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BACKGROUND Detection of atrial tachyarrhythmias (ATA) on long-
term electrocardiogram (ECG) recordings is a prerequisite to reduce
ATA-related adverse events. However, the burden of editing massive
ECG data is not sustainable. Deep learning (DL) algorithms provide
improved performances on resting ECG databases. However, results
on long-term Holter recordings are scarce.

OBJECTIVE We aimed to build and evaluate a DL modular software
using ECG features well known to cardiologists with a user interface
that allows cardiologists to adjudicate the results and drive a sec-
ond DL analysis.

METHODS Using a large (n5 187 recordings, 249,419 one-minute
samples), beat-to-beat annotated, two-lead Holter database, we
built a DL algorithm with a modular structure mimicking expert
physician ECG interpretation to classify atrial rhythms. The DL
network includes 3 modules (cardiac rhythm regularity, electrical
atrial waveform, and raw voltage by time data) followed by a deci-
sion network and a long-term weighting factor. The algorithm was
validated on an external database.

RESULTS F1 scores of our classifier were 99% for ATA detection,
95% for atrial fibrillation, and 90% for atrial flutter. Using the
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external Massachusetts Institute of Technology database, the clas-
sifier obtains an F1-score of 97% for the normal sinus rhythm class
and 96% for the ATA class. Residual errors could be corrected by
manual deactivation of 1 module in 7 of 15 of the recordings,
with an accuracy , 90%.

CONCLUSION A DL modular software using ECG features well
known to cardiologists provided an excellent overall performance.
Clinically significant residual errors were most often related to the
classification of the atrial arrhythmia type (fibrillation vs flutter).
The modular structure of the algorithm helped to edit and correct
the artificial intelligence–based first-pass analysis and will provide
a basis for explainability.
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fibrillation; Atrial flutter
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Introduction
Atrial Fibrillation (Afib) is the most common arrhythmia,
affecting 2% to 4% of the population.1,2 Because of popula-
tion aging and increase in obesity, Afib prevalence is esti-
mated to increase sharply in the next decade. In addition to
disabling symptoms, Afib is associated with the occurrence
of stroke, heart failure, cognitive decline, and increased mor-
tality.3 Stroke prevention with oral anticoagulant treatment
and improved efficacy of rhythm control strategies have
decreased the odds for thromboembolic events and mortality
in case of Afib-related heart failure.4 The implementation of
early appropriate treatment requires timely accurate
diagnosis of Afib and other atrial tachyarrhythmias (ATA),
atrial tachycardia (AT), and atrial flutter (Afl).

Diagnosis of ATA is typically made in daily clinical prac-
tice by standard 12-lead electrocardiogram (ECG) recordings
and ambulatory 24- to 48-hour Holter monitoring. These
methods are appropriate in case of permanent ATA but
may lead to underdiagnosis in case of intermittent ATA. Pa-
tients with symptoms have an increased likelihood of detect-
ing an ATA. However, there is a well-known poor correlation
between symptoms and ATA episodes, because a significant
percentage of Afib episodes are clinically silent; up to 50% in
symptomatic paroxysmal Afib patients5,6 and up to 10% in
asymptomatic patients without history of Afib included in
the ASSERT study.7 In addition, undiagnosed intermittent
and asymptomatic ATA episodes are associated with an
increased risk of stroke.7 Accordingly, such subclinical
Afib could represent a missed opportunity for the prevention
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KEY FINDINGS

- We aimed to build and evaluate a deep learning (DL)
modular software using ECG features well known to
cardiologists to classify abnormal atrial rhythms,
including both paroxysmal and sustained episodes of
atrial fibrillation (AFib) and atrial flutter (Afl) with a
user interface that allows cardiologists to adjudicate
the results and drive a second DL analysis.

- The software provided an excellent overall performance
(F1 scores of our classifier were 95% for Afib and 90%
for Afl, respectively), and significant residual errors
were most often related to the classification of the
atrial arrhythmia type (atrial fibrillation vs atrial
flutter).

- The modular structure of the algorithm helped to edit
and correct the AI-based first-pass analysis and provide
a basis for explainability.
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of Afib-related morbidity. In addition, accumulated data from
cohorts with long-term ECG recordings have built a strong
case for the concept of an increased risk of Afib complication
(stroke but also heart failure) with increased Afib burden (ie,
the proportion of time with ATA).8–10 Conversely, patients
with a low ATA burden have low risk of thromboembolic
complication and have a less favorable risk/benefit ratio
with oral anticoagulant treatments.11 The availability of
long-term ECG monitoring techniques (external loop event
recorders, 7–30 days beat-to-beat recorders)12 increases the
likelihood to diagnose subclinical Afib episodes and allows
precise quantification of Afib burden. However, editing by
technicians and physicians of such massive ECG data is a
challenge.

