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Negative regulation of EGFR signalling by the
human folliculin tumour suppressor protein
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Germline mutations in the Folliculin (FLCN) tumour suppressor gene result in fibrofolliculo-

mas, lung cysts and renal cancers, but the precise mechanisms of tumour suppression by

FLCN remain elusive. Here we identify Rab7A, a small GTPase important for endocytic

trafficking, as a novel FLCN interacting protein and demonstrate that FLCN acts as a Rab7A

GTPase-activating protein. FLCN� /� cells display slower trafficking of epidermal growth

factor receptors (EGFR) from early to late endosomes and enhanced activation of EGFR

signalling upon ligand stimulation. Reintroduction of wild-type FLCN, but not tumour-asso-

ciated FLCN mutants, suppresses EGFR signalling in a Rab7A-dependent manner. EGFR sig-

nalling is elevated in FLCN� /� tumours and the EGFR inhibitor afatinib suppresses the

growth of human FLCN� /� cells as tumour xenografts. The functional interaction between

FLCN and Rab7A appears conserved across species. Our work highlights a mechanism

explaining, at least in part, the tumour suppressor function of FLCN.
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I
ndividuals with Birt–Hogg–Dubé (BHD) disease are at an
increased risk of developing renal cell cancers, benign skin
lesions called fibrofolliculomas, and lung cysts1–3. BHD is a

rare disease of unclear incidence and of high penetrance4, caused
by germline mutations in the folliculin (FLCN) gene and most
mutations predict for a truncated form of the protein missing the
C terminus2,3,5. However, specific missense and in-frame
deletions in FLCN have been observed in individuals with BHD
disease, such as K508R and dF157 (ref. 5). FLCN encodes an
evolutionarily conserved 64 kDa phospho-protein that is
ubiquitously expressed in adult and embryonic tissues and is
localized to both the nucleus and the cytoplasm6–9. Somatic
inactivation or loss of the wild-type (WT) FLCN allele is observed
in the renal tumours of patients with BHD disease and in
sporadic renal cell carcinomas, suggesting that FLCN acts as a
tumour suppressor9,10.

Very little is known about the precise mechanisms of tumour
suppression by human FLCN. Previous studies demonstrated that
FLCN interacts with folliculin-interacting proteins 1 and 2
(FNIP1 and FNIP2), the Rag GTPases A and C/D, GABA(A)
receptor-associated protein (GABARAP), and plakophilin-4
(refs 11–18). Although there has been strong evidence
indicating a functional interaction between FLCN and
mTORC1, the complex biochemical details of this functional
interaction are currently under investigation. Mammalian target
of rapamycin (mTOR) is a conserved serine/threonine kinase that
is part of the multiprotein mTOR complex 1 (mTORC1); the
latter couples growth factors, and amino acid and energy
availability to cell growth and autophagy and its activity is
upregulated in many human cancers19,20. It has been initially
reported that FLCN–FNIP1/2 interactions occur in the cytoplasm
as part of a larger complex with the g-subunit of AMPK,
indicating that FLCN may be involved in nutrient sensing and
cellular metabolism through the AMPK-mTOR signalling
pathway12. Subsequently, FLCN was shown to be required
for the recruitment and activation of mTORC1 in response to
amino acids through its interaction with Rag GTPases at the
lysosome17,18.

The C terminus of FLCN (amino acids 341–579) was
crystalized and found to contain a DENN domain by structural
analysis21. DENN domain proteins function as guanine
nucleotide exchange factors (GEFs) that activate Rab GTPases
by mediating the exchange of GDP for GTP22. The Rab family of
small GTPases coordinate critical aspects of eukaryotic
membrane trafficking, including vesicle budding, uncoating,
motility and fusion, and is a large family consisting of over 60
members23. Rab GTPases cycle between GTP-bound and
GDP-bound forms. GEF domain containing proteins promote
the transition from the GDP-bound and inactive form to
GTP-bound and active form. TBC (Tre-2/Bub2/Cdc16) domain
proteins act as GTPase activating proteins (GAPs) promoting
GTP hydrolysis and accelerate transition of GTPases to the
‘inactive’ GDP-bound form24. Consistent with the crystal
structure data and putative role of FLCN as a GEF protein,
FLCN was shown to interact with Rag GTPases at the
lysosome17,18. In one study, FLCN possessed GTPase-activating
protein (GAP) activity for Rag C/D18, while another study
suggested that FLCN may act as a GEF for RagA17. In these
studies, FLCN was required for the recruitment and activation of
mTORC1 in response to amino acids. The model proposed by
these studies predicts that loss-of-FLCN function would lead to
suppression of mTORC1 function; such a model contradicts the
role of FLCN as a tumour suppressor. Previous experiments
performed in vitro versus in vivo have yielded conflicting
results about FLCN’s ability to inhibit or activate mTORC1
(refs 12,17,18,25–27).

To gain insight into the cellular function of FLCN, we isolated
FLCN protein complexes and identified a novel interaction
between FLCN and the Rab GTPase, Rab7A. Our results suggest
that FLCN regulates Rab7A’s GTPase activity by acting as a
Rab7A GAP. Rab7A functions in the endosomal recycling and
lysosomal degradation of epidermal growth factor receptor
(EGFR), two key processes that regulate EGFR stability,
expression and signalling28–30. EGFR is a cell surface receptor
tyrosine kinase that is often overexpressed or mutated in human
cancers, resulting in increased proliferation, migration and
angiogenesis31. Importantly, we found that FLCN� /� cells
have increased EGFR signalling upon EGF ligand activation
(phosphorylated EGFR (pEGFR), pERK and pS6) and that stable
expression of exogenous Rab7A in the FLCN� /� cells decreased
EGFR signalling, demonstrating that Rab7A is sufficient to rescue
the EGFR signalling phenotype in these cells. In addition,
FLCN� /� cells display slower endosomal trafficking of EGFR
from early endosomes to late endosomes and from late
endosomes to lysosomes, compared to FLCN-replete cells.
Taken together, our data suggest that the interaction between
FLCN and Rab7A is important for EGFR cellular trafficking and
that misregulation of Rab7A activity due to FLCN loss results in
slower EGFR trafficking and increased EGFR signalling.

