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Abstract: Cell adhesion is a process through which cells interact with and attach to neighboring cells
or matrix using specialized surface cell adhesion molecules (AMs). Adhesion plays an important
role in normal haematopoiesis and in acute myeloid leukaemia (AML). AML blasts express many of
the AMs identified on normal haematopoietic precursors. Differential expression of AMs between
normal haematopoietic cells and leukaemic blasts has been documented to a variable extent, likely
reflecting the heterogeneity of the disease. AMs govern a variety of processes within the bone marrow
(BM), such as migration, homing, and quiescence. AML blasts home to the BM, as the AM-mediated
interaction with the niche protects them from chemotherapeutic agents. On the contrary, they detach
from the niches and move from the BM into the peripheral blood to colonize other sites, i.e., the
spleen and liver, possibly in a process that is reminiscent of epithelial-to-mesenchymal-transition
in metastatic solid cancers. The expression of AMs has a prognostic impact and there are ongoing
efforts to therapeutically target adhesion in the fight against leukaemia.
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1. Introduction

In multicellular organisms, cells adhere to each other to form tissues, organs, and systems.
For such a high degree of organization, it is essential to establish junctions between cells as well as
between cells and extracellular matrix (ECM). Cell-to-cell and cell-to-matrix adhesions are the result of
the interaction between ECM components (such as collagen, glycosaminoglycans, proteoglycans,
fibronectin, and laminin), membrane-associated adhesion molecules (AMs) and the anchored
cytoskeleton. These connections not only maintain a strict tissue structure, but also play a role in cell
migration, differentiation, and communication. In normal tissues, AMs expression is tightly regulated.
However, aberrant expression of AMs occurs during disease and in malignant transformation.

Any of numerous specialized trans-membrane molecules on the cell surface that bring about
adhesion by binding to molecules on the surface of other cells or to ECM are defined as AMs. There are
four main families of AMs: integrins, selectins, cadherins, and the superfamily of immunoglobulins
(IgSF). Integrins are heterodimeric trans-membrane glycoproteins consisting of an α and a β subunit,
assembled in different ways to generate a wide range of dimers (reviewed in [1]). Each type of
integrin has a unique repertoire of ligands that can be either ECM molecules or trans-membrane cell
AMs [2–4]. Unlike other cell adhesion receptors, integrins require prior conformational activation by
extracellular soluble mediators to bind their ligands [1]. Selectins are a family of three trans-membrane
calcium-dependent lectins (L-, E-, and P-selectin) mediating cell-to-cell adhesion [2–4]. While L-selectin
is expressed by most leukocytes, P-selectin is displayed by megakaryocytes, platelets, inflamed
endothelial cells, and a subset of bone marrow (BM) endothelial cells, whereas E-selectin is expressed
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by endothelial cells during inflammation, as well as in specialized domains of the BM endothelium [5].
Cadherins, e.g., E-, VE- and N-cadherin, are glycoproteins that take part in cell-to-cell adhesion
through the generation of intercellular junctions, providing isolation of different compartments [2,3].
Cadherins also participate in signal transduction pathways, due to their cytoskeleton anchorage [2,3].
IgSF proteins are characterized by the presence of one or more immunoglobulin-like domain(s) [2].
Most IgSF members are trans-membrane glycoproteins composed of an extracellular domain, a single
trans-membrane domain and a cytoplasmic tail [6]. They mediate calcium-independent adhesion
through their N-terminal domain and commonly bind other Ig-like domains on an opposing cell
surface, but they can also interact with other AMs (like integrins) and carbohydrates [7]. The C-terminal
domain binds to the cytoskeleton [7]. Multiprotein complexes made up of these and other AMs form
cell-to-cell bindings such as anchoring, tight, and gap junctions.

