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Abstract: High-temperature stress severely affects rice grain quality. While extensive research has
been conducted at the physiological, transcriptional, and protein levels, it is still unknown how
protein phosphorylation regulates seed development in high-temperature environments. Here,
we explore the impact of high-temperature stress on the phosphoproteome of developing grains
from two indica rice varieties, 9311 and Guangluai4 (GLA4), with different starch qualities. A total
of 9994 phosphosites from 3216 phosphoproteins were identified in all endosperm samples. We
identified several consensus phosphorylation motifs ([sP], [LxRxxs], [Rxxs], [tP]) induced by high-
temperature treatment and revealed a core set of protein kinases, splicing factors, and regulatory
factors in response to high-temperature stress, especially those involved in starch metabolism. A
detailed phosphorylation scenario in the regulation of starch biosynthesis (AGPase, GBSSI, SSIIa,
SSIIIa, BEI, BEIIb, ISA1, PUL, PHO1, PTST) in rice endosperm was proposed. Furthermore, the
dynamic changes in phosphorylated enzymes related to starch synthesis (SSIIIa-Ser94, BEI-Ser562,
BEI-Ser620, BEI-Ser821, BEIIb-Ser685, BEIIb-Ser715) were confirmed by Western blot analysis, which
revealed that phosphorylation might play specific roles in amylopectin biosynthesis in response
to high-temperature stress. The link between phosphorylation-mediated regulation and starch
metabolism will provide new insights into the mechanism underlying grain quality development in
response to high-temperature stress.

Keywords: rice endosperm; phosphorylation; high temperature; sucrose and starch metabolism;
starch biosynthesis

1. Introduction

Rice is an agriculturally major cereal crop worldwide. The yield and quality of rice
are often severely affected by heat stress, and this phenomenon is further aggravated
with the intensified global warming [1]. During endosperm development, exposure to
high-temperature environment results in an accelerated filling rate of rice grains, which
eventually leads to poor grain quality and a severe reduction in yield [2,3]. The im-
pact of high-temperature stress on physiological metabolism has been intensively inves-
tigated [2,4]. Furthermore, transcriptome and proteome profiles in rice endosperm have
been used to explore differences under high-temperature stress at gene [5,6] and pro-
tein [7–9] expression levels. However, a notable paucity exists focusing specifically on
phosphorylation-mediated regulation under heat stress during the grain-filling stage.

It is now well accepted that phosphorylation plays a vital role in the regulation of
many intracellular processes during plant growth and development. The possible role
of protein phosphorylation in the formation of a protein complex participating in starch
synthesis in wheat endosperm was first proposed by Tetlow et al. [10,11]. Later studies
conducted in maize have also revealed a vital regulation role of phosphorylation in forming
a starch-synthesizing protein complex [12,13]. Further examinations of individual enzymes
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basically came from maize endosperm [13,14]. In particular, Makhmoudova et al. iden-
tified the phosphorylation status of SBEIIb at three sites (Ser 286, Ser297, and Ser649) by
Ca2+-dependent protein kinase [15]. With the development of mass-spectrometry-based
techniques [16], several sites of phosphorylation that may regulate starch biosynthesis
were discovered in cereal endosperm [17,18], despite the real functions of those phospho-
sites being still unclear [19]. Qiu et al. identified some phosphorylated proteins in rice
pistils and seeds and focused on the differentially phosphorylated proteins at early seed
development [20]. Developing rice seeds undergo active cell division and differentiation
at the early stage, and 6 to 20 days after flowering (DAF) is the critical period for grain
filling and starch accumulation [21]. Hence, there has been little systematic discussion
at the phosphorylation level from rice endosperm as compared to the other main crops,
especially at the critical periods of starch accumulation. Although several phosphosites
involved in starch synthesis were identified in our previous research [22], an in-depth
investigation under abiotic stress is necessary to gain a more comprehensive understanding
of the regulation pathway.

Here, a label-free quantitative phosphoproteomic analysis was applied to examine the
heat-induced phosphorylation change in two rice varieties with different starch qualities.
As a result, a series of phosphorylation motifs, enzymes, protein kinases, splicing factors,
and other potential regulators involved in seed development were revealed, particularly
the phosphoproteins involved in starch metabolism. The properties of phosphorylation
sites involved in starch synthesis and their change trends in response to heat stress were
comprehensively explored through sequence alignment and site conservation analysis.
Western blot with site-specific phosphopeptide antibodies was used to verify and explore
the dynamic change in phosphorylation related to starch synthesis under high-temperature
stress. Taken together, an in-depth understanding of phosphorylation-mediated regulation
in rice endosperm under heat stress will shed new light on thermal signaling transduction
and functional phosphosites related to starch metabolism.

2. Results

We sought to assess dynamic changes in protein phosphorylation in the developing
rice seed under high-temperature stress. The control and high-temperature treatment
groups were designed for two indica rice varieties, 9311 and Guangluai4 (GLA4). In the
treatment group, heat stress was performed on the fifth DAF, which prevented the potential
effects of high temperature on pollination and seed setting at the early developmental stage.
In addition, the 6, 10, and 14 DAF were designed as sampling time points, corresponding
to the 1, 5, and 9 days of high-temperature treatment, respectively (Figures 1a and S1). The
average temperature of the treatment group (HT; 30–38 ◦C; Figure S1) was 10 ◦C higher
than that of the control group (CT; 20–28 ◦C; Figure S1), while other parameters were
kept the same between two artificial climatic chambers. Immature endosperm samples
were analyzed by LC-MS/MS and Western blot, and the corresponding mature seeds were
harvested for the determination of starch thermal properties.

2.1. Dynamic Changes in Rice Grain Appearance and Thermal Properties under
High-Temperature Treatment

Grain chalkiness is an indicator of abnormally developed endosperm and the most
sensitive trait in response to heat stress [2,3]. It is evident that the chalkiness degree gradu-
ally increased with increasing days of high-temperature treatment (Figure 1b). After 5 days
of treatment, noticeable chalkiness changes were observed in both varieties, demonstrating
the effectiveness of high-temperature treatment (Figure 1b). Besides, shrunken grains were
found after 9 days of treatment, especially in the GLA4-H9 group (Figure 1b).

The thermal properties of the flour samples were determined by differential scanning
calorimetry (DSC) (Figure 1c and Table S1). All GLA4 samples had significantly higher
gelatinization temperatures than the 9311 samples (Figure 1c), indicating a dramatic dif-
ference between the two varieties in starch physicochemical properties, which is in good
agreement with our previous results [22]. One-day treatment only appeared to affect the
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thermal properties of 9311 plants (Table S1). After 5 days of exposure to high-temperature
stress, a significantly higher gelatinization temperature was observed in both varieties, and
this phenomenon was more noticeable after 9 days of treatment (Table S1).

Overall, results of grain chalkiness and thermal properties indicated that high-temperature
treatment for 5 days is sufficient to cause irreversible damage to rice grain quality. Accord-
ingly, samples collected at 10 DAF with 5 days of treatment were the optimal treated group
for subsequent phosphoproteomic analysis.

Figure 1. Effect of high-temperature stress on the rice grain. (a) Schematic diagram of the experimental design and sampling
time points during the grain-filling period with high-temperature treatment. (b) Effect of three high-temperature treatments
on grain morphologies of 9311 and GLA4. Scale bar = 5 mm. (c) Impact of three high-temperature treatments on DSC
thermograms of 9311 and GLA4.