Results
FLCN functions as a Rab7A GTPase-activating protein. In
order to gain insight into the cellular functions of FLCN, we
purified protein complexes from the FLCN-deficient UOK257 cell
line and UOK257 cells stably expressing Flag-tagged WT FLCN.
To increase the depth of FLCN interactome recovery, we frac-
tionated cells into nuclear, cytoplasmic and cell membrane frac-
tions, purified FLCN protein complexes in each fraction, and
analysed the fractions by mass spectrometry. Our mass spectro-
metry analysis revealed several FLCN interacting proteins,
including the known interactors FNIP1, FNIP2 and GABARAP
(Supplementary Data 1). Because the C terminus of FLCN was
previously shown to have structural homology to the DENND1B
protein and GEF activity towards Rab35 (ref. 21), we were
particularly interested in finding novel interactions between
FLCN and Rab GTPases. We found several Rab proteins that
interact with FLCN, but the small GTPase, Rab7A, had the
highest spectral count in the membrane fraction (active Rab
GTPases are localized to endocytic vesicles23) of FLCN WT cells
(and no spectral counts in the FLCN� /� membrane fraction,
Supplementary Data 1). The novel FLCN–Rab7A interaction was
confirmed by co-immunoprecipitation (IP) and co-localization by
immunofluorescence (IF) in U2OS cells (Fig. 1a–c). U2OS cells
(which express low levels of endogenous FLCN) were
co-transfected with FLCN WT and HA-GFP-tagged wild-type
Rab7A (WT), constitutively active (CA) Rab7A Q67L mutant or
dominant negative (DN) Rab7A T22N mutant32 (Fig. 1a).
Notably, IP of FLCN in U2OS cells demonstrated preferential
binding of FLCN to the Rab7A WT protein (Fig. 1a, lane 6) and
the GTP-bound CA Q67L mutant (Fig. 1a, lane 7), but no binding
to the GDP-bound DN Rab7A T22N mutant (Fig. 1a, lane 8). The
Rab7A T22N mutant displays an apparent molecular weight
slightly higher than the WT or CA species, most likely due to the
longer linker in the vector between the HA-EGFP tag and Rab7A.
Although we favour the hypothesis that Rab7A T22N does not
bind to FLCN due to GDP load, we cannot exclude the possibility
that the presence of post-translational modifications may be
responsible for the lack of binding to FLCN. We interpreted the
data as suggesting that the preferential binding of FLCN to
Rab7A WT and Rab7A CA underscores the possibility that FLCN
acts as a Rab7A GAP. Rab7A and FLCN were not present in the
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control IP with IgG antibody, suggesting that the interaction
between FLCN and Rab7A (both the WT and CA forms) is
specific (Supplementary Fig. 1). The co-transfection of FLCN and
Rab7A T22N in cells resulted consistently in lower expression of
FLCN (Fig. 1a lane 8, see FLCN input) suggesting a putative

feedback loop between Rab7A and FLCN. The phosphorylation of
FLCN on S62 and S73 was previously shown to be important for
cell cycle regulation33, but did not affect FLCN’s ability to
bind Rab7A. Both the phosphomimetic mutant form of FLCN
(S62/73E) and the phosphoinactive mutant form of FLCN
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(S62/73A) bound Rab7A at similar levels to WT FLCN (Fig. 1b).
Similarly, FLCN and Rab7A were shown to co-localize in
vesicular structures in the cytoplasm of transfected U2OS cells,
as indicated by the arrows (co-localization is identified by the
yellow areas (arrows), Fig. 1c). Using several truncated mutant
forms of the FLCN WT protein, we found that the Rab7A-
binding domain of FLCN is contained within amino acids
450–579 (Supplementary Fig. 2). This C-terminal region of the
FLCN protein is often lost in BHD patients due to truncating
mutations, and is also part of the putative DENN domain of
FLCN (amino acids 340–579).

We hypothesized that FLCN acts as a GAP for Rab7A, because,
as presented above, it appeared to bind preferentially to the
GTP-bound CA Q67L mutant (Fig. 1a, lane 7), but not to the
GDP-bound DN Rab7A T22N mutant (Fig. 1a, lane 8). To further
characterize FLCN’s activity as a Rab7A GAP, we used a
commercially available GTPase assay kit (Innova Biosciences)
to measure the amount of inorganic phosphate (Pi) produced by
Rab7A’s enzymatic hydrolysis of GTP. The colorimetric assay
utilizes the PiColorLock Gold reagent to detect Pi when read at a
wavelength of 635 nm. Rab7A WT, FLCN WT or the tumour-
associated FLCN K508R mutant were purified from transfected
293T cells. Immunoprecipitates (using the same antibodies and
beads) from 293T cells transfected with Vector (pCDNA3.1) were
used as negative controls. A non-hydrolysable form of GTP
(GTPcS) was also used as a negative control. FLCN WT protein
or Rab7A WT protein alone had GTP hydrolysis levels similar to
our negative controls (vector control (beads and antibody and
containing no purified protein) and the GTPcS) (Fig. 1d),
demonstrating that individually, these proteins hydrolyse very
little GTP. When FLCN WT protein was combined with Rab7A
WT protein, there was a significant increase in GTP hydrolysis
(B5-fold increase over the vector (beads) control; Fig. 1d). The
ability of FLCN WT to increase the enzymatic activity of Rab7A
and increase GTP hydrolysis indicates that FLCN functions as a
Rab7A GAP (Fig. 1d). A missense mutant form of FLCN
associated with kidney tumorigenesis in BHD families, FLCN
K508R, was used in the GTPase assay because, although mutated,
the protein is stably expressed at levels similar to FLCN WT3,5,33.
Interestingly, the tumour-associated mutant K508R displayed
decreased Rab7A GAP activity and was not as effective as FLCN
WT at stimulating GTP hydrolysis (Fig. 1e). Confirmation of the
presence of FLCN WT and mutant proteins in the
immunoprecipitates used for the GAP assay is provided in
Supplementary Information (Supplementary Fig. 3). These data
suggest that the tumour suppressor function of FLCN may be,
at least in part, linked to its ability to act as a GAP protein.
To ensure that the GAP activity of FLCN is not due to

co-purification of other mammalian proteins, we GST-purified
FLCN WT protein, or a tumour-associated mutant form of FLCN
(FLCN C9) from bacteria and tested their ability to hydrolyse
GTP when combined with Rab7A. FLCN WT significantly
increased the GTPase activity of Rab7A compared to the GST
vector alone (Fig. 1f), and there was a trend towards decreased
GTPase activity of the tumour-associated mutant form of FLCN
(FLCN C9) (Fig. 1f).

Because of our mass spectrometry results (Supplementary data
1) and FLCN’s putative DENN domain in the C terminus, we
asked whether FLCN interacts with other Rab GTPases. U2OS
cells were co-transfected with FLCN and several Rab GTPases,
Rab7B (Fig. 1g lane 6 and Fig. 1h, lane 3), Rab35 (Fig. 1h, lane 4),
Rab8A (Fig. 1h, lane 5) or Rab9A (Fig. 1i, lane 3). All tested Rabs
co-immunoprecipiated with FLCN except Rab8A (Fig. 1h, lane 5).
The FLCN-binding affinity varied for each of the Rabs, with
Rab7A (Fig. 1a (lane 6), Fig. 1b (lane 6) and Fig. 1g (lane 5)) and
Rab7B (Fig. 1g (lane 6) and Fig. 1h (lane 3)) having the strongest
interaction with FLCN.

FLCN� /� cells have delayed endocytic trafficking of EGFR.
Rab7A is a small GTPase that is located in late endosomes,
lysosomes and autophagosomes and functions in endocytic
trafficking of cargo proteins, including EGFR23. Following EGF
ligand binding and EGFR internalization, Rab7A plays an
important role in both recycling EGFR to the cell surface and
degrading EGFR in lysosomes28,29. We were therefore interested
in testing whether FLCN affects the endocytic trafficking of
EGFR. Isogenic UOK257 FLCN-deficient and FLCN-replete cell
lines were starved of amino acids and growth factors, stimulated
with EGF ligand, and then fixed for IF at defined time points post
stimulation in order to follow EGFR endocytic trafficking.
Confocal microscopy of cells co-labelled with antibodies
recognizing EGFR and a marker of either early endosomes,
Early endosome antigen 1 (EEA1), or late endosomes/lysosomes,
lysosomal-associated membrane protein 1 (LAMP1) revealed the
localization of EGFR within the cell (Fig. 2b,d). The percentage of
EGFR co-localizing with either EEA1 or LAMP1 at each time
point was analysed and quantified with Image J software. We
observed that EGFR internalization was fast in UOK257 cells,
with B30% of EGFR co-localizing with EEA1-positive early
endosomes 5 min after EGF stimulation in both UOK257
FLCN� /� and FLCN-replete cell lines (Fig. 2a). These data
suggest that FLCN does not affect EGFR internalization.
However, 15 min after EGF stimulation, the percentage of
EGFR in early endosomes (EEA1) decreased in FLCN WT cells
but not in FLCN� /� cells, indicating that the loss of FLCN slows