Deregulation of adhesion is considered a hallmark of metastatic solid tumors that seemed
to be less of an issue in acute myeloid leukaemia (AML). AML is a genetically-heterogeneous
group of multi-cause malignancies [8] in which clonal, undifferentiated or aberrantly-differentiated
haematopoietic cells, known as blasts, accumulate in the bone marrow, peripheral blood, and other
organs. Currently, 35% to 40% of adult AML patients who are 60 years of age or younger and only
five to 15% of those who are >60 years of age can be cured [9]. Despite being viewed as a “liquid”
tumor, AML blasts, are not “unattached”. On the contrary, they require a close relationship with
the BM microenvironment for their survival and disease progression. Worse still, mutations in BM
stromal cells may lead to the insurgence of AML pinpointing just how important and “intimate” this
attachment is [10,11]. AML is maintained by a pool of self-renewing cells denominated leukaemic
stem cells (LSCs) [12] that are the malignant counterpart of the haematopoietic stem cells (HSCs) in
normal BM. LSCs are cells capable of initiating the disease when transplanted into immunodeficient
animals and also of partial differentiation into AML blasts that constitute disease bulk, but are unable
to self-renew [13].

Not all of the known AMs are discussed here. Instead, we zoom in on the molecules relevant
to AML, as attested to by the available literature. Thus, we review the deregulation of adhesion in
AML, focusing on the altered expression pattern and signaling from AMs, the functional consequences,
prognosis and the possibilities of devising targeted therapies against aberrant interactions that may
help to increase the cure rates for AML patients.

2. Expression of Adhesion Molecules on Haematopoietic/Leukaemic Stem Cells

HSCs express a host of AMs, as detailed in Figure 1 and Table 1. The integrin class expressed on
haematopoietic cells is represented by CD29 (the β1 integrin chain) dimerized with CD49a-f (α1–6
chains) to form the very late antigens (VLA-1 to 6), of which VLA-4 and VLA-5 are the most widely
displayed upon HSCs and progenitors [14]. HSCs also exhibit CD18 (β2 integrin chain) dimerized
with CD11a-c (αL, αM, αX chains) and forming lymphocyte function-associated antigen-1 (LFA-1),
macrophage-1 antigen, or p150/95, respectively [14], as well as CD61 (β3 integrin chain) bound to CD41
(αIIb) or CD51 (αV) accordingly forming gpIIb/IIIa or vitronectin receptor [15,16]. Of the selectin class,
instead, the L-selectin is present on leukocytes and immature progenitors [17]. Both E- and N-cadherins
are exhibited on stromal cells and on a fraction of CD34+ progenitor cells [18,19]. Within the IgSF of
importance are the vascular cell adhesion molecule-1 (VCAM-1, CD106) and intercellular adhesion
molecule-1 (ICAM-1, CD54) present upon the stromal cells and interacting with VLA-4 expressed on
HSCs [20].
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Table 1. Summary of the adhesion molecules discussed in this review. All abbreviations as detailed in
the text, C3b, complement 3b, and FGF, fibroblast growth factor.

Classification of Cell Adhesion Molecules and Other Adhesion-Modulating Proteins Relevant to AML

Family Adhesion Molecule Distribution Extracellular Ligands

Integrin

VLA-1, VLA-2 LSC Collagen, Laminin
VLA-3 LSC Collagen, Laminin, Fibronectin
VLA-4 HSC/Progenitors/LSC Fibronectin, VCAM-1, ICAM-2
VLA-5 HSC/Progenitors/LSC Fibronectin, Invasin
VLA-6 LSC Laminin, Merosin, Kalinin, Invasin

LFA-1
HSC/LSC

ICAM-1, ICAM-2, ICAM-3
MAC-1 C3b, ICAM-1, Factor X, Fibrinogen
p150/95 C3b, Fibrinogen

gpIIb/IIIa
Vitronectin-R HSC/LSC Fibronectin, Fibrinogen, von

Willenbrand factor, Vitronectin

Selectin
L-selectin HSC/LSC ICAM-1, Sialomucins
E-selectin Stromal cells Sialomucins, CLA-1
P-selectin HSC/LSC/Stromal cells Mucin-like molecules

