

presence of filopodia at the tip of these varicosities suggested the

existence of a growth cone that had retracted or collapsed just

prior to fixation. We refer to the special terminal, characterized by

having a varicosity in addition to a growth cone (that could be

collapsed or not), as a varicone. Because varicones were frequently

observed in PC12 cells but not neurons, we further characterized

their molecular nature in order to have a better understanding of

the contributions of varicosities and growth cones to a varicone.

Immunocytochemical characterization of PC12 growth
cones and varicones

In order to discern those areas of PC12 terminals that more

closely resemble neuronal growth cones, we examined the

localization of typical growth cone markers by immunocytochem-

istry in fixed hippocampal neurons and differentiated PC12 cells

(Figure 2).

PC12 Neurite Terminals
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Figure 1. Morphological characterization of PC12 varicones
and growth cones. (A–C) Examples of differentiated PC12 cells
observed using Differential Interference Contrast (DIC). A large
varicosity at the tip of many neurites is apparent (‘‘v’’ in A and C)
while other terminals resemble neuronal growth cones (‘‘gc’’ in A and
B). (D–G) Fluorescence images of several PC12 cell neurite terminals
labeled with a b-III-tubulin antibody and phalloidin to visualize tubulin
and actin. While some terminals display a morphology similar to
neuronal growth cones, including a tubulin-rich central domain (c)
surrounded by an actin-rich peripheral domain (p) as shown in D, others
have a large varicosity (E–G) and ‘‘growth cone’’ that can be collapsed
(E) or more clearly visible (F–G). In some neurites, both the varicosity (v)
and the growth cone (gc) appear as a connected structure (connected
arrows in E). Scale bar A = 20 mm, B–G = 10 mm.
doi:10.1371/journal.pone.0004334.g001

Figure 2. Immunocytochemical characterization of PC12 ter-
minals I: growth cone markers. (A–I) Fluorescence images of
hippocampal neuron growth cones, PC12 growth cones and PC12
varicones, immunolabeled with growth cone markers (white or green)
and co-labeled with phalloidin (actin, red). Arp3 (A–C), Cortactin (D–F)
and GAP-43 (G–I) localize to the actin-rich regions of the growth cones,
including the actin-rich region associated with varicones (C, F, I), but not
to the varicosity associated with varicones (white arrow). Scale
bar = 10 mm.
doi:10.1371/journal.pone.0004334.g002

PC12 Neurite Terminals
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Arp3 is a member of the Arp2/3 complex and participates in

actin filament branching by creating new branching sites [17]. In

neurons, Arp3 labeling was restricted to the growth cone

(Figure 2A), where it colocalized with F-actin, consistent with

previous reports [18–20]. Similarly, those terminals of PC12 cells

that morphologically resembled growth cones had a clear

enrichment of Arp3 at their terminal filopodia and lamellipodia,

while there was no labeling along the shaft (Figure 2B). This

pattern, restricted to the growth cone, was also conserved in

neurites ending in varicones (Figure 2C). Thus, Arp3 labeling was

restricted to the very end of the neurite, where actin staining

indicated the presence of a growth cone, while it was absent from

the shaft, including the varicosity (arrow in Figure 2C). These

results were supported by the expression pattern of two additional

growth cone markers: the actin-associated protein cortactin

[18,21], and the membrane protein GAP-43 [22,23]. We found

that cortactin was enriched at the growth cone in hippocampal

neurons (Figure 2D) and in PC12 cells (E), including the growth

cone compartment of varicones (Figure 2F). PC12 cells varicos-

ities, however, displayed little labeling, which is similar to the

pattern observed in the rest of the shaft (arrows in Figure 2F). The

same pattern was reproduced with GAP-43 (Figure 2G–I).

Together, these results indicate that despite being frequently

morphologically merged, the growth cone component of varicones

is restricted to the actin-rich region and does not extend into the

varicosity component.

We then used a different set of markers to assess whether the

varicosity in PC12 varicones partially invades the apparent growth

cone, therefore generating a combined area, or whether both

components remain distinct despite their close apposition. In our

previous work, we had identified calpain-2 as a protein enriched in

neurite shafts, and therefore a good marker for this purpose [18].