2.2. Phosphoproteins Identified in Rice Endosperm

To elucidate how heat stress influences rice endosperm at the phosphorylation level,
a label-free analysis was performed to quantify phosphoproteome from two indica rice
cultivars under normal and high-temperature conditions. As depicted in Figure S2a, sam-
ples of 9311-C, 9311-H, GLA4-C, and GLA4-H were collected, pretreated, lysed, digested,
and enriched, and then analyzed by LC-MS/MS. To validate the accuracy of MS data, we
confirmed the mass error of all identified peptides and found the distribution satisfied an
expected error control (Figure S2b). Meanwhile, the distribution of peptide length was
checked to ensure that sample preparation reached standard conditions (Figure S2c).

In all endosperm samples, our workflow led to the identification of 9994 phosphosites
located on 3216 proteins, of which 7604 phosphosites were quantifiable (Figure 2a and
Table S2). The majority of the phosphosites quantified were identified as serine (89.2%), fol-
lowed by threonine (10.5%) and tyrosine (0.3%) residues (Figure 2b). Among the 5801 pep-
tides quantified, singly phosphorylated peptides were dominant (80.2%), and around
3.7% peptides carried three or more phosphorylation modifications (Figure 2b). The num-
ber of phosphorylated sites in a single protein also varied considerably, with the range
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from 1 to 55 residues (Figure 2c). Over half phosphoproteins possessed two or more
sites, indicating the functional importance of proteins with multiple phosphosites in reg-
ulatory networks. Distribution of the phosphorylation sites in specific protein regions
suggested that N- and C-terminal regions are preferentially phosphorylated (Figure 2d),
which were consistent with data obtained in Arabidopsis anthers [23]. A comparative anal-
ysis between our dataset and the japonica dataset (P3DB database) [24] and the previously
published phosphoproteome of japonica rice endosperm [20] was performed (Figure 2e).
Over 1000 phosphorylated proteins were common to all three datasets, and 1207 phos-
phoproteins were newly identified in this study. Moreover, we discovered 7365 novel
phosphosites involved in 1875 phosphoproteins compared with our previous research
(Figure 2f) [22].

Figure 2. Characteristics of the phosphoproteome of rice endosperm at the critical grain-filling stage. (a) Summary of
phosphoproteome analysis in rice endosperm. (b) Distribution of the number of phosphates and phospho-amino acid
residues for all quantifiable phosphopeptides. (c) Frequency distribution of phosphoproteins according to the number of
phosphosites identified. (d) Positional distribution of the identified phosphosites in protein sequences. (e) Overlap of the
identified phosphoproteins in our study with phosphoproteins in the japonica datasets—the P3DB database [24] and the
previously published phosphoproteome of japonica rice endosperm [20]. (f) Comparative analysis of phosphosites and
phosphoproteins between the current phosphoproteome and our previous research [22].

2.3. A Temperature-Regulated Rice Endosperm Phosphoproteome

To detect possible changes in the phosphoproteome attributable to heat stress, we then
performed label-free quantification analysis on all quantifiable phosphosites within our
dataset. Only 2680 common phosphosites were quantifiable for all sample groups due to
reversible phosphorylation induced by high temperature (Figure 3a). More phosphosites,
phosphopeptides, and phosphoproteins were identified in 9311-H and GLA4-H groups
(Figure 3b), suggesting that exposure to heat stress may increase the phosphorylation
events in rice endosperm. Principal component analysis (PCA) showed that three repeats
of each sample clustered together, and four groups were clearly separated (Figure 3c).
Pearson’s correlation coefficients were also generated, suggesting good reproducibility and
consistency between replicates (Figure S2d).
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Figure 3. A temperature regulated rice endosperm phosphoproteome. (a) Venn diagram depicting the comparison of phos-
phosites (phosphoproteins) from four sample groups. (b) Number of phosphosites, phosphopeptides, and phosphoproteins
detected in 9311-C, 9311-H, GLA4-C, and GLA4-H. (c) Principal component analysis (PCA) based on phosphorylation
intensity across all four sample groups with three biological repetitions. (d) Differentially expression profiles of phosphosites
(phosphoproteins) in 9311 and GLA4 under high-temperature stress. The expression profiles of selected phosphosites
(p < 0.05, log2 (fold change) >1) were normalized using the Z-score and presented in a heatmap. In each variety, phosphosites
(phosphoproteins) with a consistent presence/absence expression pattern and significantly regulated from the statistical
test were combined for subsequent comparative analysis.

To detect possible changes in the phosphoproteome attributable to heat stress, we
then performed label-free quantification (LFQ) analysis on all phosphosites identified
within our dataset (Figure 3d). Where LFQ values were missing, the data were filtered
to identify those phosphosites with a consistent presence/absence expression pattern.
These analyses yielded 421 phosphosites that were only present in 9311-H and 364 that
were only present in 9311-C (Figure 3d and Table S3). Similarly, 987 differentially abun-
dant phosphosites were present in GLA4-H and 185 phosphosites that only occurred
in GLA4-C (Figure 3d and Table S4). Beyond that, a total of 410 and 508 significantly
changed phosphorylation sites (p < 0.05, log2 (fold-change) >1) were screened out in 9311
and GLA4, respectively, where LFQ data was available in both conditions (Figure 3d
and Tables S5 and S6). For subsequent comparative analysis, phosphorylation sites that
were uniquely identified in either condition and significantly regulated from the statistical
test were combined and divided into four groups (9311-Up, 9311-Down, GLA4-Up, and
GLA4-Down; Figure 3d). The number of significantly down-regulated phosphosites was
far greater than up-regulated phosphosites in the 9311 variety. However, the opposite
trend was observed in GLA4 plants. Comparing four sets of differential phosphorylated
sites, we found only 132 phosphosites were commonly up-regulated in both rice varieties
and 24 were commonly down-regulated (Figure S3a). In addition, there were 74 phos-
phosites showing completely opposite regulatory trends in two cultivars induced by high
temperature (Figure S3a). When all significantly changed phosphosites corresponded to
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the specific protein, comparison results become even more complicated. There was a
compelling phenomenon that 39 phosphoproteins of 9311 and 43 of GLA4 displayed a
combination of up- and down-regulated phosphosites (Figure S3b). It is possible, therefore,
that the status of these phosphosites was directly controlled by associated kinases and
phosphatases.

2.4. Regulation of Phosphorylation Motifs and Kinases

The in vivo phosphorylation status induced by heat stress is often inseparable from
protein kinase activity, which is usually regulated by upstream kinases or autophosphory-
lation. Up to now, few studies have examined the association between high-temperature
response and protein phosphorylation involved in the signaling pathway [25,26]. It is
now well established from a variety of studies that candidate substrates for the specific
kinase are identified based on motif analysis [27]. A detailed investigation with a focus on
potential phosphorylation motifs was, therefore, first conducted. We retrieved 8 and 15
over-represented motifs from the Ser-/Thr-containing differential phosphopeptides in 9311
and GLA4, respectively (Figure 4a).
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Both 9311 and GLA4 shared a number of consensus motifs ([sP], [LxRxxs], [Rxxs],
[tP]; Figure 4a). Motifs presented are the results induced by multiple kinases, which were
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activated by high-temperature stress. Proline-directed motifs, such as [sP] and [tP], were
recognized by kinases CDK, RLK, RLCK, MPK, SnRK2, CDPK, and SLK [27]. Note that
[RxxS], which could be recognized by CDPKs and SnRKs, was also the 14-3-3 binding
motif [28,29]. [LxRxxs] was known to be targeted by CDPKs [29]. The acidic motif [SDxE]
was unique to 9311 and known to be targeted by CDPK, RLK, and AGC [27]. Notably, it is
plausible that CDPKs were the key kinases in response to high-temperature stress. because
all consensus motifs and [SDxE] were potential substrates for CDPKs. Apart from common
motifs, the phosphosites from GLA4 samples yielded more enriched motifs than 9311,
indicating a more complicated kinase system in response to heat stress in GLA4 plants
(Figure 4a). In support of this, we found the number of up-regulated phosphosites in GLA4
kinases is considerably greater than that in 9311 kinases (Figure 3d).