Historically, physicians make Afib and other ATA state-
ments on the ECG by interpreting heart rate variability (reg-
ularity, irregularity, specific pattern) together with atrial
activity pattern (including rate and morphology).13 However,
integration of P-wave features is difficult on long-term ECG
recording because the P wave has a low amplitude and there-
fore the atrial electrical signal is most often blurred in noise.
Few studies have integrated the P-wave signal in Afib detec-
tion, and it does improve Afib detection but marginally.14

Hence, most automatic software for long-term ECG
recording is based on RR intervals time series, after running
a cardiac beat detector and computation of RR interbeat
intervals.13,15

Recently, many publications using deep learning
approaches (DL) on resting ECG have been implemented
on large, annotated ECG data sets. These algorithms demon-
strated their ability to process and analyze cardiac rhythms
with accuracies higher than 90%.16,17 Although many reports
are available about DL performances on resting ECG
databases, results on long-term Holter recordings are scarcer,
primarily because of the lack of annotated databases, because
expert annotation is time consuming.
We hypothesized that a DL classifier for atrial arrhythmias
based on a modular structure mimicking expert physician
ECG interpretation would provide (1) an accurate atrial ar-
rhythmias detection solution and (2) a fast and intuitive
tool for physician editing.

Therefore, we aimed to (1) build a DL modular software
using ECG features well known to cardiologists; (2) build a
user interface that allows cardiologists to edit Holter DL out-
puts in a way that is familiar to them; and (3) evaluate the
first-pass performance of the DL classifier as well as a
second-pass performance after the physician’s adjudication.
Method
Material
Holter database
Since January 2007, Holter recordings from patients referred
to the Cardiac Arrhythmias Unit in Centre Medico Chirurgi-
cal Ambroise Pare (Neuilly, France) have been included in a
prospective Holter Data Base (H-DB).18 Included patients
underwent Holter ECGmonitoring on physician prescription,
usually to document the ECG at the time of symptoms. More
recently, documentation of silent atrial arrhythmias was also
a recruitment criterion.

Digital Holter devices (Spiderview, Microport, Clamart,
France) were 2-lead ECG recorders at 200 samples per sec-
onds and with an amplitude resolution of 10 mV. We selected
a set of 282 Holter recordings of good quality. The quality
was considered good when the automated analysis performed
by the Holter Editing System (SyneScope) lasted at least 59
minutes for each hour of recording (ie, the total duration of
discarded segments attributable to noise or artifacts is less
than 1 min/h). Two categories of Holter recordings were
selected from the H-DB, Holters with either paroxysmal or
permanent (over the 24 hours) atrial arrhythmias, and Holters
in sinus rhythm but with sporadic atrial of ventricular prema-
ture beats. The frequent association within a single patient of
Afib with other arrhythmias was the rationale to include atrial
flutter episodes in this study. No other supraventricular
tachycardia (atrioventricular nodal reentrant tachycardia,
atrioventricular reentrant tachycardia, AT) were included in
the H-DB.

All recordings in the H-DB were de-identified, all demo-
graphic and clinical information being removed. The infor-
mation used in this study was only the voltage-by-time raw
digital data from the 2 ECG leads. The Holter database is
compliant with European privacy regulatory requirements.
Expert annotation
Holter recordings were manually annotated on a beat-to-beat
basis by a certified cardiologist, using the usual Holter editing
tools (Dr P. M.-B.). Briefly, beat-to-beat editing was built on
visual inspection of heart rate trends, template morphologies
(normal and abnormal), long and short R-R intervals, and R-
R interval ratios, supraventricular and ventricular arrhyth-
mias (isolated extrasystoles, couplets, runs, and sustained



Figure 1 Description of the Holter datasets. The Holter Database contains samples of 2 channel ambulatory recordings collected at the Cardiac Arrhythmia Unit
(Neuilly Sur Seine, France) and samples of theMIT-BIH database. The cohort was divided into 2 groups for training and testing, respectively. The total amount of
data was 110,697 one-minute windows and 249,419 one-minute windows for training and testing, respectively. The minutes were labeled as normal sinus rhythm
(NSR), or atrial fibrillation (Afib) and atrial flutter (Afl) according to the expert annotation. Numbers in each dataset box indicate the total number of NSR, Afib,
and Afl minutes.
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cardiac arrhythmias, by rate and by length). When a cardiac
beat or an arrhythmia episode was misclassified by the sys-
tem, it was manually relabeled. Over and under detections
were also corrected using beat insertion or deletion tools.