IgSF
VCAM-1 Stromal cells VLA-4
ICAM-1 Stromal cells LFA-1, MAC-1

CD31 HSC/LSC/Stromal cells Vitronectin-R

Cadherin
E,N-cadherin CD34+ progenitors/

Stromal cells Other cadherins
VE-cadherin Stromal cells

Sialomucin CD34, CD45R, CD43,
CD162, CD164 HSC/LSC Selectins

Other adhesion
molecules

CD44, HCELL
HSC/LSC/Stromal cells

Hyaluronan, Osteopontin
Syndecans Integrins, FGFs, VEGFs, PDGFs
Connexins Connexins

Adhesion-modulating
proteins

Ephrin receptors HSC/Progenitors Ephrins
CD98 HSC/LSC Integrins
CD38 HSC/LSC CD31

Chemokine receptors CXCR4 HSC/LSC SDF-1

Signal transducers FAK, PYK2, ILK HSC/LSC Integrins
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Figure 1. Expression pattern of AMs, chemokine receptors and other adhesion-modulating proteins 
on the surface of HSC and LSC. The molecules in common are depicted on the blue-red cell (left to 
lower right), while the molecules expressed exclusively on LSC are drawn on the surface of the red 
cell (upper right). 

Other types of AMs expressed by HSCs include sialomucins such as CD34, CD45R, CD43, CD162 
(also known as the P-selectin glycoprotein ligand 1), and CD164 [21], as well as the CD44 [22] and 
syndecan-1 [23] proteoglycans (Figure 1, Table 1). CD44 is expressed by haematopoietic progenitors, 
although, it is present at a higher level on stromal cells, whereas a sialofucosylated glycoform of 
CD44, known as haemopoietic cell E-/L-selectin ligand (HCELL) is displayed exclusively upon 
haematopoietic cells [24]. Haematopoietic cells also exhibit the CXCR4 chemokine receptor [25], the 
ligand of which is the stroma-derived factor-1 (SDF-1 also known as CXCL12), necessary for 
colonization during development [26] and for homing during BM transplantation. Furthermore, 
HSCs and progenitor cells possess, on the surface, an array of ephrin receptors and ligands [27]. Of 
relevance is also the expression of the connexin (CX) family of gap junction proteins including CX32 
(also known as gap junction protein 1β) [28] and CX43 (gap junction protein 1α) [29]. 

The expression pattern of AMs present on normal HSCs and AML blasts, including LSCs, is 
largely similar. The differential expression includes the presence of VLA-1, -2, -3, and 6 that are 

Figure 1. Expression pattern of AMs, chemokine receptors and other adhesion-modulating proteins
on the surface of HSC and LSC. The molecules in common are depicted on the blue-red cell (left to
lower right), while the molecules expressed exclusively on LSC are drawn on the surface of the red cell
(upper right).