In hippocampal neurons, calpain-2 immunolabeling localized to

the neurite shaft, while it was very low in the growth cone actin-

rich areas (Figure 3A). In contrast, calpain-2 labeling was very low

along PC12 neurites, and it had a clear vesicular pattern

(Figure 3B–C). In PC12 neurites ending in growth cones,

calpain-2 was particularly absent from the actin-rich region

(Figure 3B), supporting our previous observations with growth

cone markers. Surprisingly, calpain-2 accumulated in PC12

varicosities at varicones (arrow in Figure 3C). This data indicates

that the varicosity is characterized by a distinct molecular identity

in this region of the terminal.

Next, because PC12 varicosities have been described to be

similar to presynaptic terminals [24], we explored the localization

of synaptophysin a synaptic marker in PC12 terminals. Synapto-

physin, a presynaptic marker, is absent from neuronal growth

cones at the time they are extending (Figure 3D), and it was also

absent from PC12 growth cones (Figure 3E). It was, however,

enriched in varicones, where it was limited to the varicosity

portion (Figure 3F). We could indeed confirm using z-stacks that

varicosity markers fill the entire volume of the varicosity without

invading the growth cone component (Figure 4). Therefore,

despite being morphologically merged, the varicosity component

of varicones does not extend into the growth cone compartment.

Calpain-2 pattern in growing PC12 processes
Given the differences in the morphology of varicosities and their

association with other structures, it is not clear where they are

generated and whether they are present in neurites where an

enlarged terminal is not apparent. Therefore, we took advantage

of the restricted distribution of calpain-2 to varicosities to track

their generation in undifferentiated PC12 cells (Figure 5). Soon

after NGF addition to PC12 cells, calpain-2 puncta tended to

accumulate in the incipient processes (arrowheads in Figure 5A),

not only at the tip but also in the nascent area, suggesting they are

being transported. Once neurites were visible, those with clear

growth cones had very low levels of calpain-2 along their processes

(open arrowheads, Figure 5B) while cones, containing varicosities,

concentrated the greatest amount of the protease (arrowhead in

Figure 5C). Although the pattern varied between cell and even

between individual processes, calpain-2 was consistently enriched

in the incipient sprouts and populated the vast majority of neurite

tips. In fact, detection of terminals without a visible varicosity or

calpain-2 labeling was an exception. In the example shown in

Figure 5D, all neurites display very visible varicones with the

varicosity containing large amounts of calpain-2, including the

frequently observed triangular-shaped terminals (asterisk in

Figure 5D). Similarly, those neurites that are starting to develop

Figure 3. Immunocytochemical characterization of PC12 ter-
minals II: varicosity markers. (A–I) Fluorescence images of
hippocampal neuron growth cones, PC12 growth cones and PC12
varicones, immunolabeled with non-growth cone markers (white/
green) and co-labeled with phalloidin (actin, red). Calpain (A–C) is a
protease enriched at the neurite shaft in neurons (A) but not so in PC12
cells (B–C), where it localizes almost exclusively to varicosities (white
arrow). Synaptophysin (D–F) is a presynaptic marker that is barely
detected in young growing neurites in hippocampal neurons (D) but
enriched at PC12 varicosities (arrow in F). Scale bar = 10 mm.
doi:10.1371/journal.pone.0004334.g003

PC12 Neurite Terminals
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(arrowhead) already show enrichment in calpain-2. Thus,

varicosities are intimately related to neurite growth in PC12 cells,

being present from the onset of process initiation, and staying

closely associated with the growth cone to the extent of creating a

typical PC12-specific hybrid terminal.

PC12 cones are frequently misidentified and
overrepresented in the literature

One of the main reasons we undertook this study was the large

number of PC12 varicosities we saw identified as growth cones in

the literature. As an attempt to measure the incidence of this

representation, we surveyed the most recent articles describing

neurite outgrowth and protein localization in PC12 neurites that

showed clear pictures of PC12 ‘‘growth cones’’ (Figure 6). Using

morphological criteria, we classified each terminal as a growth

cone or a cone and compared it to the identification given by the

authors. In our own cultures, varicones were present in

approximately two thirds of total neurites (234/351), while growth

cones accounted for the remaining third (117/351, Figure 6).

These proportions were not altered during the time in vitro, at

least during the first week after induction of a neuronal phenotype

with NGF (not shown). The number of each terminal we could

identify in the images present in the PC12 literature were slightly

biased towards an overrepresentation of varicones (158/213

terminals), probably owing to their high visibility. Strikingly, while

three quarters of the images corresponded to PC12 varicones,

virtually all of them were referred to as growth cones (206/213,

Figure 6), with a few exceptions correctly identified as varicosities.