ATAs were defined as any arrhythmic episode with supra-
ventricular beats and absence of P waves of sinus origin.
First, onset and offset of each atrial arrhythmia episode
were visually identified using heart rate trends, full disclo-
sure, and paging mode. Then, using electronic calipers, the
specific onset and the offset were selected, and the Holter sys-
tem automatically created a corresponding “time-period” of
atrial arrhythmia. The duration of the episode was also calcu-
lated by the system between the onset and the offset times.

MIT-BIH atrial fibrillation database
To evaluate the performance of the proposed method on a
publicly available database, and under regular noise condi-
tion, results of the MIT-Beth Israel Hospital (BIH) Atrial
Fibrillation Database are also reported in this study.19,20 It
includes 23 ECG recordings lasting 10 hours sampled at
250 Hz with 10 mV resolution with manually reviewed beat
annotations. The database was primarily developed to sup-
port research in the field of cardiac arrhythmia detection
and analysis and is a collaborative effort between the Massa-
chusetts Institute of Technology (MIT) and the Beth Israel
Hospital (BIH).

Data sets definition and recording segmentation
The H-DB was randomly divided into 2 subsets: the first for
algorithm training and the second for further testing. The
training data set consisted of 96 Holter recordings with 3 sub-
categories according to the presence of Afib, Afl, or normal
sinus rhythm (NSR) episodes. Up to 93 recordings lasted
more than 1200 minutes, and the shortest duration was 598
minutes. This dataset included 12 patients with permanent
Afib and 16 with permanent Afl. The testing dataset consisted
of 186 Holter recordings, with up to 168 recordings longer
than 1200 minutes and a minimum recording duration of
177 minutes. This dataset included 51 patients with perma-
nent Afib and 22 with permanent atrial flutter. The
MIT-BIH Atrial Fibrillation database was also used as a
testing dataset. The DB characteristics are summarized in
Figure 1. First, all recordings were truncated into consecutive
1-minute segments. Then windows with less than 20 valid
cardiac beats labels were removed. Figure 1 shows that the
testing set of the H-DB includes a total of valid 249,419
one-minute windows, 75,016 in Afib, 41,398 in Afl, and
133,011 in NSR, respectively.

The MIT-DB was used as an external testing set.
Global structure of the DL classifier
As illustrated in Figure 2, the overall classifier was based on 3
consecutive processing steps. The first stage combined 3
separate expert neural networks, each network focusing on
a given ECG pattern typical of atrial arrhythmias, (1) the
raw ECG voltage by time data, (2) presence or absence of
P-wave morphology, and (3) R-R interval statistics, and
each network trained to recognize either NSR, Afib, or Afl
episodes. Of note, the network applied to R-R intervals was
lead independent, whereas the 2 others were lead dependent.
The output from each network is a probability score ranging
from 0 to 1, indicating the likelihood of belonging to a spe-
cific arrhythmia class, resulting in a 10-probability vector
per minute of recording with 5 individual probabilities and
2 classification tasks (NSR vs Afib, and NSR vs Afl). The
second stage involves a decision neural network that com-
bines these 10 probability scores and takes a decision from
it to classify the minute of recording under 1 of the 3 cardiac
rhythm categories (Afib, Afl, and NSR). The final stage is
essential for transitioning the truncated minute-by-minute de-
cisions to the total duration of the recording. This is accom-
plished through the application of a Hidden Markov Model



Figure 2 DL classifier global structure. The classifier that processes 1-minute window of ECG and RR embed 3 panels: � The first panel consists of expert
networks that focus on global morphology, mean P-wave, and RR intervals of the window. � The second panel is the arrhythmia decision part of the classifier.
In this panel, the user can interact with the network to disable expert networks. � The last panel is present to consider the temporal aspect of Afib and Afl episodes.
This panel analyzes the whole Holter recording and assigns to each minute a label (Afib, Afl, NSR).
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(HMM), which effectively models the temporal transitions
between different states of cardiac rhythm.

See Appendix A for further details about each panel of the
classifier.
Statistical analysis
The classifier’s performances were evaluated using the F1
score during the learning process.21 The F1 score is a measure
of predictive performance, often used in machine learning
systems, particularly for evaluating medical performances.
It is calculated as a tradeoff between positive predictive value
and sensitivity, thus enabling us to assess a classifier’s ability
to detect an event without erroneously classifying too many
positive events. Strictly speaking, the F1 score is the har-
monic mean of positive predictive value and sensitivity.
However, its medical accuracy is reported here through 3
metrics: accuracy, sensitivity, and specificity, with 3 objec-
tives: (1) Identifying the patients that show at least 1 episode
of any ATA during the recording; (2) Determining the ATA
burden (number of minutes spent in ATA) during the Holter
recording; and (3) Classifying the ATA category (either Afib
or Afl).