Figure 1 | FLCN is a GAP for Rab7A. (a) U2OS cells were transiently transfected with empty vector, FLCN WT, Rab7A WT, Rab7A Q67L, Rab7A T22N or

combinations, as indicated. Co-purified complexes were detected by immunoblotting with antibodies recognizing FLCN or Rab7A, as indicated. (b) 293T

cells were transiently transfected with an empty vector, FLAG-FLCN WT, FLAG FLCN S62/73A, FLAG FLCN S62/73E, HA-Rab7A WT or combinations, as

indicated. Co-purified complexes were detected by immunoblotting with antibodies recognizing FLCN or HA (Rab7A), as indicated. (c) U2OS cells were

transfected with empty vector, or FLCN WT and HA-GFP-Rab7A. Co-localization was identified by confocal microscopy (yellow, indicated by arrows in the

insert corresponding to the region outlined by the white box). Scale bars, 5mm (upper panel) and 10 mm (lower panel). (d) HA-Rab7A and FLAG-tagged

FLCN WT proteins were purified from transfected 293T cells with anti-HA (Rab7A) or anti-FLAG antibodies. The amount of inorganic phosphate released

due to GTPase activity was measured by GTPase colorimetric assay kit. GTPase activity was quantified in four independent experiments, and data are

represented as mean±s.e.m. Significance (*) was conferred at Po0.05, ANOVA and Tukey’s Multiple Comparison post-tests. (e) Same as in d, except

FLCN WT and FLCN K508R (untagged) were immunoprecipitated with an anti-FLCN antibody from the lysates of transfected 293T cells. The data are

represented as mean±s.e.m. and were collected in two independent experiments. * indicates statistical significance, Po0.05, ANOVA and Tukey’s

Multiple Comparison post-tests. (f) GST-FLCN WT or GST-FLCN C9 mutant proteins were incubated with HA-Rab7A, purified from transfected 293T cells.

The GAP activity was measured as in d,e. Data are represented as mean±s.e.m., n¼ 5. * indicates statistical significance, Two-tailed paired t-test,

P¼0.0037. (g) U2OS cells were transiently transfected with an empty vector, FLCN WT, Rab7A WT, Rab7B or combinations, as indicated. Co-purified

complexes were identified by immunoprecipitation followed by immunoblot, as indicated. (h) Same as in g, except U2OS cells were transiently transfected

with Rab7B, Rab35 or Rab8A, as indicated. (i) Same as in g, except U2OS cells were transiently transfected with Rab9A.
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trafficking through the EEA1-positive early endosomes. The delay
in endocytic trafficking and accumulation of EGFR in early
endosomes in FLCN� /� cells was still significant 30 min
after EGF stimulation. These results suggest that FLCN plays
an important role in the movement of EGFR out of early
endosomes.

Consistent with the finding that FLCN WT cells have faster
trafficking of EGFR through the early endosomes, we observed in
UOK257 FLCN WT cells that EGFR had already reached the
LAMP1-positive late endosomes/lysosomes 30 min after EGF
stimulation (Fig. 2c). At the 30 min time point, FLCN� /� cells
exhibited only 20% EGFR and LAMP1 co-localization compared
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to 30% in the FLCN WT cells. The decreased amount of EGFR in
the late endosomes/lysosomes in the FLCN� /� cells suggests
that EGFR traffics more slowly from the early to late endosomes
in FLCN� /� cells compared to FLCN WT cells. After 60 min,
the percentage of EGFR and LAMP1 co-localization was equal in
both FLCN� /� and FLCN WT cell lines (Fig. 2c). Taken

together, these results indicate that FLCN WT expressing cells
favour a fast endocytic trafficking of EGFR to the lysosomes for
degradation, possibly decreasing EGFR expression and signalling.
In contrast, FLCN� /� cells have an accumulation of EGFR in
the early endosomes (from where EGFR still signals) resulting in
increased and prolonged EGFR signalling.
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Loss of FLCN results in increased EGFR signalling. As shown in
the previous experiments, FLCN interacts with and acts as a GAP
for Rab7A. We hypothesized that FLCN promotes Rab7A func-
tion(s) in the cells. One of the functions of Rab7A in cells is to
suppress ligand-dependent EGFR activation28,29,34. We were
therefore interested in determining whether FLCN’s association
with Rab7A affected EGFR signalling and expression. We used a
second FLCN-deficient cancer cell line, FTC-133 cells, to examine
EGFR signalling following amino acid and growth factor
starvation and stimulation with EGF ligand. After stimulating
with EGF ligand (20 ng ml� 1) FLCN null cells (FTC-133
FLCN� /� ) and cells expressing tumour-associated mutant
forms of FLCN (FTC-133 K508R and FTC-133 dF157) have
increased levels of phosphorylated EGFR (pEGFR) compared to
cells expressing FLCN WT (Fig. 3a,b). The increase in
phosphorylated EGFR in FLCN� /� and tumour-associated
mutants was most pronounced at 1 h after EGF treatment, but
remained high at the 3 h time point (Fig. 3a,b). The expression of
phosphorylated ERK (pERK) and S6 (pS6), which are
downstream in the pEGFR signalling cascade, was also higher
in the FLCN� /� and tumour-associated mutant cells than in the
cells expressing FLCN WT (Fig. 3a,b). These results suggest that
loss of the FLCN tumour suppressor results in increased pEGFR
signalling. A decrease in phospho-AKT was not observed in
FTC-133 cells replete with FLCN WT, but this was expected
because FTC-133 cells are PTEN null and do not regulate pAKT
properly35.

FLCN� /� cells have increased EGFR expression, relative to
FLCN WT cells (Fig. 3c,d). This decrease in total EGFR
expression was seen under normal cell growth conditions and
under different starvation conditions (overnight growth in
serum-free media and 2.5 h of starvation in RPMI 1640 media
without growth factors and amino acids). The expression level of
endogenous Rab7A was the same across all of the different
growth conditions (regular media, serum-free media or media
without growth factors and amino acids) and was not affected by
expression of FLCN WT or the tumour-associated mutants
(Fig. 3c). Although the focus of this study was to examine the role
of the FLCN–Rab7A interaction on EGFR trafficking and
signalling, it is possible that additional receptor tyrosine kinases
(RTKs) are also affected. We starved and stimulated FTC-133
cells with hepatocyte growth factor (HGF) and examined pMET
levels, since the MET receptor is mutated frequently in papillary
renal tumours, one of the histological subtypes observed in the
renal tumours of BHD patients36–38. Our data demonstrate that
stimulation with HGF results in elevated pMET and pERK
expression in FLCN� /� cells compared to the isogenic FLCN
WT cells (Fig. 3e,f).

Rab7A decreases EGFR signalling in FLCN� /� cells. EGFR
expression and signalling is elevated in cells lacking the WT
FLCN tumour suppressor. We showed that FLCN interacts with
Rab7A and it is known that Rab7A functions in EGFR recycling
and degradation. In order to establish a causal relationship
between the FLCN–Rab7A interaction and suppression of EGFR
signalling by FLCN, we stably expressed Rab7A WT, or the CA or
DN mutants in FTC-133 cells. Expression of either Rab7A WT or
CA (compared to cells expressing the vector only (VO))
decreased pEGFR and downstream signalling molecules (pERK
and pS6) in FLCN� /� cells, but had little effect on pEGFR
signalling in the FLCN WT cells (Fig. 4a,b). In addition, it
appears that expression of a DN form of Rab7A may phenocopy
the absence of FLCN, by increasing pERK signalling in FLCN-
reconstituted cells (Fig. 4a). These data suggest that FLCN’s
ability to regulate EGFR signalling is mediated through FLCN’s
interaction with Rab7A.