In total, 192 protein kinases with 691 phosphorylated sites were identified in our phos-
phoproteomic dataset (Table S7), including RLKs (87, 45.3%), TKL (22, 11.5%), CMGC (21,
10.9%), and CAMK (20, 10.4%) [30]. Further enrichment analysis indicated that the family
of TKL, CMGC, CAMK, STE, and CK1 was over-represented (Figure S4a). Under heat
stress, only 47 phosphosites of kinases showed significant up-regulation in 9311, whereas
the up-regulated sites in GLA4 were up to 77 (Table S7). Of the 148 phosphosites that were
significantly regulated (Figure 4b), only 16 phosphosites showed the same regulatory trend
in both varieties, while 4 phosphosites showed opposite regulatory trends (Figure S4b). In
this sense, it could reasonably explain the vast difference in the phosphorylation regulation
pattern between the two varieties (Figure 3d).

2.5. Functions for Differentially Phosphorylated (DP) Proteins

GO enrichment was applied to analyze the DP phosphoproteins to obtain an overview
of the phosphorylation events during grain development. As expected, the up-regulated
phosphoproteins in both 9311 and GLA4 were highly enriched in terms of heat response,
such as heat acclimation, response to heat [26], and response to temperature stimulus.
Among proteins involved in the heat response, phosphorylation levels of 12 heat shock
proteins (HSPs) increased significantly under heat stresses. Of these, five phosphorylated
sites were found common to both varieties (Tables S3–S7).

In the biological process, the most interesting aspect was the metabolic process in
which abundant phosphoproteins in GLA4-Up and 9311-Down were enriched (Figure S5a
and Table S8). Besides, the up-regulated functional phosphoproteins of 9311 were enriched
in glucan polysaccharide and transduction phosphorylation, while the down-regulated
ones were over-represented in negative regulation. From the molecular function perspec-
tive, ATPase activity, kinase activity, phosphotransferase activity, and binding for GTP and
nucleic acid binding were mainly enriched, indicating the importance of kinases, phos-
phatases, and transcription factors in the phosphorylation regulatory network (Figure S5b
and Table S9). Figure S6 provides the summary statistics for the phosphorylated TFs.
Overall, 140 phosphorylated TFs that were divided into 35 families were identified [31].
The largest fraction was identified as the C3H family (21, 15%), followed by bZIP (18,
12.9%) and Trihelix (11, 7.9%) (Figure S6). Meanwhile, these phosphorylated TF families
were highly enriched when using the total TFs identified in the indica rice database as a
reference.

KEGG database annotation was then applied to predict the potential metabolic path-
ways. In the 9311 group, DP phosphoproteins were mainly over-represented in the pathway
of spliceosome, transcription, starch and sucrose metabolism, and aminoacyl-tRNA biosyn-
thesis (Figure S5c). In the GLA4 group, three genetic information pathways (ribosome
biogenesis in eukaryotes, mismatch repair, and nucleotide excision repair) and the spliceo-
some pathway were enriched (Figure S5c).

2.6. Phosphoproteins Identified in Starch Metabolism

There is no doubt that sucrose and starch metabolism was the most noteworthy
pathway with a large number of phosphoproteins involved (Table S10). A systematic and
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detailed investigation was then conducted of the specific proteins involved in sucrose and
starch metabolism (Figure 5). The critical functions of phosphoproteins involved can be
listed as follows: sucrose hydrolysis (SUS, INV, SPS, FK, HK, PGI, PGM, and UGPase),
starch synthesis (AGPase, GBSSI, SSIIa, SSIIIa, BEI, BEIIb, ISA1, PUL, Pho1, and PTST),
starch hydrolysis (BAM), and protein transport (SUT1, BT1, and GPT). To assess how high-
temperature stress affects the crucial pathway, the significantly differential phosphosites
in 9311 and GLA4 were displayed in the heatmap of specific proteins (Figure 5). From
the perspective of sucrose hydrolysis, almost all enzymes that provide G1P for starch
synthesis possessed phosphorylation sites (Figure 5). Reversible phosphorylation events
were flexibly regulated by high-temperature stress in starch biosynthesis, whereas only
one enzyme possessed phosphorylation modification in the starch degradation pathway
(Figure 5).

In starch biosynthesis, the key rate-limiting enzyme AGPase, including AGPL1,
AGPL2, AGPL3, AGPS1, and AGPS2, was phosphorylated among all sample groups
(Figure 5 and Table S10). Interestingly, heat stress down-regulates the phosphosites of
AGPL2 located in the N-terminal and up-regulates the sites in C-terminal, even though
those sites in 9311 and GLA4 were found at different positions (Figure 5). In GLA4, most
phosphosites of AGPS2 were down-regulated, probably owing to the regulation of protein
abundance of AGPase under high-temperature stress [7].

Our study identified a large number of phosphorylation sites in GBSSI and found that
6 phosphosites were located at the glycosyltransferase 5 domain (Figure 6a). However,
no valid phosphorylation intensity value was detected in 9311 due to a relatively lower
phosphorylation level caused by the low abundance of GBSSI protein (Figure S7 and S8).
In GLA4 groups, it is obvious that exposure to heat stress resulted in increasing GBSSI
phosphorylation intensity at S123, S169, and S553. Phosphorylation events were prevalent
in SSIIa and SSIIIa with more than 20 phosphosites but absent in SSI as well as SSIV
(Figures 5 and S9). In GLA4 groups, heat stress triggered the increasing phosphorylation
intensity of SSIIIa-T98. Likewise, the phosphorylation intensity of S915 and S1058 was
greatly enhanced in the 9311 heat-stressed group. SSIIIa-S915 was conserved among all
plants’ SSIII and located at the CBM53 domain (Figure S9), which has been shown to be
necessary for enzyme activity and affinities toward various glucans. Interestingly, a single
peptide of SSIIa could only be detected under normal conditions in 9311, although the
phosphosite could not be accurately localized (either S260 or S261; Figure S9).

Three BE isozymes possessed the same CBM48, GH13, and Aamy_C domains (Figure 6b).
However, the phosphorylation events among BEs were somewhat discordant, with 10, 2,
and 11 phosphosites involved in BEI, BEIIa, and BEIIb (Figure 6b and Table S10), respec-
tively. There was an intriguing correlation among OsBEI, OsBEIIa, and OsBEIIb in that five
serine residues of the three isozymes were phosphorylated at the same position (Figure 6b).
More concretely, the S562, S611, and S749 of OsBEI corresponded to the S562, S685, and S808
of OsBEIIb, respectively, and the OsBEIIb-S323/324 corresponded to OsBEIIa-S466/S467
(Figure 6b). In the 9311 group, heat stress triggered phosphorylation at S11 and T580 of
BEIIb and exerted suppressive effects on BEIIa-S467 (Figure 5). Only one phosphosite
(BEIIb-S173) in GLA4 was up-regulated when exposed to heat stress (Figure 5).