At level 1, evaluation is made at the “patient level,” assert-
ing that any patient with at least 1 minute of Afib or Afl will
belong to ATA. Based on comparison between the expert
annotation and the investigated DLmodel outputs, sensitivity
and specificity were calculated (ratios including number of
recordings tagged as ATA and numbers of recordings free
of ATA). We considered the results according to patient clas-
sification: a patient detected as ATA was a patient with at
least 1 minute of ATA labeled by the classifier overlapping
with 1 minute of expert ATA, and an NSR patient was a pa-
tient for whom no minutes had been detected by the classifier
as ATA.

At level 2, the focus shifts to the accuracy of minute-by-
minute detection by the classifier, comparing the respective
labels from both the expert and the classifier. Accuracy is a
metric for evaluating classification models, and it is calcu-
lated by dividing the number of correct predictions by the to-
tal number of predictions. Here, Afib and Afl labels are
pooled again under a single ATA category; therefore, level
2’s performance metric distinguishes between NSR and
ATA classifications. After the accuracy analysis, patients
were sorted based on the accuracy level of the detected
ATA burden. When the accuracy reached 100%, the DL clas-
sifiers’ outputs match expert annotations perfectly, elimi-
nating the need for any re-annotation. For those with 99%
accuracy, equivalent to approximately 15 minutes of discrep-
ancies in a 24 -hour recording (1% of data), the results are
also highly reliable, necessitating minimal or even no relab-
eling by the expert. An accuracy of 95% indicates a relatively
reliable detection process (an error for approximately 70 mi-
nutes of data), some 1-minute windows requiring relabeling.
Finally, an accuracy of 90% or an error rate of 10% means a
need to review the results.



Table 1 NSR and ATA results depending on the accuracy level

Accuracy

NSR
recordings
(Total: 80)

ATA
recordings
(Total:
106)

Permanent
ATA
recordings
(Total: 74)

Paroxysmal
ATA
recordings
(Total: 32)

100% 68 66 64 2
99% 76 96 70 26
95% 78 102 71 31
90% 79 106 74 32

ATA 5 atrial tachyarrhythmias; NSR 5 normal sinus rhythm.

866 Heart Rhythm O2, Vol 5, No 12, December 2024
Level 3 details the ATA category, differentiating and re-
porting the outcomes for Afib and Afl separately, providing
a detailed view of the classifier’s capability in distinguishing
between the 2 types of ATA. The Bland-Altman analysis was
used to quantify agreement between expert ATA annotations
and classifier outcomes.22 See Appendix B for further details.
Results
Automated first-pass analysis
At level 1 of the statistical analysis, ATA was detected in 105
of the 106 recordings, with ATA episodes corresponding to
99% sensitivity. The only false-negative ATA detection
was related to a short 2-minute AFib episode on a 24-hour
recording. When paroxysmal ATA episodes were sorted by
length, this episode was the shortest one, and the next ATA
episodes lasted 5 minutes and were correctly identified. Spec-
ificity for ATA detection at the patient level was 85%.

When considering each 1-minute recording segment sepa-
rately, the performance of our model to discriminate between
NSR and ATA was high (F1 score 99% for NSR and ATA)
on the test set.

Considering level 2, we calculated the accuracy for each
recording. Table 1 shows categorical classification at
different level of accuracy. All ATA recordings and
98.75% of NSR recordings had an accuracy � 90%.

For recordings with paroxysmal ATA episodes, the mean
difference between expert annotation and detected outcomes
was 8.2 minutes (range, 0–50 min). ATA windows were
correctly detected in 22 of 32 recordings.

For recordings with permanent ATA, the mean difference
between expert annotation and detected outcomes was 5 mi-
nutes (range, 0–134 min). In 64 of the 74 permanent ATA re-
cordings, all expert ATA windows were correctly detected.

The average overall error was 6 minutes (range, 0–134
min). In 86 recordings, all ATA expert-adjudicated windows
were correctly detected.

Focusing on the 40 ATA recordings whose accuracy was
less than 100%, the average overall difference was 15.5 mi-
nutes (range, 1–134 min), 8.5 minutes and 36 minutes in
paroxysmal and permanent datasets, respectively.

Regarding NSR recordings, 12 cases had an overdetection
of ATA episodes. The difference was negligible in 8 record-
ings (range, 2–6 minutes), and 1 patient had an error rate of
97% (1150 minutes).
Figure 3 shows the Bland-Altman plots for the 2 ATA
detection dataset expert annotation and the DL-based
algorithm. The systematic bias was –6.14 min with a 2SD
5 172.13 min.