The FLCN and Rab7A functional interaction is conserved. To
determine whether the FLCN and Rab7A functional interaction is
conserved across species, we engineered S. pombe strains in
which the FLCN (bhd1D) and the Rab7A (ypt71D and ypt7D)
homologues were deleted completely. S. pombe has two close
homologues of the human Rab7A protein, Ypt7 and Ypt71, which
display 65% and 55% identity, and 80% and 75% similarity to
Rab7A, respectively. We chose to study both Ypt7 and Ypt71
proteins to test if either of the two functionally interacts with
Bhd1. All single mutant strains (bhd1D, ypt71D, and ypt7D) were
constructed in an auxotrophic (leu� , ade� , ura� ) background.
Amino-acid deprivation and mating efficiencies were used as
phenotypes for ascertaining functional overlap between Bhd1 and
Ypt7 or Ypt71 proteins.

All single mutant strains were viable and had no growth defect.
We observed that loss of Bhd1 and Ypt71, but not Ypt7, resulted
in increased TORC1 activity, as determined by an increase in
Rps6 and p70 S6K phosphorylation levels when cells were
deprived of amino acids (Fig. 5a, compare lanes 1, 3, 5 and 7).
Compatible with this difference in TORC1 regulation by Bhd1/
Ypt71 and Ypt7 are the strain differences in amino-acid
requirements for growth. While all single mutant strains were
viable and had no growth defects in the presence of regular
amino-acid concentration (rich media (YEA) or minimal media
(EMM) supplemented with regular concentration of amino
acids), their response to low amino-acid concentration differed.
Strains lacking Ypt7 (ypt7D, bhd1D ypt7D, ypt71D ypt7D)
displayed a significant growth defect in the low amino-acid
condition (EMM plates supplemented with low concentration of

Figure 3 | Ligand-dependent EGFR and MET signalling is increased in FLCN-deficient cells and cells expressing a tumour-associated FLCN mutant

compared to FLCN-replete cells. (a) FLCN-deficient FTC-133 cells (FLCN� /� ) and isogenic cells replete with wild type FLCN (FLCN WT) or the tumour-

associated mutants FLCN K508R and FLCN d157 were starved for 2.5 h and stimulated with 20 ng ml� 1 of EGF for the indicated time points (1 or 3 h).

A representative western blot demonstrating decreased phospho-EGFR (pEGFR), phospho-ERK (pERK) and phospho-S6 (pS6) signalling in FTC-133 FLCN

WT-replete cells compared to FLCN-deficient or tumour-associated mutant cells is shown. (b) The densitometry of the bands in panel A was determined

with BioRad Image Lab Software, and normalized to the loading control (either actin or tubulin). The data are presented as the mean±s.e.m., and *

indicates statistical significance, one-tailed t-test, Po0.05. (c) FLCN-replete cells (FLCN WT) express less total EGFR compared to cells that are FLCN-

deficient (FLCN� /� ) or express a tumour-associated mutant form of FLCN (FLCN K508R and d157). FTC-133 cells were plated at the same density and

grown asynchronously in regular media, or starved for either (1) 2.5 h in growth factor and amino-acid-depleted RPMI media, or (2) overnight in DMEM

serum-free (SF) media. The expression of total EGFR and Rab7A was determined by western blot of cell lysates. (d) Bar graph depicting the densitometry

of the western blot bands normalized to the actin loading control (densitometry was evaluated using BioRad Image Lab Software). The data presented are

the means±s.d. from three independent experiments. (e) FLCN-deficient FTC-133 cells (FLCN� /� ) and isogenic cells replete with wild-type FLCN (FLCN

WT) were starved as in a and stimulated with 25 ng ml� 1 of HGF for the indicated time points. A representative western blot demonstrating increased

phospho-MET (pMET), and phospho-ERK (pERK) signalling in FLCN-deficient cells is shown. (f) The densitometry of the bands in e was determined with

BioRad Image Lab Software, normalized to the loading control (actin), and expressed relative to starved samples. The data are presented as the

mean±s.e.m.
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amino acids) compared to WT strains, or bhd1D and ypt71D
strains (Fig. 5b). To determine whether these proteins are related
to TORC1 signalling, we treated bhd1D, ypt71D, ypt7D and
double deletion strains with 200 ng ml� 1 of rapamycin and found
that all of the strains grew better than WT cells (Fig. 5b). These
data suggest that Bhd1 and Ypt71 (but not Ypt7) functionally
interact and, in agreement with the mammalian cell data,
negatively regulate TORC1 activity in response to amino-acid
deprivation.

To corroborate the functional interaction of Bhd1 and Ypt71
with an orthogonal assay, we measured the mating efficiency of
WT, bhd1D, ypt71D and ypt7D cells by determining the
percentage of zygotes formed in each cross. In the fission yeast,
mating proceeds by the secretion of mating pheromone from one
cell and its binding to a G-coupled cell surface receptor on a cell
of the opposite mating type. Upon pheromone binding, several
physiological changes occur that are essential for mating,
including suppression of TORC1 activity39. Unlike ypt7D,
mating of cells from strains lacking Ypt71 or Bhd1 produced
no zygotes (Fig. 5c). Similar to the amino-acid deprivation data,
these results show that Ypt71 and Bhd1 functionally interact
during mating, perhaps by negatively regulating TORC1 activity.
Our data suggest that Ypt71 (and not Ypt7) is the functional
homologue of the mammalian Rab7A and that the functional
interaction between Rab7A and FLCN is conserved across species.

EGFR is activated in FLCN� /� mouse and human tumours.
In order to determine whether the increase in EGFR signalling
observed in FLCN� /� cell lines is also present in vivo, we
examined pAKT, pERK and pSTAT3 expression in a genetically
engineered mouse model of BHD kidney cancer (Flcnflox/flox/
Sglt2-Cre mouse model40) and in the renal tumours of patients
with BHD disease. The Flcnflox/flox/Sglt2-Cre mouse model utilizes
the Cre loxP system to knock out FLCN specifically in the
proximal tubules of the kidney. All of the FLCN KO (Flcnflox/flox/

Sglt2-Cre) mice over 6 months of age develop cystic kidneys and
more than 50% of the mice also develop renal tumours40. Normal
FLCN WT mouse kidneys (Flcnflox/flox) express very low levels of
pAKT and pSTAT3 (Fig. 6a). pERK was highly expressed in the
collecting ducts and glomeruli of normal (FLCN WT) mouse
kidneys, but was not expressed in the kidney tubules (Fig. 6a). In
contrast, pAKT was expressed exclusively in the renal cysts in
FLCN KO mouse kidneys, while pSTAT3 and pERK were highly
expressed throughout the cysts and in the renal carcinomas
(Fig. 6a). Similarly, IHC analysis of human renal tumours
obtained from BHD patients demonstrated that pERK and pS6
are highly expressed in several histological subtypes of renal cell
carcinomas, including clear cell, oncocytoma, chromophobe and
mixed oncocytoma/chromophobe (Fig. 6b and Table 1). These
data support our in vitro data and suggest that elevated EGFR
signalling may contribute to kidney tumorigenesis following
FLCN loss. To determine whether suppression of EGFR signalling
is sufficient to inhibit the growth of FLCN� /� tumours,
FTC-133 cells were injected subcutaneously into nude mice
(5� 106 cells per mouse). The FTC-133 (FLCN� /� ) cells were
chosen because they reproducibly produce xenograft tumours
with a short latency (3–5 weeks). Once tumours were established,
the mice were treated daily with Vehicle or Afatinib. Afatinib
significantly slowed the growth of FTC-133 (FLCN� /� )
xenograft tumours compared to the Vehicle-treated tumours
(Fig. 6c), suggesting that the increased pEGFR signalling observed
in vitro is also important for in vivo growth of FLCN� /�

tumours.