Among 11 phosphosites identified in PUL, phosphoserine 221 in 9311, within the
PULN2 domain of PUL, was 4.9-fold up-regulated at high temperature. Another phe-
nomenon we observed is that S795 and S405 appeared only in 9311-C and GLA4-C, respec-
tively (Figure 5). We found a widespread occurrence of Pho1 phosphorylation events in
rice endosperm, and three residues were phosphorylated in the rice L80 region (Figure S10
and Table S10). Here, phosphoserine 376 in 9311 disappeared as the temperature in-
creased (Figure 5). Curiously, this phosphosite in GLA4 could only be detected under
high-temperature conditions. Besides, another three phosphosites (S741, S932, T947) were
significantly up-regulated in GLA4 (Figure 5).
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non-phosphorylated proteins, respectively. The number of phosphosites is shown at the top right of rounded boxes. Sucrose hydrolysis: SUS, sucrose synthase; INV, invertase; SPP,
sucrose-phosphate phosphatase; SPS, sucrose-phosphate synthase; FK, fructokinase; HK, hexokinase; PGI, glucose-6-phosphate isomerase; PGM, phosphoglucomutase; UGPase,
UDP-glucose pyrophosphorylase. Starch synthesis: AGPase, ADP-glucose pyrophosphorylase; GBSSI, granule-bound starch synthase I; PTST, protein targeting to starch; SSI, SSIIa, SSIIIa,
and SSIV, starch synthase I, IIa, IIIa, and IV, respectively; BEI, BEIIa, and BEIIb, starch branching enzyme I, IIa, and IIb, respectively; ISA1, ISA2, isoamylase isoform 1 and 2, respectively;
PUL, pullulanase; Pho1, plastidial phosphorylase. Starch hydrolysis: AMY, α-amylase; BAM, β-amylase; LSF, like sex four; SEX4, starch excess 4; ISA3, isoamylase isoform 3; GWD,
glucan water dikinase; PWD, phosphoglucan water dikinase; DPE1, disproportionating enzyme 1. Protein transport: SUT1, sucrose transporter; BT1, small-solute transporter; GPT,
phosphometabolite transporter; MEX1, maltose transporter; GLT, glucose transporter.
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Apart from the enzymes mentioned above, phosphorylated regulatory factors related
to starch metabolism are given in Figure S11a. Among all seven phosphosites of OsbZIP58,
three sites (S46, S183, S277) of GLA4 samples were up-regulated, while no significantly
regulated phosphosites were observed in 9311. There were 24 residues phosphorylated at
FLO2. Specifically, 9311 witnessed different degrees of significant down-regulation in nine
phosphosites, while for GLA4, only one phosphosite increased considerably. Phosphoserine
277 is located within the bZIP_1 domain, whose function is to mediate sequence-specific
DNA binding properties and the leucine zipper.

2.7. Dynamic Change in Phosphorylation Status Related to Starch Synthesis

To further validate and explore the dynamic change in the phosphorylation status
involved in starch synthesis under high-temperature stress, site-specific phosphopeptide
antibodies (BEI-Ser562, BEI-Ser620, BEI-Ser821, BEIIb-Ser685, BEIIb-Ser715, SSIIIa-Ser94)
were prepared, which were identified in a previous study [22] and the present study
(Table S11). The mass spectrum of synthetic peptides ensures the quality of blocking pep-
tides (Figure S12). Only when specific phosphopeptides were incubated with antibodies
did the specific band disappear (Figure S13), confirming the high efficiency and speci-
ficity of the phosphor-antibodies. The phosphorylation status of SSIIIa (SSIIIa-S94), BEI
(BEI-Ser562, BEI-Ser620, BEI-Ser821), and BEIIb (BEIIb-Ser685, BEIIb-Ser715) was further
confirmed by Western blot analysis (Figure 7a–i).

Figure 7. Western blot assay of some phosphorylated proteins. (a–c) Western blot assay of the phosphorylation of SSIIIa-S94,
BEI-S562, BEI-S620, BEI-S821, BEIIb-S685, and BEIIb-S715. The best blot of three independent experiments is shown here.
The results of the independent experiments followed a similar trend in expression. Uncropped gels are shown in Figure S19.
(d–i) Evaluation of the relative phosphorylation intensity of starch-synthesis-related enzymes at the three grain-filling stages
under high-temperature stress. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Starch synthase IIIa (SSIIIa) has the second-highest starch synthase (SS) activity and
plays a critical role in forming long B chains, most notably B2 and B3 chains [32,33].
Considering the phosphorylation event of SSIIIa-S94 was identified multiple times in
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rice endosperm [20,22], we speculated that S94 is a crucial site for protein function and
prepared a site-specific phosphopeptide antibody for Western blot (Table S11). To eliminate
the impact of protein abundance on the phosphorylation level, the relative phosphorylation
intensity was used to evaluate the regulation of the modification level of the phosphosite.
As shown in Figure 7d, the relative phosphorylation intensity of SSIIIa-S94 decreased with
the growth period, and high-temperature treatment exacerbated the inhibitory tendency.
In the meantime, SSIIIa protein expression witnessed significantly and relatively mild
rises in 9311 and GLA4 at 10 DAF, respectively (Figures 7a and S8), which was inversely
associated with the phosphorylation status of S94. Results from immunoblotting analysis at
10 DAF were consistent with the trend tested by the mass spectrum except for the GLA4-C
group (Figure S14). We attributed this slight inconsistency to the different characteristics
of the normalization methods. In other words, high temperature severely inhibits the
phosphorylation level of SSIIIa-S94, and the increase in protein expression does not appear
to compensate for the phosphorylation reduction.

Branching enzymes (BEs) including BEI, BEIIa, and BEIIb, are fundamental to form
a distinct fine structure of amylopectin [34]. Given the repeated identification in the
phosphoproteome [22] and high probabilities of these phosphosites, it is worth to determine
the phosphorylation intensity of BEI-S562, BEI-S620, BEI-S821, BEIIb-S685, and BEIIb-S715
(Figure 7b,c). Large proportion of missing values and poor repeatability of LC/MS-MS
data in these specific phosphosites made the trend difficult to evaluate (Figure S14), and
statistics from immunoblotting analysis may compensate for the deficiency. A significant
decline in both varieties was observed in the relative phosphorylation intensity of BEI-S620,
BEI-S821, and BEIIb-S715 at 14 DAF (Figure 7f,g,i). Besides, evident alterations in the
phosphorylation status of BEI-S821 and BEIIb-S715 already appeared at 6 DAF (Figure 7g,i).
On the contrary, BEI-S562 and BEIIb-S685 changed their phosphorylation status based on
the BE protein expression with temperature stimulus (Figure 7e,h).

To gain a better understanding of the phosphorylation-mediated regulation mode of
starch-synthesis-related enzymes under abiotic stress, we counted the number of significant
differences for each of the phosphosites mentioned above and analyzed their relationship
with site conservation (Table S12). A meaningful outcome may be that phosphorylation
levels of conserved phosphosites (BEI-S562 and BEIIb-S685) were not significantly affected
by heat stress, while significant phosphorylation changes were observed in non-conserved
phosphosites (SSIIIa-S94, BEI-S620, BEI-S821, and BEIIb-S715) at different periods of grain
development (Table S12).