At level 3, we scored the classifier on its ability to distin-
guish between Afib and Afl patterns among detected ATA.
Considering each 1-minute recording segment separately,
our model could discriminate Afib and Afl episodes with
F1 score of 95% and 90%, respectively. When considering
only ATA minutes that had an overlap between expert anno-
tation and detection by the classifier

(true positive minutes), 74 recordings of 106 had their ar-
rhythmias correctly classified between Afib and Afl. The pro-
portions of Afib and Afl minutes correctly detected by the
classifier were 92% and 98%, respectively, for an overall
classification success rate at 94%.
Manual second-pass analysis
Fifteen Holter recordings showed an accuracy below 90%.
Detailed characteristics for each recording are given in
Table 2. Of note, 11 of the 15 recordings showed a permanent
atrial arrhythmia.

For 7 of 15 recordings, an intuitive single-module deac-
tivation was enough to correct the automated analysis. For
instance, case 1 in Table 2 is a permanent Afib case accord-
ing to the expert, but the algorithm reports 994 Afibminutes,
194 Afl minutes, and 6 NSR minutes. An additional expert
statement was permanent atrioventricular dissociation with
regular rhythm and bradycardia (44 beats/min), and in this
setting RR statistics are not informative for detection of
ATA.

Disabling the RR module (Figure 4A) allowed relabeling
Afl and NSR as Afib, so with a single click the accuracy was
improved from 83.2% to 100%.

Another representative case was case 78, a permanent
Afl lasting 1354 minutes, according to the expert. The
classifier detected Afl for 1117 minutes and 237 minutes
of Afib. Visual inspection of the ECG traces at the time
of detected Afib minutes (Figure 4B) showed that the atrial
electrical activity (sawtooth F-waves) was better identified
in lead A. As expected, disabling lead B module and re-
computing the data improved accuracy from 82.2% to
100%.

For the 7 cases in which a single manual modification was
enough to improve the accuracy, the most frequent interven-
tion was disabling a single-lead ECG. Recomputing the DL
analysis took a few seconds for 24 hours of data on our com-
puter.
External cohort validation: MIT-BIH Atrial
Fibrillation database
Considering the low number of 1-minute windows of atrial
flutter, we considered only 2 cardiac rhythm classes: normal
sinus rhythm and ATA. The classifier obtains an F1-score of
97% for the NSR class and 96% for the ATA class.



Figure 3 Bland-Altman plot between the duration of ATA of the 2 methods (expert vs DL) in case of A: permanent ATA (n5 74), B: paroxysmal ATA (n5
32), and C: on the whole dataset (n 5 186). The mean number of minutes by the classifier is plotted along the x-axis, and the difference between the expert
annotation and that of the classifier along the y-axis. The dotted gray lines represent 95% confidence intervals for the mean.
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Discussion
The major findings of our study are the following: Using a
large, beat-to-beat annotated, 2-lead Holter database (282
Holter recordings generally lasting more than 1200 minutes)
with paroxysmal and sustained atrial fibrillation and atrial
flutter episodes, we built a modular DL software to classify
atrial rhythm. Our model combined both preprocessed ECG
data and raw ECG data to use ECG features based on expert
cardiologist reasoning for ECG diagnosis. The overall perfor-
mances of our classifier were excellent, with F1 scores above
0.95. Nonetheless, there were clinically significant residual
errors, most often related to the classification of the atrial
arrhythmia type (Afib vs Afl). Using a dedicated interface,
we could easily and quickly correct approximately half of
erroneous diagnostics. The most frequent successful editing
process was disabling 1 of the ECG leads.



Table 2 Description of expert annotation minutes and detected minutes on the 15 patients below the 90% accuracy threshold

DB
Nb

Analyzed
time

Expert Detected

Accuracy
Second
passAfib Afl ATA Afib Afl ATA

40 1182 0 0 0 0 1150 1150 0.027
70 1307 1250 57 1307 0 1307 1307 0.043
49 1386 1386 0 1386 176 1210 1386 0.126
142 1387 1387 0 1387 371 1016 1387 0.267
64 1437 1437 0 1437 423 996 1419 0.294
124 1400 774 283 1057 596 511 1107 0.786
78 1354 0 1354 1354 237 1117 1354 0.824 &
1 1194 1194 0 1194 994 194 1188 0.832 &
120 1322 0 1322 1322 87 1129 1216 0.854
12 1413 0 1413 1413 175 1228 1403 0.869 &
115 1437 0 1437 1437 1251 186 1437 0.87 &
33 1328 166 1162 1328 38 1156 1194 0.881 &
107 1433 0 1433 1433 150 1281 1431 0.893 &
172 1164 1164 0 1164 1040 124 1164 0.893
150 852 252 0 252 164 87 251 0.896 &