In fact, all growth cones were correctly identified, while 100% of

misidentifications corresponded to varicones being thought to be

growth cones (Figure 6). Because the articles studying growth

cones in PC12 cells (22/25) were much more numerous than those

that addressed the function of varicosities (3/22), this suggests that

the impact and consequences of this misrepresentation is greatest

in the field of neurite growth.

Discussion

PC12 cells are one of the traditional models for the study of

neurite outgrowth and growth cone behavior. Our results show

that that PC12 cells display a special kind of neurite terminal that

includes a varicosity in close association with a growth cone. This

special terminal, or varicone, is characterized by the expression of

specific markers not present in growth cones and can be tracked

back to the incipient neurite buds in the PC12 cell (Figure 7). Our

results suggest that investigators should be cautious when

extrapolating data obtained in PC12 as models for neuronal

growth cones.

PC12 cells generate two different terminals
The presence of large varicosities in PC12 cells is well known

[1,6,25–27]. These varicosities share features with presynaptic

terminals [24,28] and contain large numbers of catecholaminergic

vesicles, which can be secreted when stimulated [6,29,30]. We

noted however, that varicosities tended to locate to the very end of

the neurite (within 10 mm of the tip) giving the impression of being

unusually large growth cones. Our results indicate that varicosities

associate very closely with PC12 growth cones, to the extent of

possibly being involved in the neurite outgrowth process. The

involvement of both the varicosity and the growth cone in neurite

advance is also suggested by time lapse studies of growing PC12

neurites ([9], see also http://neurite.embl.de/html/movies.html).

Thus, the varicosity advances together with the growth cone and

stays at the tip of the neurite even when the growth cone

temporarily retracts or collapses. In this circumstance, processes

would appear in fixed cells as a neurite with a terminal varicosity

and no visible growth cone (For example Figure 1C, E), which

would correspond to a particular state of the hybrid terminals.

Because this hybrid terminal of varicosity and growth cone is very

frequently observed in PC12 cells, but not in neurons, we suggest

the different notation of ‘‘varicone’’ for it, while keeping the term

growth cone for those terminals without an associated varicosity.

It is interesting that PC12 cells have two kinds of neurite

terminals. Is there any difference or advantage for a neurite to

have a growth cone versus a varicone? Aletta and Greene noted

that neurites that have varicones (‘‘a varicosity within 20 mm of the

growth cone’’) elongate with much higher frequency than those

with growth cones [9]. In their video recordings, over 90% of

neurites with varicones were extending, while more than half of

those that only had a growth cone were rather static [9]. They also

observed that the loss of a varicosity was typically accompanied by

a cease of neurite outgrowth [9], supporting a role in neurite

outgrowth. In agreement with this, neurites with varicones in our

study were typically longer than those that had only growth cones

(see for example Figure 1A). While it could be suggested that larger

neurites may have acquired varicosities after a significant amount

of growth, we have noted that calpain-2-positive vesicles contained

in the varicone migrate into the neurite from the time the initial

Figure 4. Calpain-2 subcellular localization in PC12 cells. (A–C)
Double immunolabeling of calpain-2 (red) and actin (phalloidin, green)
in a differentiated PC12 cell. Calpain-2 (B) localizes almost exclusively to
the varicosity contained in the varicone (A). In a Z-projection across the
varicone (C), actin staining is detected around the varicosity, while
calpain-2 fills the space within. Scale bar = 10 mm.
doi:10.1371/journal.pone.0004334.g004

PC12 Neurite Terminals
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bud sprouts, arguing against this hypothesis. The fact that PC12

cells use a hybrid terminal for neurite elongation makes them

remarkably different to neurons, which questions their utility as

models of neuronal growth cones.

We have also established that despite being morphologically

merged and being both involved in neurite outgrowth, the

varicosity and the growth cone components of the varicone

remain segregated. This means that the contents of the growth

cone are restricted to the actin-rich region and do not extend into

the varicosity. Reciprocally, we have shown that the varicosity

component of varicones does not extend into the growth cone, as

many proteins selectively localize to the varicosity. A remarkable

example of this latter case is calpain-2. Calpain-2 is a protease that

we have previously shown controls neurite shaft consolidation by

degrading the machinery needed to promote sprouting [18].