3. Discussion

Generally, japonica rice is used as the primary material for phosphoproteomic investi-
gations [20,24]. However, research focus on indica rice seems even more necessary because
it is the most widely cultivated rice in Asia, with over 70% of rice production worldwide.
As shown in Figure 2e, 1114 phosphoproteins are common to all three datasets, whose phos-
phorylation status is ubiquitous across different rice varieties or tissues (Figure 2e). Notably,
1207 phosphoproteins were newly identified in this study, substantially filling the missing
information in the rice phosphorylation database. In particular, a large number of phospho-
proteins related to starch metabolism, including abundant enzymes, transcription factors,
and kinases, were newly identified. Compared with our previous research [22], the current
phosphoproteome increased 73.7% identification (7365 phosphosites; Figure 2f), which
likely benefited from the improved experimental technique and stress treatments. The
current research covered 89.8% phosphoproteins detected previously (Figure 2f), further
confirming the reliability of the experiment. Taken together, our indica rice phosphopro-
teome, as the most extensive set of identified phosphosites in rice endosperm, greatly
enriches the plant post-translational modification information.

Phosphorylation-mediated regulation associated with high-temperature stress has
been explored in rice leaves [35]. Researchers have found the dephosphorylation of ribulose
bisphosphate carboxylase (RuBisCo) and the phosphorylation of ATP synthase subunit-β
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under heat stress [35]. However, the potential phosphorylation-mediated regulation re-
mains to be disclosed owing to the limited data. A recent large-scale phosphoproteomic
study of wheat leaf and spikelet revealed temperature-induced interconversion of neigh-
boring phosphorylation residues [26]. So far, the phosphorylation-mediated potential in
cereal endosperm under heat stress remains unexplored. This study is the first large-scale
investigation to focus specifically on the phosphorylation status of rice endosperm under
high-temperature stress.

3.1. An Essential Role of CDPKs against Heat Stress

CDPKs belong to the CAMK kinase family and sense changes in the cytoplasmic
Ca2+ concentration in response to abiotic stress and translate these perceived signals into
subsequent downstream signaling events to trigger response mechanisms/pathways [36].
Among all differentially regulated kinases (Table S7), 9 CDPKs with 15 residues occurred
most in all kinase subfamily (Figures 4b and S15), and 14 phosphosites tended to be up-
regulated in a high-temperature environment (Figure 4b), suggesting that CDPKs is likely
a critical factor activated by high temperature. Similarly, this inference was supported by
the result of phosphorylation motif analysis presented above that consensus motifs ([sP],
[LxRxxs], [Rxxs], [tP]) induced by heat stress are potential substrates for CDPKs (Figure 4a).
In other words, evidence from two aspects may provide novel insights for subsequent
studies of CDPKs in response to heat stress.

In the literature, so far, kinase–substrate networks induced by high-temperature have
not been investigated in detail [26]. Here, we focused on a potential regulatory network me-
diated by SPK, a kind of CDPK specifically expressed in immature endosperm. SPK showed
increasing the phosphorylation intensity of three sites induced by heat stress, and two
up-regulated phosphosites (S303, S317) were shared by both vaterites (Figures 4b and S11b
and Table S7). Based on this finding, we boldly speculated that the kinase activity of SPK is
subsequently activated to deal with the possible deficiency in starch accumulation induced
by heat stress. Using the approach of in vitro phosphorylation, Asano et al. found that a ser-
ine residue at the N-terminal region of sucrose synthase is a target of SPK [37]. However, it
is still unclear which sucrose synthase isoform(s) is phosphorylated actually in vivo. In this
study, four possible target phosphosites were screened from developing seeds for the first
time: SUS2-S10, SUS3-S15, SUS4-S11, and SUS5-S12 (Figure S11b). Under high-temperature
treatment, only SUS5-S12 in 9311 was significantly up-regulated as we expected, but the
phosphorylation intensity of SUS2-S10 was down-regulated in GLA4 (Figure 5). In ad-
dition, no significant differences emerged in the phosphorylation intensity of SUS3-S15
and SUS4-S11. Two plausible reasons could explain those findings. One possibility is that
SPK alone does not induce these phosphosites. Indeed, the phosphorylation status of the
specific sites is likely a consequence of multiple protein kinases and phosphatases. Another
potential explanation is that the protein expression of SUSs is severely inhibited by heat
stress [7] so that the up-regulated phosphorylation is not sufficient to compensate for the
loss of protein expression.

3.2. RNA Splicing Is a Critical Pathway in Response to Heat Stress

RNA splicing, a form of RNA processing, removes introns and joins exons together to
make the pre-mRNA transform into a mature messenger RNA (mRNA). Recent observa-
tions have suggested that post-transcriptional regulation, especially alternative splicing
(AS), appears to function in plant responses to environmental stress [38]. In our phospho-
proteomic dataset, the spliceosome pathway was greatly over-represented in both varieties
by KEGG pathway predication (Figure S5c). Phosphorylation events (430 phosphosites cor-
responding to 80 proteins) occurred within almost all spliceosome complexes (Figure S16),
indicating that RNA splicing might be a critical pathway response to high-temperature
stress in rice endosperm.

Ser/Arg (SR)-rich proteins are a group of RNA-binding proteins that finely regulate
alternative splicing by interacting with pre-mRNA sequences and splicing factors during
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spliceosome assembly [39]. Our work found a substantial number of phosphorylation
sites on rice SR proteins (RSZp21a, RSZp21b, and RSZ23; Figure S17). In rice, a prior
study noted the importance of SR protein in constitutive and alternative splicing of Pre-
mRNA, and RSZp23 enhanced the splicing of the Wxb gene at the proximal sites [40]. It is
worth mentioning that the RS domain of Arabidopsis RSZp22, homologous to rice RSZp23,
regulates its shuttling between nucleoplasm and nucleolus through its level of phospho-
rylation [41,42]. Therefore, in the present study, we focused on the 12 phosphorylated
serine sites of RSZp23 and found that nine phosphosites were located in the sequence of
RSYSRSP at the RS domain (Figure S17). We considered whether there was a plausible
mechanism by which the phosphorylation of the RS domain in RSZp23 might influence
the splicing efficiency of Wxb. The indica variety 9311 carrying Wxb observed a down-
regulated phosphorylation trend in RSZp23 induced by heat stress (Figure S18). In contrast,
GLA4 exhibited up-regulation trends (Figure S18). Under high-temperature treatment
(10 DAF), the GBSSI protein in 9311 slightly increased, whereas that of GLA4 declined
(Figures S7 and S8). This inconsistency may be due to post-transcriptional regulation of
RSZp23, which is likely a major factor affecting the alternative splicing of Wx.

Previous studies have revealed the association between the splicing efficiency of Waxy
and temperature in that high temperature caused a significant decrease in the number of
mature mRNAs [43]. Overall, the results presented in this study provide valuable insights
into the hypothesis that adjustment of the RSZp23 phosphorylation pattern induced by
high temperature affects the splicing efficiency of Waxy and eventually influences amylose
biosynthesis. In this sense, the potentially essential differences of SR proteins between 9311
and GLA4 at the phosphorylation level may provide novel ideas for the improvement of
starch quality.

3.3. Phosphorylation Regulates Amylose Biosynthesis

Amylose content is one of the key factors that strongly influence rice grain quality.
Regretfully, to date, few studies have been able to carry out any systematic research of
amylose biosynthesis mediated by phosphorylation, particularly under abiotic stress. The
potential roles of phosphorylation in regulating amylose biosynthesis were addressed in
three dimensions (Figure 6c).