The heart symbol in the second-pass column means that a single-module deactivation in the user interface is required to correct the automated analysis.
Afib 5 atrial fibrillation; Afl 5 atrial flutter; ATA 5 atrial tachyarrhythmias.
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Resting ECG and computerized interpretation of
the ECG
Efforts to automatize ECG measurement and interpretation
started in the late 1950s, leading to improvement such as the
introduction of miniature digital computers and interpretative
softwares. In 1990, the Common Standards for Quantitative
Electrocardiography (CSEProject) under the leadership ofPro-
fessor Joss Willems in Leuven in Belgium established data-
bases containing, not only the raw digital ECG waveforms
for testingmeasurements but also the consensus ECG interpre-
tations performed by the CSE experts who met for over 10
years. The concept of ECG databases remain critical for the
development of new ECG softwares.23,24

The quality of outputs by ECG interpretation programs
has been consistently questioned. However, keeping in
mind that millions of ECGs are collected and analyzed annu-
ally in the setting of diagnostic statements at bedside, or serial
comparisons of ECG or epidemiological studies, reduction of
physician reading time could be of major benefit. Computer-
assisted ECG interpretation decreased analysis time by up to
24% to 28% for experienced readers.25–27

Regarding cardiac rhythm statements, it is generally
admitted that physician overreading to correct computer-
based electrocardiogram rhythm diagnoses remains manda-
tory.28,29

De Bie et al30 evaluated the accuracy of 7 ECG interpre-
tation programs in detecting abnormal rhythms. Digital
ECGs were analyzed by the manufacturers’ interpretation
programs, focusing on the ability to distinguish sinus rhythm
from non-sinus rhythm, and to identify atrial fibrillation/
flutter and other abnormal rhythms. All programs could
distinguish between sinus and non-sinus rhythms. However,
false-positive rates varied from 2.1% to 5.5%. False-negative
rates varied from 2.7% up to 55.9%, and the authors
concluded that physicians should not rely on computer
statement alone.30
Shah and Rubins31 also observed frequent errors in the
interpretation of nonsinus rhythms and recommends expert
overreading. Published studies consistently agree that ECG
algorithms are efficient to detect normal sinus rhythm. The
difficulty in making a correct diagnosis of the underlying
rhythm is typically linked to recognizing P waves with a
small amplitude, varying P-wave morphologies, or P waves
masked by underlying noise, QRS complexes, or T or U
waves, paced rhythms, or tremor.31–34

Artificial intelligence enhanced
electrocardiography
The most recent development in the field of automated ECG
analysis has been the use of artificial intelligence (AI),
including a variety of machine learning techniques to aid
interpretation. With better machine learning algorithms,
computerized interpretation of ECGs has clearly improved
arrhythmia detection, achieving an accuracy close to
95%.35,36 Hannun and coauthors16 developed a DL approach
for ECG analysis by using a deep neural network for identi-
fying 12 rhythm abnormalities by using single-lead ECGs.
When validated against independent data reported by a com-
mittee of certified cardiologists, their algorithm was shown to
be superior to an average cardiologist in identifying these
rhythm abnormalities (receiver operating characteristics,
0.97 vs 0.78).16,37

Long-term ECG
In a recent European Heart Rhythm Association position pa-
per, experts recognized the central dilemma in evaluating
optimal monitoring duration in the AFib search. Even very
longmonitoring (30 days) may be insufficient to detect all ep-
isodes. To define arbitrarily a standard monitoring time, the
experts stated that a monitoring duration of a minimum of
2 weeks of continuous monitoring is required to maximize
AF detection. Editing of such massive beat-to-beat ECG