Discussion
To gain insight into the biochemical functions of FLCN, we
purified protein complexes and identified Rab7A, a small GTPase
important for endocytic trafficking and lysosomal degradation of
EGFR, as a novel FLCN interacting protein. Furthermore, we
provided biochemical evidence indicating that FLCN WT protein,
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but not a tumour-associated missense FLCN mutant, increased
the GTP hydrolytic activity of Rab7A. Consistent with Rab7A’s
function in endosomal trafficking of EGFR, we demonstrated that
FLCN� /� cells have delayed trafficking of EGFR from the early
endosomes to the late endosomes/lysosomes and that FLCN� /�

cells display increased and prolonged EGFR activation compared
to FLCN-replete cells, in a Rab7A-dependent manner. This is not
an in vitro-only phenomenon; renal cell carcinomas growing in
FLCN KO mouse kidneys display strong activation of the EGFR
signalling pathway and treatment of FTC-133 FLCN� /� mouse
xenografts with the EGFR inhibitor Afatinib slowed tumour
growth. Finally, the genetic interaction between S. Pombe FLCN
and Rab7A orthologs corroborated the functional interaction
discovered in mammals and indicated that the pathway is
evolutionary conserved. Our model (Fig. 6d) hypothesizes that
FLCN� /� cells have decreased Rab7A GTP-to-GDP turnover
and decreased endosomal trafficking of EGFR. The increase in
pEGFR signalling in FLCN� /� cells is at least partly due to
EGFR’s ability to stimulate downstream signalling cascades from
within endosomes31.

Our work indicates that regulation of EGFR signalling by
FLCN is, at least in part, Rab7A-dependent. This is compatible

with the notion that FLCN acts as a GAP for Rab7A, the latter
being an important regulator of endocytic trafficking28–30. It is
likely that regulation of Rab7A by FLCN contributes to several
cellular processes other than EGFR signalling. A recent study
demonstrated that knocking down FLCN results in reduced
maturation of autophagosomes and reduced autophagic flux11.
Although not addressed in the above study, it is possible that this
is a Rab7A-dependent process, since Rab7A is important for the
fusion of lysosomes with autophagosomes41.

Although we focused on the functional interaction between
FLCN and Rab7A, we provided evidence that FLCN forms
putative complexes with additional Rab proteins (Rab7B, Rab35
and Rab9A), albeit with a lower affinity than with Rab7A. Many
of these additional Rabs function in the regulation of the
endocytic, recycling and secretory pathways23,42,43. The
difference in binding affinity between the Rab GTPases could
be due to differences in the protein complex stoichiometry or due
to specific growth conditions that favour binding to one Rab
GTPase over another. For example, FLCN was shown to bind the
Rag GTPases in response to amino-acid stimulation following
starvation17,18. It is also possible that the other FLCN-interacting
Rab GTPases that we identified here (Rab9A and Rab35), in
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addition to Rab7A, contribute to the regulation of EGFR by
FLCN.

To test whether the functional interaction between FLCN and
Rab7A is evolutionary conserved, we took advantage of the fission
yeast system. S. pombe has one FLCN homologue (Bhd1), and
two Rab7A homologues (Ypt7 and Ypt71), which are similar in
amino acid sequence and function to their mammalian homo-
logues44–47. Bhd1, like FLCN, regulates TORC1 activity, and Ypt7
and Ypt71, similar to Rab7A, are important for vacuolar
biogenesis and late vesicle fusion to vacuoles, the functional
equivalents of the mammalian late endosomes and lysosomes,

respectively45,47,48. Previous work demonstrated that both Ypt7
and Ypt71 are homologues of Rab7A, and even though both
localize to vacuolar membranes, their absence and overexpression
resulted in antagonistic vacuolar phenotypes45. We found a
genetic interaction between Bhd1 and Ypt71 that supports a role
for these proteins in the regulation of Torc1 signalling. Our
observations suggest that Bhd1 and Ypt71 negatively regulate the
Torc1 pathway under low amino acid growth conditions. These
findings are in agreement with the function of FLCN as a tumour
suppressor gene and are consistent with the functional interaction
between FLCN and Rab7A in mammalian cells.
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mean±s.e.m. (n¼9 mice in the vehicle group, and n¼8 mice in the Afatinib group). The relative tumour volume at the end of the study (day 10) is

significantly different between the vehicle and Afatinib treated mice, * indicates significance, t-test, Po0.01. (d) Active Rab7A accelerates the endocytic

trafficking of internalized EGFR to the lysosome for degradation, resulting in reduced EGFR signalling (phosphorylated EGFR, ERK and S6). When cells lose

the tumour suppressor function of FLCN due to a germline mutation in the FLCN gene (BHD disease), Rab7A GTP-to-GDP turnover is decreased.

A decrease in Rab7A activity slows the endocytic trafficking of EGFR, resulting in prolonged and elevated phosphorylated EGFR and downstream signalling.
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FLCN has been shown to bind FNIP1, FNIP2, the Rag GTPases
A and C/D, GABARAP and plakophilin-4 (refs 11–18), but the
biological significance of each of these interactions with regards to
the tumour suppressor function of FLCN is under investigation.
In contrast to our results indicating that the absence of FLCN
enhances TORC1 activity, Tsun et al. and Petit et al.17,18

demonstrated that FLCN was required for the activation of
mTORC1 at the lysosome by amino acids (due to FLCN’s GAP or
GEF activity for the Rag GTPases). This apparent discrepancy
raises the hypothesis that different stimuli or growth conditions
(for example, amino-acid stimulation versus growth factor
stimulation) regulate FLCN’s ability to bind different GTPases
or control FLCN’s recruitment to specific cellular locations, and
may exert opposing effects with regards to mTORC1 activity.
However, if FLCN activates mTORC1 signalling at the lysosome,
then loss-of-FLCN function would lead to suppression of
mTORC1, which seems to contradict FLCN’s role as a tumour
suppressor protein. Our results demonstrating that FLCN
decreases mTORC1 signalling (a decrease in pS6) in response
to growth factors (that is, EGF ligand) are compatible with
FLCN’s role as a tumour suppressor protein and suggest that the
main mechanism leading to tumorigenesis in FLCN-deficient
human cells may be linked, at least in part, to enhanced receptor
tyrosine kinase signalling which increases TORC1 activity.

Our results suggest that the tumour suppressor function of
FLCN is, at least in part, due to its ability to inhibit the oncogenic
signalling of EGFR, by acting as a GAP protein for Rab7A and
therefore modulating the fate of receptor trafficking following
endocytosis. Although not examined in our current work, it is
likely that FLCN-dependent regulation of the endocytic pathway
is important for the expression and/or function of additional cell
surface trans-membrane RTKs and non-RTK receptors. For
example, Rab7A has been shown to affect the expression,
trafficking, or signalling of several receptors in addition to EGFR,
including VEGFR2, TrkA, HER2, MET and NRP-1 (refs 49–53).
We provide evidence that FLCN regulates ligand-dependent
activation of the MET receptor.