First, the phosphorylation of regulatory factors and splicing factors may affect the
expression of GBSSI (Figure 6c). In rice endosperm, OsbZIP58 bonds directly to the promot-
ers of multiple rice starch biosynthetic genes in vivo, including AGPL3, Wx, SSIIa, SBEI,
BEIIb, and ISA2, which affects the accumulation of starch during grain development [44].
A mutant analysis reported that FLO2 alters the expression of various genes involved in
sucrose and starch metabolism by mediating protein–protein interactions [45]. Although
there is currently no evidence of the biological functions of phosphorylated regulatory
factors, a large number of phosphosites detected in the present study still provide a pos-
sible connection between the gene expression of GBSSI and the phosphorylation status
of those regulatory factors. In addition, as mentioned above, the phosphorylation status
of RSZp23 may affect the splicing efficiency of Wxb, modulating GBSSI expression at the
post-transcriptional level.

Second, the most crucial point to note is that 11 phosphosites of GBSSI were identified
in GLA4 (Figure 6a). In rice endosperm, GBSSI is a key enzyme specifically responsible
for elongating amylose polymers and serves as the only protein known to be required for
amylose synthesis [46]. In recent years, Pro-Q Diamond dye and LC-MS/MS have been
employed to determine the phosphosites of GBSSI in rice and wheat endosperm [47,48].
More specifically, Zhang et al. found at least nine phosphosites in rice GBSSI and inferred
that the S415P substitution may modulate its enzyme activity regulated by phosphory-
lation levels [49]. As far as we know, our study is the most extensive-scale study of the
GBSSI phosphorylation event. Sequence alignment analyses indicated that the six residues
are phosphorylated at the same position that corresponds to japonica rice and wheat
(Figure 6a) [48,49]. Remarkably, all significantly up-regulated phosphosites (S123, S169,
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and S553) are conserved among plant GBSSI, suggesting their functional importance. De-
spite these promising results, further data collection is required to determine precisely
how heat affects the phosphorylation level of GBSSI and subsequently influences amylose
synthesis.

Third, protein targeting starch (PTST) was phosphorylated in rice endosperm (Figure 6c).
PTST is originally a carbohydrate-binding scaffold protein that interacts with GBSSI as
a pre-requisite for subsequent starch granule binding in Arabidopsis [50]. Zhong et al.
carried out a series of experiments and confirmed the vital importance of PTST for amylose
biosynthesis in maize endosperm [51]. Our study revealed two novel phosphosites (S213
and S289) in indica rice endosperm. The phosphorylation of S289 was uniquely detected
at 9311-H. Similarly, the intensity of GLA4-H was 3.71-fold in comparison with GLA4-C,
although this difference did not reach statistical significance (Figure 5). It is thus likely that
kinases targeting this phosphosite might be activated by high temperature and eventually
affects the localization of GBSSI.

3.4. Phosphorylation Regulates Amylopectin Biosynthesis

Amylopectin is the major component of starch and serves as a key substance in
rice grains. Several works on maize and wheat endosperm have emphasized the vital
importance of protein phosphorylation in the formation of a starch-synthesizing protein
complex [10,11]. Dephosphorylation of BEs and SSs is associated with reduced activity and
protein complex formation [10–12,52]. In rice endosperm, although several investigations
observed the importance of high-molecular-weight complexes for maintaining the activities
of corresponding key enzymes [53], the phosphorylation-dependent formation of the
complexes remains unknown [54]. In this sense, sequence alignment analysis was carried
out to obtain the information about the similarities and differences between rice and other
plants.

SS, covering four isoforms, SSI, SSII, SSIII, and SSIV, has been attributed to catalyze
the chain elongation reaction of α-1,4-glucosidic linkages in amylopectin synthesis [55].
Analysis of cereal endosperm appears to show that each isoform of SS performs a specific
role in amylopectin synthesis [10]. Consistent with the review by Croft et al., sequence
alignment analysis revealed that approximately all SSIIa phosphosites identified are not
conserved among various plant species [19]. It has been demonstrated that wheat starch
synthesis enzymes SSI and SSIIa are phosphorylated [11,48] and the protein complex
including SSII is phosphorylation dependent [10,11]. However, relevant evidence in rice
SSIIa is still lacking. Nakamura et al. concluded that SSIIa activity is a determinant
affecting thermal gelatinization properties [46]. Gelatinization temperature witnessed a
clear trend of significantly increasing in 9311 under heat stress (Table S1). Interestingly,
the phosphorylation intensity of a single peptide of SSIIa was only detected in 9311-C
(Figure 5), suggesting that enzyme activity and protein complex formation are likely to be
determined by the phosphorylation status rather than the protein abundance.

BEs are responsible for catalyzing the formation of α-1,6-glucosidic linkages of amy-
lopectin in rice endosperm [55]. The phosphorylation sites of BEs with different conser-
vations may display variations in protein structure, binding location, and kinase speci-
ficity [19]. To probe such possibility in plant BEs, we, thus, performed sequence alignment
analyses of BEs from eight plants (rice, maize, barley, wheat, potato, sorghum, pea, and Ara-
bidopsis) and focused on novel identified phosphorylation sites (Figure 6b). As is apparent,
some phosphosites were conserved among all plant BEs, while others were species specific
(Figure 6b). In particular, some residues of OsBEIIb (S323/S324, S625), OsBEIIa (S466/467),
and OsBEI (S562) were phosphorylated at the same alignment positions when compared
with maize (Figure 6b) [15,56–58] and wheat (Figure 6b) BEs [59,60]. Moreover, a close
link was observed in three BE isoforms in that they possessed overlapping phosphosites
(Figure 6b). In the present case, plant BEs possess the most conserved phosphorylation
pattern among all starch-synthesis-related enzymes, suggesting a high probability of the
conserved regulation mechanism in cereal endosperm.
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Western blot analysis of five residues of rice BEs (BEI-S562, BEI-S620, BEI-S821, BEIIb-
S685, and BEIIb-S715) further verified that the degree of phosphorylation change is possibly
significantly associated with corresponding site conservation (Figure 7e–i and Table S12).
In other words, high-temperature treatment tends to have a greater effect on non-conserved
phosphosites. This phenomenon can also be confirmed in phosphoproteomic analysis in
that heat stress triggered phosphorylation at S11 and S173 of BEIIb but exerted suppressive
effects on BEIIa-S467. Only the conserved phosphosite BEIIb-T580 located at GH13 was an
exception, showing an up-regulation trend under high-temperature stress in 9311 groups.
Overall, our findings still support the hypothesis that BEI-S562 and BEIIb-S685, as con-
served sites in the functional domain, reflect steady-state phosphorylation levels during
heat stress to maintain the relative stability of essential functions. As non-conserved sites
that may play specific roles, BEI-S620, BEI-S821, and BEIIb-S715 might exhibit more flexible
phosphorylation regulation patterns when exposed to an adverse environment. These
findings contribute to a better understanding of phosphorylation-mediated regulation
under abiotic stress and provide a solid basis for subsequent preparation of corresponding
mutants to verify the specific function in the near future.

DBE consists of isoamylase (ISA) and Pullulanase (PUL) with catalytic function for hy-
drolyzing α-1,6-glucosic linkages [55]. Recent experiments have shown that the function of
PUL appeared to be positively regulated by high temperature [61]. However, a postulated
and legitimately interpreted mechanism for this phenomenon remains absent [61]. Our
present study aims to fill this gap at the phosphorylation level. As shown in Figure 5, the
phosphorylation intensity of S221 was significantly enhanced. It is thus most likely that
the phosphosite (PUL-S221) within the functional domain is regulated by potential kinases
and subsequently affects the enzymatic activity of the domain.