Figure 4 Configuration of the user interface screen and 2 representative use cases from the H-DB (A and B). The user interface screen layout consists of the
following components, from top to bottom: Heart rate (HR) trend window to review HR at any time selected with a mowing cursor. The HR format is maximum/
average/minimum. ECG strip window to review the ECG at the time of the HR cursor location. Individual beat labels and beat-to-beat RR intervals are displayed
in the ECGwindow. DL classifier output window: The diagram represents the distribution of ATA events across the 24 hours with a color scheme, yellowmarkers
for Afib minutes and green markers for Aflminutes. The DL outputs are locked to HR trend and ECG strips. DL control window to enable or disable the modular
components of the DL classifier, from left to right: individual ECG leads A or B, individual networks morphology, P wave and RR statistics, and temporal analysis
button (HMM) Figure 4a corresponds to the use case of recording 1 in Table 2. It is a permanent atrial fibrillation with atrioventricular dissociation and therefore a
perfectly flat HR trend and regular RR intervals in the ECG window. Raw DL classifier outputs are both Afib and Afl segments. Disabling the meaningless RR
statistics module (vertical thick arrow) restores a valid output with only Afib minutes. B: corresponds to the use case of recording 78 in Table 2. It is a permanent
atrial flutter obvious in lead A. Raw DL classifier outputs are both Afib and Afl segments. Disabling the analysis on lead B (vertical thick arrow) restores a valid
output with only Afl minutes.
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data (approximately 100,000 cardiac beats per 24 hours) re-
quires new techniques for ECG analysis, and AI could be a
significant improvement.38

Basic Holter algorithms have not changed much, and
together with handling very-long-term ECG data, noise re-
mains a key challenge in ECG signal processing. Holter de-
vices have been specifically developed to record the ECG
during daily out-of-hospital activities, and reducing ambient
noise is a major processing task. It is even more difficult
because the number of ECG leads is reduced, down to 2 or
only 1 lead. In this study, we included high-quality Holter re-
cordings, and reducing noise was not a key issue. In a more
standard noise environment, filtering the ECG remains
needed keeping in mind that for atrial arrhythmias detection
the analysis of the atrial electrical activity is crucial.39

Finally, for P-wave signal analysis, more specialized prepro-
cessing methods than that focusing on enhancing the QRS
complex could be recommended.

DL models need large databases to train, but private or
publicly available Holter databases with beat-to-beat annota-
tions are not common.40 Ivora et al40 used ambulatory ECG
recordings consisting of 12,111 single-lead Holter ECG re-
cordings, but each recording was 30 seconds long, sampled
at 200 Hz. In the THEW project, Holter recordings in the
warehouse were provided by research academic centers and
major pharmaceutical companies. Afib recordings were few
and lasted only 10 minutes.41

Typically, DL algorithms for ambulatory ECGs are based
on so-called “supervised” and “unsupervised” machine
learning. Supervised learning uses labeled data for training,
and unsupervised learning uses only raw data. Deep
learning–based ATA detectors can therefore be categorized
according to whether the R-R intervals and R-R intervals ra-
tios or only the raw ECG serve as inputs to the network.42–44

As far as ambulatory ECG is concerned, most studies focus
performances of DL techniques to detection of Afib
episodes, and the distinction between Afib and Afl is less
well studied.

Ben-Moshe et al44 have compared the performance of R-R
interval inputs versus single-lead raw ECG-based ATA de-
tectors, Afib episodes, and Afl episodes.44 The authors
collected 321 Holter recordings from 3 cardiology centers
with manual beat-to-beat annotations. The authors concluded
that the raw ECG network significantly outperformed the
model, using R-R intervals as input. However, the perfor-
mance was not similar across ECG leads, with some leads
performing better for Afib episodes detection. In the Ben-
Moshe et al44 study, error analysis showed that a large per-
centage of false-negative windows from the raw ECG
network contained AFl episodes. The authors suggested
that this could be explained by the fact that DL models
need a large database to train. The percentage of AFl win-
dows in the training set was very small. In our study, we com-
bined supervised and unsupervised networks, with 2 leads of
raw ECG data. The total number of 1-minute Afl windows in
the training was 20,337 from 96 recordings. Differentiating
between AFib and Afl is essential because the management
of patients is not similar. For Afib, patient rhythm control
and rate control are recommended strategies. For most Afl pa-
tients, catheter ablation is preferred over pharmacologic ther-
apy because of the high success rate. Atrial and ventricular
arrhythmia categories are numerous, and because the preva-
lence of some arrhythmias is extremely low in most Holter
recordings, we could not include in our study atrial tachy-
cardia episodes, although it is obviously as critical as differ-
entiating Afib and Afl for clinical purpose.45 Comprehensive
rhythm ECG analysis by DL-based algorithms will probably
not be available in the next future. In the same way, detection
of atrial extrasystoles is a conventional task for any Holter al-
gorithm. Building a high sensitivity algorithm to discriminate
arrhythmias from regular sinus rhythm is not challenging.
However, some atrial arrhythmias such as frequent isolated
atrial extrasystoles, or sustained atrial runs, may mimic
Afib or Afl episodes, leading to false-positive detections.