It is possible that post-translational modifications further fine-
tune the interactions between FLCN-Rab7A-EGFR. For example,
it has been shown that PTEN modulates EGFR late endocytic
trafficking and degradation by dephosphorylating Rab7A
(ref. 54). In our current work, we tested the effect of FLCN
phosphorylation in residues S63 and S73 and found that
phosphorylation on these sites did not alter FLCN’s interaction
with Rab7A. It is nevertheless formally possible that FLCN
phosphorylation in residues other than S62/S73 or Rab7A post-
translational modifications do regulate the interaction between
FLCN-Rab7A.

The translational significance of our work is direct. Our in vivo
study demonstrated that inhibiting EGFR signalling with afatinib

was sufficient to slow the growth of FLCN� /� tumours, but did
not result in tumour regression. Targeting several cell surface
RTKs simultaneously, in addition to EGFR, or inactivating
intracellular kinases that function as converging hubs of
deregulated signalling pathways may be an effective therapeutic
strategy for treating FLCN-dependent renal cell cancers.

Methods
Cell lines and cell culture. The UOK257 renal carcinoma cell line (a generous gift
from Drs Marston Linehan and Laura Schmidt, NCI/NIH) is a non-commercial
cell line originally derived from the clear cell renal tumour of a BHD patient55,56.
The FLCN-deficient human follicular thyroid carcinoma cell line FTC-133 was
originally obtained from ATCC and was generously provided by Dr Cyril Benes.
The UOK257 and U20S cells were grown in Dulbecco’s Modified Eagle Medium
(DMEM) and the FTC-133 cells in DMEM/Nutrient mixture F-12 (F12), both
supplemented with 10% fetal bovine serum, penicillin, streptomycin and L-
glutamine (Invitrogen, Carlsbad, CA). Mycoplasma testing was performed to
ensure that the cells were mycoplasma negative. The UOK257 and FTC-133 cells
were infected with retroviruses encoding for the pBABE-puro vector, FLCN WT,
Flag-FLCN WT or the FLCN tumour-associated mutants33. FTC-133 cells were
also infected with retroviruses encoding the pBABE-hygro vector, HA-Rab7A,
HA-Rab7A T22N or HA-Rab7A Q67L. UOK257 cells were selected in 2 mg ml� 1

of puromycin and FTC-133 cells were selected in 3 mg ml� 1 of puromycin and
0.25 mg ml� 1 hygromycin. The presence of protein tags is as indicated in the
figures and figure legends. Non-tagged protein expression (that is, FLCN) is
implied when protein expression is indicated without reference to any tag.
Supplementary Figure 4 demonstrates the level of expression of exogenous FLCN
WT after infection compared to endogenous expression in a panel of cell lines.

Plasmids. The plasmids and oligonucleotides used to generate FLCN WT, FLCN
K508R and FLCN dF157 retroviruses were previously described33. Flag-FLCN WT
was PCRed using FLCN WT DNA and oligonucleotides (50-GCGC GAATTCA
GTT CCG AGA CTC CGA GGC TGTG-30 and 50-GCGC GGATCC GCCACC
ATG GAT TAC AAA GAT GAT GAT GAT AAA AAT GCC ATC GTG GCT
CTC TG-30) and ligated into the pBABE-puromycin vector plasmid with BamHI
and EcoRI restriction sites. FLCN WT, FLAG-FLCN WT and the FLCN K508R
mutant were cloned into the pCDNA3.1 backbone with BamHI and EcoRI. The
HA-eGFP-Rab7A WT and the HA-eGFP-Rab7A Q67L mutant were cloned into
the pCDNA3 backbone (previously described57) and obtained from Addgene
(plasmid 28047 and plasmid 28049). The HA-eGFP-Rab7A T22N mutant and
Rab9A-HA-GFP were cloned into pEGFP-C1 (Addgene plasmids 12660 and 12663
(ref. 58)). Flag-Rab8A was cloned into pcDNA3.1neo (Addgene plasmid 46783
(ref. 59)). Rab7B-Myc-DDK (RC202283) and Rab35-Myc-DDK (RC201932) in
pCMV6-Entry were purchased from OriGene Technologies, Inc. (Rockville, MD).
HA-Rab7A in pcDNA3 was produced by PCR using HA-eGFP-Rab7A WT as
template and with 50-GCGCGGATCCATGACCTCTAGGAAG-30 and 50-
GCGCGAATTCAGCAACTGCAGCTTTCTG-30 oligonucleotides. HA-Rab7A
T22N was created using HA-eGFP-Rab7A T22N DNA as template and HA-Rab7A
Q67L was created using HA-eGFP-Rab7A Q67L DNA as template and both PCR
products used 50-GCGCGGATCCGCCACCATGTACCCATAC-30 and 50-GCGC
GAATTCAGCAACTGCAGCTTTCTG-30 as oligonucleotides. The HA-Rab7A,
HA-Rab7A T22N and HA-Rab7A Q67L PCR products were then restricted and
ligated into the pBABE-hygromycin vector plasmid.

Cell fractionation and protein purification. Approximately 100 million cells
(UOK257 vector only and UOK257 cells replete with Flag-FLCN WT) were frac-
tionated into nuclear, cytoplasmic and membrane fractions. Briefly, cells were
washed in PBS and collected via scraping. The cells were then pelleted (1,200 r.p.m.

Table 1 | Immunostaining of human RCC tumours from BHD patients

Tissue pERK pS6

Normal kidney parenchyma Glomeruli and collecting ducts are positive
Patient 1—RCC chromophobe þ þ þ /�
*Patient 2—RCC clear cell þ þ þ þ
*Patient 2—RCC oncocytoma þ þ þ þ
wPatient 3—RCC oncocytoma — —
wPatient 3—RCC chromophilic þ —
Patient 4—chromophobe/oncocytoma hybrid þ þ þ /�

þ þ , strongly positive in a large percentage of the tumour; þ , positive, þ /� , focal areas of positivity.
*Denotes tumours from the same patient.
wDenotes tumours from the same patient.
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for 4 min) and washed twice in RBS buffer (10 mM HEPES, 10 mM NaCl, 1.5 mM
MgCl2) containing protease and phosphatase inhibitors. The cell pellet was
resuspended in RBS buffer on ice for 10 min and then lysed with a Dounce
homogenizer. When B95% of the cells were disrupted, the nuclei were pelleted by
centrifuging at 380g for 10 min. The nuclei (pellet) was washed with RBS, pelleted,
and extracted in EBC buffer (50 mM Tris pH8, 120 mM NaCl, 1% Nonidet P-40)
containing protease and phosphatase inhibitors. The supernatant was then cen-
trifuged at 150,000g for 1.5 h to pellet the membrane fraction. All fractions were
washed and spun twice to remove any possible cross contamination between
fractions. The membrane pellet was extracted in EBC buffer plus protease and
phosphatase inhibitors. Flag-FLCN protein was IP’ed overnight at 4 �C from each
of the fractions using anti-flag M2-agarose beads (Sigma-Aldrich, St Louis, MO).
The beads were washed with NET-N buffer (100 mM NaCl, 20 mM Tris-HCl pH8,
1 mM EDTA, 0.5% NP-40) and the protein complexes eluted in 80 mM glycine pH
2.5þ 2.5% SDS.