Plastidial phosphorylase (Pho1), a temperature-dependent enzyme, is considered
crucial not only during the maturation of amylopectin but also in the initiation process
of starch synthesis [19]. Satoh et al. examined the effects of low temperature on the pho1
mutant and found an essential role of Pho1 during its initial stages of α-glucan biogenesis,
especially under conditions of low temperature [62]. Hence, they speculated that one
or more other factors are involved to replace Pho1 in a high-temperature environment.
Most phosphosites are conserved among monocotyledonous plants, and five phosphosites
(S341, S932, S939, S944, T974) explicitly localized at the phosphorylase domain are highly
conserved among all plants (Figure S10). In particular, S341 was identified as an active
site pocket of glycogen phosphorylase and similar proteins (cd04300; InterPro), suggesting
a link may exist between phosphorylation and functional activity. An early report has
demonstrated that the serine residue in the L80 region from the sweet potato root is
phosphorylated [63], and we found three phosphosites in the same region, although their
alignment positions were not completely consistent (Figure S10). Under high-temperature
stress, the phosphorylation intensity of T376 exhibited a reverse trend between two varieties
(Figure 5). These phosphosites identified in rice Pho1 with significant differences under
high-temperature stress are expected to become a new breakthrough point for functional
activity research.

4. Materials and Methods
4.1. Plant Materials and Experimental Design

Two indica rice varieties (Oryza sativa L.) 9311 and Guangluai4 (GLA4) were used to
examine the effect of high temperature on the developing rice endosperm with different
starch qualities. The detailed parameters of starch qualities are provided by Pang et al. [22].
All plant materials were planted at the experimental farm of Zhejiang University under
normal rice cultivation conditions until heading. Before the flowering stage, all rice plants
were transferred into artificial climatic chambers at a suitable temperature (20–28 ◦C)
with a 14/10 h photoperiod (day/night). Each panicle, on the day of rice flowering, was
tagged to facilitate collecting samples at defined developmental stages. Five days later, rice
plants of the treatment group were moved into a high-temperature chamber (HT; 30–38 ◦C;
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Figure S1) and then exposed to high temperature for 1, 5, and 9 days. In the meantime, other
plants were still cultivated at a suitable temperature as controls (CT; 20–28 ◦C; Figure S1).
All temperature treatments were completed under other consistent growth conditions, and
the relevant parameters were as follows: the illumination time was 14 h/day (5:00–19:00),
the illumination intensity during the light phase was 10,000–12,000 Lux, the relative hu-
midity was 70–80%, the maximum temperature difference was 8 ◦C, and the average wind
speed was 0.5 m/s. During grain development, rice panicles were handpicked from fresh
plants at different periods (6, 10, and 14 DAF) in three separate biological replicates and
immediately frozen in liquid nitrogen (9311/GLA4-C, 9311/GLA4-H; Figure 1a). For
phosphorylation studies, developing seeds collected at 10 DAF were first determined by
LC-MS/MS and then all samples in three periods were analyzed by Western blot using
site-specific phosphopeptide antibodies. In addition, the remaining seeds were harvested at
maturity for chalkiness degree and starch quality analysis (9311/GLA4-C0, 9311/GLA4-H1,
9311/GLA4-H3, 9311/GLA4-H5; Figure 1a).

4.2. Determination of Starch Quality

Under flowing nitrogen conditions, differential scanning calorimetry (DSC) measure-
ments were conducted using a TA instrument Q20 (TA Instruments, New Castle, DE, USA)
at a heating rate of 10 ◦C /min according to the method described by Bao et al. [64]. The
onset temperature (To), peak temperature (Tp), conclusion temperature (Tc), gelatinization
enthalpy (∆H) and width at half peak height (∆T1/2) were obtained from the DSC ther-
mogram. Three replicates were performed per sample. Duncan’s multiple-range test of
ANOVA was performed in SPSS (IBM SPSS Statistic 20). Statistical significance was defined
at the level of p < 0.05.

4.3. Protein Preparation, Digestion, and Phosphopeptide Enrichment

For the extraction of endosperm proteins, other tissues (husk, pericarp, and embryo)
were removed from immature rice grains [53]. The procedures were quickly carried out on
ice. Rice endosperm was then homogenized by grinding in the presence of liquid nitrogen
prior to protein extraction. In brief, rice endosperm was extracted with extraction buffer
(4% SDS, 1mM DTT, 100 mM Tris–HCl, pH 7.6) supplemented with EDTA-free protease
and phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA). Sonication was
performed using 10 rounds of 10 s sonication and 3 s off-sonication. Following boiling for
10 min, protein samples were centrifuged at 12,000× g for 40 min at 4 ◦C. Supernatants were
gathered and kept in a freezer at −80 ◦C for subsequent phosphoproteomic pretreatment.
The protein amount was estimated by BCA assay (Pierce BCA Protein assay kit, Thermo
Fisher Scientific, Waltham, MA, USA).

For FASP digestion, samples were treated as previously described [65]. SDS, DTT, and
other low-molecular-weight components were removed using UA buffer (8M Urea, 150 mM
Tris-HCl, pH 8.0) by repeated ultrafiltration (10 kDa, Satorious, Gottingen, Germany).
Then protein mixtures were alkylated with 100 mM iodoacetamide (IAA) for 30 min in
darkness. After repeated washing with UA buffer and 25 mM NH4HCO3, the protein
suspensions were digested with trypsin (Promega, Madison, WI, USA) overnight at 37 ◦C.
The enzymatic peptides were desalted on a Sep-Pak C18 cartridge (Waters, Milford, MA,
USA) and subjected to TiO2-based phosphopeptide enrichment, as previously described
by Pang et al. [22]. The enriched eluates of each sample were concentrated by vacuum
evaporation and reconstituted in 0.1% formic acid for MS analysis.

4.4. LC-MS/MS and Data Analysis

Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis was per-
formed using an Easy-nLC System coupled with a Q-Exactive Plus mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The mobile phases consisted of 0.1% formic
acid (A) and 0.1% formic acid in 84% v/v acetonitrile (B). The column was equilibrated
with 95% solution A. A volume of 6 µL of phosphopeptide solution was loaded onto Ac-
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claim PepMap100 (100 µm × 2 cm, nanoViper C18, 3 µm, 100 Å; Thermo Fisher Scientific,
Waltham, MA, USA), and separated by an EASY column (10 cm, ID75 µm, 3 µm, C18-A2;
Thermo Fisher Scientific, Waltham, MA, USA) at a flow rate of 300 nL/min. Over a period
of 0–2 min, the concentration of solution B rose linearly from 5% to 7%; from 2 to 162 min,
it increased from 7% to 25%; from 162 to 225 min, it increased from 25% to 40%; from 225
to 230 min, it increased from 40% to 100%; and from 230 to 240 min, it was maintained at
100%.

The Q-Exactive Plus mass spectrometer was operated in positive ion mode over
240 min. Full-scan mass spectra were acquired over a mass range of 300–1800 m/z. The
resolution of first-order mass spectrometry was 70,000, the AGC target was 1 × 106, and
the first-order maximum IT was 50 ms. For subsequent MS2 analysis, only the top 10
precursors were selected. HCD-MS2 spectra were acquired with 1 microscan at a resolution
of 17,500, and the AGC target was 1 × 105. The MS2 scan range was set from 200 to
2000 m/z, the maximum IT was 110 ms, and the isolation window was 2.0 m/z. Dynamic
exclusion was employed with an exclusion duration of 60 s. Three biological replicates
were performed independently for each group (Figure S2a).