Our results, based on a large database of long-term record-
ings, show that an AI-based strategy is associated with very
high performances to detect atrial arrhythmias. However,
although also associated with high metrics, the correct classi-
fication of atrial fibrillation and atrial flutter is associated with
lower performances.
Modular architecture and future developments
Modular architectures are commonly used for AI-based al-
gorithm. In the current study, we purposely designed our
DL model with a modular setup in which each software
module carries out a well-defined ECG-processing task,
such as the architecture of the MEANS ECG software.26,46

Our choice was based on the hypothesis that a DL classi-
fier for atrial arrhythmias based on a modular structure
mimicking expert physician ECG interpretation would
not only provide accurate atrial arrhythmias detection but
also help to edit and correct the AI-based first-pass
analysis.

In our study, each network is focusing on a given ECG
pattern typical of atrial arrhythmias in a totally transparent
way to the cardiologists. Inputs and outputs of each network
are clearly defined based on prior electrocardiography
knowledge together with the goal of each network in the
global analysis. The design based on prior ECG knowledge
is furthermore necessary for the design of the interfaces be-
tween DL outputs and the Holter editing tasks. DL output
markers at any time can be easily reviewed with associated
standard editing tools, such as ECG strips or Page mode
(raw ECG in the morphology module), R-R interval graphs
(R-R module) and other arrhythmias markers (Figure 1 and
Figure 4). Each network or each ECG lead can be enabled
or disabled with instantaneous feedback after reanalysis, to
identify which modules and which ECG lead contributed
most to the output. Increased interaction between clinical
Holter experts and AI developers is likely to improve future
DL performances.33

The modular approach is also expected to be useful for
improvement of distinct tasks in the signal analysis of
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Holter recordings. Despite the overall excellent perfor-
mance of our algorithm, discrimination between Afib
and Afl was less perfect. The analyses of the diagnosis er-
rors of the AI-based algorithm are highly informative.
Currently, in the P wave DL network, we used coherent
time averaging of normal cardiac beats. The complexes
were aligned on the R peak sample (sampling rate 200
Hz, Figure Appendix A.3) and likely there was a signifi-
cant variation of the trigger point over time (jittering).
Alternately, in a next version of the DL model, the P-
wave network will be updated by replacing time averaging
with selection of reference, single individual complexes
based on optimal signal-to-noise ratio of the atrial electri-
cal activity. Another improvement will be to interface the
morphology and the P-wave networks with multi-lead
Holter recordings. Finally, in a revised version of the
DL model, enabling and disabling each network will be
automated, based on quantitative ECG features such as
signal-to-noise ratio.

Finally, the modular architecture of our algorithm will
allow us to assess the diagnosis value of each of its parts,
providing some clues for explainability.

Limitations
The classifier’s performance was assessed using the F1
score. This metric aims to evaluate a model’s ability to
accurately predict positive samples by calculating the har-
monic mean of sensitivity and positive predictive value.
However, its effectiveness can be limited by its indepen-
dence from the prevalence of the predicted condition
and its inability to provide information about the error dis-
tribution.

As said above, the only false-negative ATA detection was
related to a short 2-minutes AFib episode on a 24-hour
recording. It was the only episode of ATA during the moni-
toring, with otherwise regular sinus rhythm and absence of
atrial extrasystole. Likely the application of HMM in such
instance is acting as a “soft filter,” and indeed disabling the
HMM as allowed by the user interface restores in this
recording Afib detection. In this study, Afib episodes of
approximately 5 minutes’ duration were accurately detected.
A low ATA burden is associated with a lower risk of throm-
boembolic,8–11 but nonetheless the DL software must be
improved, and manual deactivation of the HMM cannot be
considered intuitive.

Another limitation of this study lies in the spectrum of
ATA episodes in the H-DB, with many permanent ATA
cases or many recordings in stable sinus rhythm. In our study,
there were no episodes of regular atrial tachycardia. In addi-
tion, examples with frequent atrial extrasystoles and frequent
atrial runs are also missing, and the performances of our
software should be reevaluated with an enriched annotated
database.

Ultimately, the duration of ambulatory recordings in clin-
ical practice is increasing up to 1 to 4 weeks, and noise levels
can be high in such situations. It is therefore also imperative
to collect an annotated ATA database representative of these
trends.
Conclusions
Using a large, beat-to-beat annotated, 2-lead Holter data-
bazse, we built a modular DL software based on a modular
structure mimicking expert physician ECG interpretation to
classify atrial rhythm. The overall performance of the classi-
fier was excellent. Nonetheless, there were clinically signifi-
cant residual errors, most often related to the classification of
the atrial arrhythmia type (Afib vs Afl). The modular struc-
ture of the algorithm helps to edit and correct the AI-based
first-pass analysis with a dedicated interface and will provide
a first step toward explainability.
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