Mass spectrometry. Proteins, affinity enriched with FLCN, were identified and
quantified using a spectral counting approach essentially as described previously60.
In brief, reduction and thiol alkylation was followed by purifying the proteins using
MeOH/CHCl3 precipitation. Protein digest was performed with Lys-C and trypsin,
and the peptides were subjected to microcapillary liquid chromatography tandem
mass spectrometry (LC-MS2) on an Orbitrap Fusion mass spectrometer. MS2
spectra were assigned using a SEQUEST61 proteomics analysis platform. Based on
the target-decoy database search strategy62 and employing linear discriminant
analysis and posterior error histogram sorting, peptide and protein assignments
were filtered to false discovery rate (FDR) of o1% (ref. 63).

Transfections and IPs. U20S and 293T cells were transiently transfected with
DNA using Polyjet (SignaGen Laboratories, Rockville, MD) according to the
manufacturer’s instructions. Approximately 24–40 h after transfection, cells were
lysed in EBC buffer containing protease and phosphatase inhibitors. Protein was
immunoprecipitated from whole-cell extracts using 2 mg of FLCN antibody
(#3697, Cell Signaling Technology, Danvers, MA) coupled to 10 ml of Protein A
Dynabeads according to the manufacturer’s directions (Invitrogen Carlsbad, CA).
The beads were washed in NET-N buffer and the protein complexes eluted in 20 ml
of 0.1 M glycine pH 2.5 for 10 min at 70 �C. The FLAG-tagged FLCN phospho-
mutants and the FLCN truncation mutants were immunoprecipitated using 10 ml
of Anti-FLAG M2 magnetic beads (M8823, Sigma, St Louis, MO) according to the
manufacturer’s instructions.

Western blots and antibodies. Protein expression was detected by western
blotting, as previously described64. Briefly, for cell lysis, RIPA buffer containing
protease and phosphatase inhibitors was used. Proteins were separated by
SDS–polyacrylamide gel electrophoresis electrophoresis, transferred to a PVDF
membrane and detected with the cognate antibody. The following antibodies were
used: anti-Pan Actin (1:10,000; Neomarkers, Fremont, CA); anti-total EGFR
(1:1,000; sc-03, Santa Cruz, Dallas, TX); anti-pEGFR (1:1,000; ab5644, Abcam,
Cambridge, MA); anti-HA tag (12CA5) (11 583 816 001, Roche, Germany). The
anti-Rab7A (1:6,000; #R8779), anti-FLAG tag (1:10,000; #F1804) and anti-Tubulin
(1:5,000; #T9026) antibodies were from Sigma-Aldrich (St Louis, MO). The anti-
FLCN antibody (1:3,000; #3697), anti-pERK (1:2,000; #4370 and 1:2,000; #9101),
anti-pS6 (1:2,000; #5364), anti-HA (1:2,000; #3724), anti-pMET (1:1,000; #3129),
total MET (1:1,000; #3148) and IgG control (#3900) antibodies were from Cell
Signaling Technology (Danvers, MA). Western blots were developed using the Bio-
Rad ChemiDoc system and densitometry was analysed with BioRad Image Lab
Software (Bio-Rad Laboratories, Hercules, CA). Uncropped scans of the most
important blots are contained in Supplementary Fig. 6.

IHC in FLCN� /� mouse model and human patient samples. Mouse kidney
tumours were obtained from the previously described C57BL/6 Flcnflox/flox/Sglt2-
Cre mouse model of BHD kidney cancer (n¼ 4 mice, male and female) and normal
kidneys (n¼ 4 mice) were obtained from FLCN WT mice40. All animal
experiments were performed according to the standards of IACUC-approved
protocols and the approval of MGH Subcommittee of Research and Animal Care
(SRAC). RCC samples and matching normal kidney tissue as control were obtained
from patients with BHD disease. All patients provided informed consent for
tumour collection and analysis per IRB-approved protocol. Mouse and human
tissues were deparaffinized, rehydrated and unmasked in sodium citrate buffer
(incubated at 95 �C for 20 min). Endogenous peroxidase activity was blocked with
3% hydrogen peroxide, and non-specific binding of the primary antibodies was
blocked with 2% goat serum and 1% BSA in TBST. The primary antibodies pAKT
(1:100; #4060), pERK1/2 (1:100; #4370), pS6 (1:2,000; #5364) or pSTAT3
(1:100; #9145) (Cell Signaling Technology, Danvers, MA) were incubated with the
tissues at 4 �C overnight. The primary antibodies were washed with TBST and the
secondary antibody (Biotinylated anti-Rabbit) was applied to the tissues for 1 h at
room temperature. The secondary antibody was washed and the tissues were
developed with the ABC Kit and DAB Kit (Vector Laboratories, according to the
manufacturer’s instructions), counterstained with haematoxylin, dehydrated and
mounted.

Rab7A GTPase activation assay. The total amount of inorganic phosphate
produced by Rab7A’s hydrolysis of GTP was measured using a commercially
available kit and following the manufacturer’s instructions (Innova Biosciences,
#602-0120, Cambridge, UK). To purify full-length FLCN, FLCN K508R mutant or
Rab7A proteins, we transfected 293T cells with DNA plasmids expressing the
corresponding proteins, lysed with RIPA lysis buffer containing phosphatase and
protease inhibitors, and immunoprecipitated the transfected proteins from lysates.
To purify FLAG-tagged WT or mutant FLCN, we used anti-FLAG M2 affinity gel
(Sigma-Aldrich, St Louis, MO). Untagged FLCN WT and FLCN K508R proteins
were purified by IP using anti-FLCN antibody (Cell Signaling Technology #3697)
bound to protein A sepharose CL-45 beads (GE Healthcare). To purify Rab7A, we
used anti-HA antibodies 12CA5 (#11583816001, Roche, Germany) or HA-Tag
(C29F4) (#3724, Cell Signaling Technology, Danvers, MA) bound to protein A
sepharose CL-45 beads. The beads (containing the purified protein) were washed
five times with assay buffer and combined in the wells of a 96-well plate as indi-
cated in each lane of Fig. 1d,e (10 ml of FLCN protein bound to beads and 30 ml of
Rab7A protein bound to beads). All wells of the assay contained assay buffer and
0.5 mM GTP, except the wells containing the non-hydrolysable GTPgS, as indi-
cated in Fig. 1d. The plates were incubated at 37 �C until completion of the
reaction. For the GST protein purifications (used in Fig. 1e), full-length WT FLCN
(GST-FLCN), a tumour-associated truncated mutant form of FLCN (GST-FLCN
C9), or the GST vector alone (pGEX4T3) were purified from BL2 bacteria grown
for 3 h at 30 �C after induction with 0.5 mM IPTG (Isopropyl b-D-1-thiogalacto-
pyranoside, 367-93-1, Sigma, St Louis, MO) using Glutathione Sepharose 4B beads
(#17075601, GE Helthcare Life Sciences, Pittsburgh, PA). Beads were combined
together in reaction buffer and 0.5 mM GTP as described above. For each
experiment, a fresh purification of all of the proteins was produced and equal
amounts of beads were loaded into each well. The amount of free Pi was measured
using the PiColorLock Gold reagent and read at a wavelength of 635 nm.
Supplementary Fig. 5 demonstrates that in the presence of the phosphatase inhi-
bitor NaF, FLCN WT increases the GTPase activity of Rab7A.