Raw mass spectrometric data were processed with MaxQuant software (version
1.5.5.1) and compared with the indica rice protein sequence database (Oryza sativa subsp.
indica-ASM465v1). Trypsin/P was specified as the enzyme, and two missed cleavages
were allowed. The precursor mass tolerance was set to 20 ppm for the first search (used
for mass re-calibration) and to 4.5 ppm for the main search. The MS/MS mass toler-
ance was set to 20 ppm. Carbamidomethylation of cysteine residues was selected as
a fixed modification, while protein N-terminal acetylation, methionine oxidation, and
phosphorylation on serine/threonine/tyrosine were allowed as variable modifications.
False discovery rate (FDR) thresholds for protein, peptide, and modification sites were
specified at 1%. A minimum peptide length of seven amino acids was required. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org, accessed on 2 July 2021) via the iProX part-
ner repository [66] with the dataset identifier PXD027052 and the subject ID IPX0003230000.
Groups N1, N2, L1, and L2 in the PXD027052 project correspond to groups 9311-C, 9311-H,
GLA4-C, and GLA4-H in this study, respectively.

4.5. Statistical and Bioinformatic Analyses

Quantification of the modified peptides was performed using the label-free quantifi-
cation algorithm. In general, phosphosites that exhibited valid values in one condition
(at least 2 of 3 replicates) and none in the other indicate a massive change in phosphory-
lation levels. We, therefore, opted to select those phosphosites that feature a consistent
presence/absence profile in 9311 and GLA4, respectively. On the rest of the dataset, we per-
formed Student’s t-test (p < 0.05, log2 (fold-change) > 1) on phosphosites with at least two
valid values in any condition. For a more comprehensive understanding of phosphosites
showing significant differences in expression, phosphorylation sites that were uniquely
identified in either condition and significantly regulated from the statistical test were com-
bined and divided into four groups (9311-Up, 9311-Down, GLA4-Up, and GLA4-Down;
Figure 3d).

A total of 13 amino acid (AA) sequences centered by the phosphosite were extracted,
and the enriched phosphorylation motifs induced by high-temperature stress were pre-
dicted using the MoMo tool (http://meme-suite.org/tools/Momo, accessed on 9 January
2020) with the motif-x algorithm. The conserved motif patterns were then redrawn and vi-
sualized by TBtools [67]. Heatmaps for the relative abundances, Venn diagrams, and upset
plots for various lists were also produced using TBtools. GO enrichment analysis was con-
ducted using the AgriGO website (http://bioinfo.cau.edu.cn/agriGO/, accessed on 6 Jan-
uary 2020). Cytoscape (http://www.cytoscape.org, accessed on 6 January 2020) was used
to generate network visuals. KEGG pathway annotation was performed by using KEGG
Automatic Annotation Server (KAAS) software (http://www.genome.jp/kegg/kaas, ac-
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cessed on 18 December 2019). A p-value of <0.05 was used as the threshold of significant
enrichment. Pfam (www.sanger.ac.uk/Software/Pfam/, accessed on 12 February 2020)
and InterPro (https://www.ebi.ac.uk/interpro/, accessed on 12 February 2020) were used
to identify functional domains. Protein sequences were aligned using T-coffee. The figures
were annotated with Adobe Illustrator (Adobe Systems, San Jose, CA, USA).

4.6. Preparation of Primary Antibodies

Abundantly conventional and site-specific phosphopeptide antibodies were used for
this experiment.

Conventional antibodies: Anti-rice GBSSI, SSIIIa, BEI, and BEIIb antibodies) were
kindly gifted by Prof. Naoko Fujita (Akita Prefectural University, Akita, Japan). Mouse
monoclonal antibodies against plant actin were obtained from Sigma-Aldrich (Sigma-
Aldrich, St. Louis, MO, USA).

Site-specific phosphopeptide antibodies: Modification peptides of interest from phos-
phoproteome were selected and are listed in Table S11. The synthetic phosphorylated
peptides were coupled to keyhole limpet hemocyanin (KLH) before immunization of rab-
bits. The antibodies were purified from rabbit polyclonal antiserum by affinity purification
via sequential chromatography on phosphopeptide and non-phospho-peptide affinity
columns (Affinity Biosciences, Changzhou, China). The efficiency of antibody production
was monitored using ELISA.

4.7. Western Blotting

Protein expression of starch-synthesis-related enzymes as well as the site-specific
phosphorylation intensity were examined by Western blot assay [53]. Total proteins were
separated by SDS-PAGE after loading buffer was added. Immediately, separated proteins
were transferred to a PVDF membrane (Merck Millipore, Billerica, MA, USA) using a Trans-
Blot Cell system (Bio-Rad Laboratories, Hercules, CA, USA). The membranes proceeded
directly to the blocking step and then were exposed to appropriate antibodies. Chemilumi-
nescence signals were developed with an ECL kit (SuperSignal West pico; Thermo Fisher
Scientific, Waltham, MA, USA) and detected by a ChemiDoc imaging system (Bio-Rad
Laboratories, Hercules, CA, USA). Correspondingly, analysis of bands was performed
with Image Lab™ software (Bio-Rad Laboratories). For normalization, within the same
membrane, plant actin was used as a loading control. For evaluating the relative phos-
phorylation intensity, phosphorylated phosphosites were corrected to the levels of the
corresponding total protein. Statistical analysis was performed using ANOVA with Tukey’s
post-test in GraphPad Prism (GraphPad Software, San Diego, CA, USA).

5. Conclusions

In conclusion, this study set out to provide the first systematic investigation of the
phosphoproteome induced by high-temperature stress in rice endosperm. Comparative
analysis of the temperature-induced phosphorylation status revealed some interesting
similarities and differences between two indica rice varieties (9311 and GLA4). On the one
hand, both 9311 and GLA4 shared several consensus motifs ([sP], [LxRxxs], [Rxxs], [tP])
and were highly enriched in terms of heat response (GO) and the spliceosome pathway
(KEGG). On the other hand, a dramatic difference was observed in the phosphorylation
status of kinases induced by heat stress, which could reasonably explain the different
phosphorylation regulatory patterns of 9311 and GLA4. More importantly, we detailed
the most comprehensive starch metabolism pathway at the phosphorylation level in rice
endosperm, including starch-synthesis-related enzymes (AGPase, GBSSI, SSIIa, SSIIIa, BEI,
BEIIb, ISA1, PUL, PHO1, PTST), transcription factors (OsbZIP58 and FLO2), SR protein
(RSZp23), and CDPK kinase (SPK). Western blot with site-specific phosphor-antibodies
was used to verify and explore the dynamic change of the phosphorylation status of
SSIIIa (SSIIIa-S94), BEI (BEI-Ser562, BEI-Ser620, BEI-Ser821), and BEIIb (BEIIb-Ser685,
BEIIb-Ser715), which might play specific roles in amylopectin biosynthesis in response to
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high-temperature stress. An exciting phenomenon was discovered in that conserved sites
tend to reflect steady-state phosphorylation levels. However, non-conserved sites exhibit
more flexible phosphorylation regulation patterns when exposed to high-temperature
stress. These findings provide valuable insights into the role of phosphorylation response
to high-temperature stress, adding unprecedented depth and breadth to the cereal research
community.
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