Therefore, if calpain-2 localized to, or was active at the growth

cone, it would lead to growth cone collapse by degradation of

those same proteins that are needed to generate filopodia and

lamellipodia [18,31–33]. In agreement with this, the surprising

concentration of calpain-2 in PC12 cones was restricted to the

varicosity, which would prevent it from interfeering with growth

cone function. Interestingly, calpain inhibitors promote neurite

elongation in PC12 cells [34], and both NGF or cAMP reduce

calpain activity in these cells [35]. Because several calpain

members are involved in vesicle trafficking and exocytosis [36],

and because the calpain-2 pattern in PC12 cells is particularly

vesicular, these results suggest that the vesicles contained in the

varicosity support the growth cone function and therefore

contribute to the growth of the neurite.

PC12 varicones and their impact to neurobiology
The finding that three quarters of the recent studies done with

PC12 growth cones actually examine varicones, and in particular

the proteins that localize to the varicosity component, is surprising.

Undoubtedly these findings have influenced the current under-

standing of protein function and growth cone dynamics. In some

cases, proteins had been described as enriched in growth cones

while images showed unambiguous and specific location to the

varicosity in the varicone [37–41]. In fact, some of these images

contained a neighboring growth cone clearly devoid of the protein

located to the varicosity [41]. Based on these reports, we can add

to our list of varicone markers the proteins syntaxin 6, KIF2, tPA

or even APP ([38–40], Figure 7). In other occasions growth cones

are correctly identified, and some articles are exemplary (see ref

[42] with more than 10 growth cones). While we cannot measure

the ultimate impact of this misidentification in our understanding

Figure 5. Onset of PC12 process outgrowth. (A–C) Double immunolabeling of calpain-2 (white or red) and actin (phalloidin, green) in PC12 cells
at different stages of differentiation. (A) Calpain-2 labeling in the initial stages of process outgrowth of PC12 cells concentrates around and along the
initial buds (arrowheads). (B) Some neurites don’t have visible accumulations of calpain-2 (empty arrowheads), and they invariably lack a varicosity (as
determined by morphology). (C) Some neurites develop a clear varicone (arrowhead) and calpain-2 labeling concentrates at the varicosity. (D) An
example of PC12 cell showing multiple processes with a variety of morphologies. Calpain staining uncovers the varicosity contained in the PC12
terminals, including those in which the presence of a varicosity was not easy to determine by morphology, such as those of triangular shape
(asterisk). An incipient process is also highlighted by the presence of calpain-2 puncta (arrowhead in D). Scale bar = 10 mm.
doi:10.1371/journal.pone.0004334.g005

PC12 Neurite Terminals
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of growth cones, it has clearly led to a mischaracterization of these

proteins and conclusions regarding their role in neurite outgrowth.

In the absence of corroboration using primary neurons, this is

likely to have contributed to the contradictory reports that we

often see in neuronal cell biology.

PC12 cells as a model for neuronal growth cones
In the light of our results, one wonders whether PC12 cells are a

reliable model for the study of neuronal growth cones. Based on

their morphology and expression of specific markers, it is clear that

some PC12 cell neurites have individual growth cones that closely

resemble those of neurons. This is particularly evident in the case

of Arp3, cortactin and GAP-43, which we have shown to have the

same growth cone localization in PC12 cells that they have in

neurons [18–20,22]. Indeed, some studies have succeeded in

identifying growth cones accurately when describing protein

localization at neurite terminals [42], and we urge researchers to

follow the same criteria in their studies, and whenever possible, use

varicone or growth cone markers as a control. In the absence of

these controls or validation using primary neurons, expression data

cannot be extrapolated to neuronal growth cones in a reliable way.

A more complicated issue is using PC12 cells as a model for

neurite outgrowth. Given the correlation between varicosities and

neurite elongation in PC12 cells, together with the much higher

incidence of varicones over growth cones, pharmacological and

genetic studies aimed at assessing the involvement of a protein in

neurite outgrowth should be interpreted carefully. Manipulations

that target the varicosity are likely to interfere with varicone

functioning and therefore with neurite elongation in PC12 cells,

producing data difficult to interpret.

In summary, we have provided evidence of two different kinds

of neurite terminals in PC12 cells. In particular, we have

characterized the structure of varicones, a PC12-specific variation

of neuronal growth cones that incorporates a varicosity. While the

advantages of using a cell line and the usefulness of controlling

PC12 cell differentiation make these cells easy and practical to

work with, care must be taken when using them as a model for

neuronal growth cones or neurite outgrowth.
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