Starvation and growth factor treatment of cells. FTC-133 cells were plated at
similar densities and starved in either serum-free (SF) DMEM media overnight
(Invitrogen, Carlsbad, CA) or in growth factor and amino-acid-depleted RPMI
1640 media for 2.5 h (US Biological Life Sciences, Salem, MA). The cells were
stimulated after starvation with 20 ng ml� 1 of EGF ligand (AF-100-15, PeproTech,
Rocky Hill, NJ), or 25 ng ml� 1 of HGF ligand (100-39, PeproTech, Rocky Hill, NJ)
in growth factor and amino-acid-depleted RPMI 1640 media and collected at
various time points (15 min, 30 min, 1 h and 3 h) for protein extraction and western
blot.

IF and confocal microscopy. For co-localization analysis of FLCN WT and
Rab7A, U2OS cells were transfected with a vector only, or FLCN WT and
HA-GFP-Rab7A WT in combination. The cells were fixed with 100% methanol for
10 min at � 20 �C, and stained with an anti-FLCN antibody (1:1,000; #3697,
Cell Signaling Technology (Danvers, MA)). For the EGFR trafficking experiments,
UOK257 vector only and FLCN WT cells were starved for 2 h without growth
factors and amino acids. Cells were stimulated with EGF ligand (1 mg ml� 1) and
fixed at various time points for IF. For the LAMP1 experiment, chloroquine
diphosphate salt (100 mM, Sigma-Aldrich, St Louis, MO) was added during star-
vation and during EGF stimulation. The cells were washed, fixed as described above
and incubated with anti-LAMP1 (1:200; #9091, Cell Signaling Technology, Dan-
vers, MA) and anti-EGFR (1:500; #05-1047, Millipore, Temecula, CA) antibodies in
IF diluent (0.5% Triton-X and 3% BSA in PBS). For the EEA1 experiment, cells
were washed with PBS, fixed with 4% formaldehyde (methanol-free, Thermo-
Scientific, Waltham, MA) for 15 min at room temperature, and then incubated with
anti-EEA1 (1:500; #3288, Cell Signaling Technology, Danvers, MA) and anti-EGFR
antibodies in IF diluent. The cells were washed and then incubated with anti-
Mouse Cy3-conjugated (1:250; #715-165-150, Jackson ImmunoResearch Labora-
tories, West Grove, PA) and anti-Rabbit Alexa Fluor 488 (1:250; #A-11008, Invi-
trogen, Carlsbad, CA) secondary antibodies. The coverslips were mounted with
Vectashield HardSet Mouting Medium with DAPI (Vector Laboratories, Burlin-
game, CA), and the cells visualized with a � 60 oil immersion lens on an inverted
confocal microscope (Zeiss 710, Carl Zeiss Microscopy, Thornwood, NY).

Xenograft tumours and afatinib treatment. Animal studies were conducted
according to the guidelines of the MGH Institutional Animal Care and Use
Committee. FLCN� /� FTC-133 cells (5� 106) were injected sub-cutaneously into
nude mice. Once tumours were established, the mice were treated daily by oral
gavage with either the vehicle (0.5% methyl celluloseþ 0.4% Tween 80 (w/v)) or
afatinib. Afatinib was given at 20 mg kg� 1 for 5 days and then at 15 mg kg� 1 for 3
days. The tumour volume was calculated using the following equation: (length
(mm)�width2 (mm2))/2. The investigators involved in tumour size measurement
were not blinded as to the treatment randomization of the mice. The number of
animals used was calculated to exceed the number of animals needed to achieve
statistical significance of Po0.05 with an 80% probability, estimating a 30%
difference in means.
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Fission yeast strains and media. All S. pombe strains used in this study are listed
in Supplementary Information (Supplementary Table 1). Standard cell growth,
transformation and strain construction methods were used65–67.

Fission yeast growth assay. S. pombe strains were grown in liquid Edinburgh
minimal medium (EMM) media supplemented with 225 mg l� 1 of amino acids
(uracil, arginine, histidine, adenine, leucine) until log phase (OD600 of 0.8–1.2). An
equal number of cells were spotted in a 10-fold concentration gradient onto rich
media (YEA), EMM with normal (225 mg l� 1) amino acids plus or minus
200 ng ml� 1 Rapamycin (Sigma-Aldrich) or low (45 mg l� 1) amino acids. Plates
were incubated for 3–7 days at 32 �C.

Measurement of fission yeast mating efficiency. Haploid cells of opposite
mating types (with the same genetic background) were crossed on nitrogen-free
minimal medium plates (EMM-N) and incubated for 48 h at 25 �C. The numbers of
cells and zygotes were counted under a microscope. The mating efficiencies were
determined by calculating the % of zygotes formed for each cross, out of the total
number of cells. All data were calculated by counting at least 400 cells.

Fission yeast protein extraction and western blot. Cells were grown to log phase
(OD600 of 0.8–1.2) in EMM supplemented with 225 mg l� 1 of uracil, arginine,
histidine, adenine, leucine and then washed and transferred to EMM plus either
low (45 mg l� 1) amino acids or high (1125 mg l� 1) amino acids. After 90 min of
incubation, samples were taken and subjected to trichloroacetic acid (TCA) protein
extraction. S. pombe cultures (5 ml) at an OD600 of 0.8–1.2 were pelleted just after
the addition of 100% TCA and washed in 20% TCA. The pellets were lysed with
three 45-s pulses in a MAgNA lyser following the addition of glass beads and 100 ml
12.5% TCA. Cell lysates were pelleted for 20 min at 13,200 r.p.m., washed in
acetone, and dried at 37 �C for 15 min. Pellets were resuspended in 50 ml of a
solution containing 1% SDS, 100 mM Tris-HCl (pH 8.0), and 1 mM EDTA. For
western blotting, proteins were separated on a 12% SDS–polyacrylamide gel elec-
trophoresis gel, transferred onto a nitrocellulose filter (Amersham), and probed
with anti Phospho-S6 Ribosomal Protein (1:500; Ser235/Ser236; #2211) and
Phospho p70 S6 Kinase (1:500; Thr389; #9205, Cell Signaling Technology, Danvers,
MA) primary antibodies. Actin was used as a loading control (MS1295P Thermo).

Data analysis and statistics. For the EGFR trafficking IF and confocal micro-
scopy, pictures were processed using ImageJ 1.47v software and an additional
co-localization plugin (Pierre Bourdoncle, Institut Jacques Monod, Service Ima-
gerie, Paris) as previously described30. The background for each channel was
determined by using the image from the no primary antibody control slide and
then subtracted. The co-localization plugin generated a binary image of co-
localized pixels whose intensities were higher than the background. The ‘min’
operation between the binary image of co-localization and the image of total EGFR
fluorescence allowed the co-localized pixels to be converted to the real value of the
EGFR fluorescence as a 32-bits image. A ratio of the fluorescence intensities for
each image (co-localized EGFR versus total EGFR) was calculated for each field of
view. For each time point, two randomly chosen fields of view (5–10 cells/area)
were imaged with three Z-stack images in different planes (6 measurements). Three
independent experiments were performed and all of the measurements were
combined for analysis (18 measurements). Statistical differences between groups
(Vector only and FLCN WT cells) were concluded by Student t-tests (or non-
parametric Wilcoxon rank-sum tests when distributions were not normal). The
Rab7A GTPase activity data were compared using ANOVA and Tukey’s multiple
comparison post-tests. The relative tumour volumes in the FTC-133 xenograft
study (comparing vehicle to Afatinib treatment) were compared with a two-way
ANOVA with Bonferroni post-tests. All of the western blot densitometry data,
GTPase activity data and the in vivo tumour growth assay were plotted and
analysed using GraphPad Prism Software (Graph-Pad Software, San Diego, CA).
Statistical significance was inferred at Po0.05.

Data availability. All data included in this publication are available from the
authors.
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