Other types of AMs expressed by HSCs include sialomucins such as CD34, CD45R, CD43, CD162
(also known as the P-selectin glycoprotein ligand 1), and CD164 [21], as well as the CD44 [22] and
syndecan-1 [23] proteoglycans (Figure 1, Table 1). CD44 is expressed by haematopoietic progenitors,
although, it is present at a higher level on stromal cells, whereas a sialofucosylated glycoform of
CD44, known as haemopoietic cell E-/L-selectin ligand (HCELL) is displayed exclusively upon
haematopoietic cells [24]. Haematopoietic cells also exhibit the CXCR4 chemokine receptor [25],
the ligand of which is the stroma-derived factor-1 (SDF-1 also known as CXCL12), necessary for
colonization during development [26] and for homing during BM transplantation. Furthermore, HSCs
and progenitor cells possess, on the surface, an array of ephrin receptors and ligands [27]. Of relevance
is also the expression of the connexin (CX) family of gap junction proteins including CX32 (also known
as gap junction protein 1β) [28] and CX43 (gap junction protein 1α) [29].
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The expression pattern of AMs present on normal HSCs and AML blasts, including LSCs, is
largely similar. The differential expression includes the presence of VLA-1, -2, -3, and 6 that are
usually absent on normal haematopoietic cells [30]. LSCs also show the surface expression of the
CD98 trans-membrane protein, a molecule that amplifies adhesive signals deriving from ECM through
interactions with integrins. CD98 abrogation impairs the establishment and propagation of AML in
mouse models of the disease [31]. AML blasts express the platelet/endothelial cell adhesion molecule-1
(CD31) and CD38, responsible for interactions with microenvironmental elements, the first one with
BM endothelial cells, while the latter with ECM-associated hyaluronate. Excess of CD31, relative to
CD38, leads to a higher rate of trans-endothelial migration. Conversely, excess of CD38 results in the
arrest of AML blasts within the BM niche due to hyaluronate adhesion [32]. Additionally, connexins
25, 40, and 31.9 levels are increased in AML cell lines [33].

3. Normal and Leukaemic Niche

HSCs are not randomly spaced within the BM microenvironment, but are positioned in and
interact with discrete units referred to as niches, which determine the fate of HSC. The niche,
i.e., the coupling of haemopoietic, stromal cells, and ECM, is a functional element that permits
HSCs to expand or adopt a quiescent phenotype protecting their integrity and properties [34].
There are two types of haematopoietic niches: endosteal and vascular. The main factors that
fasten HSCs and progenitors to the niche, possibly inducing quiescence of HSCs are VCAM-1 and
CD44 [35]. In addition, haematopoietic growth factors such as stem cell factors and FLT3 ligand,
SDF-1 chemokine, growth-regulated protein β and interleukin 8 (IL-8), proteases, peptides, and
other chemical transmitters such as nucleotides regulate the attachment and quiescence of HSCs [35].
In the endosteal niche a pivotal role in anchoring HSCs is exerted by β-catenin and N-cadherin,
the latter is required also to regulate quiescence of HSCs and to keep them in an undifferentiated
state [36]. The significance of VLA-4/VCAM-1, VLA-5/fibronectin and CD44/hyaluronan/osteopontin
interactions between HSC/progenitors and stromal cells for their retention in the niche was revealed
by blocking the function of VLA-4, VLA-5, and CD44 using appropriate antibodies [37,38]. These
interactions determine the expansion of the quiescence-promoting microenvironment and confer
resistance to chemotherapy [39,40].

Adhesion to the niche is critical to AML pathogenesis and progression. LSCs require a
disease-promoting BM microenvironment that plays a role in disease initiation as it may transform
HSCs [11]. Several AMs are relevant to AML [41]. VLA-4, upon interaction with VCAM-1, activates
pro-survival and proliferative pathways in both AML and stromal cells via the nuclear factor kappa B
(NF-κB) pathway, leading to chemotherapy resistance due to protection from apoptosis [42,43] as it
allows for complete integration into the vascular niche and confers a quiescent phenotype to AML
cells [44]. Similarly, upon interaction with fibronectin and stromal cells AML cells are protected from
apoptosis. Particularly, the VLA-4-fibronectin interaction is decisive for minimal residual disease
(MRD) in AML and subsequent relapse [43]. The second axis of cell adhesion used by AML cells is the
interaction of CD44 and E-selectin [45].

Other than adhesion, AML cells are also regulated by soluble factors secreted by niche cells,
such as SDF-1 or the CC ligand 2 (CCL2) chemokine. In normal haematopoiesis, the CXCR4-SDF1
system regulates leukocyte trafficking and homing [46]. Chemotherapy induces expression of CXCR4
in AML cells, leading to therapy resistance and AML blast survival. Indeed, an interaction between
CXCR4 on leukaemic cells and niche-derived SDF-1, together with the VLA-4/VCAM-1 interaction, is
necessary for proper homing and growth of malignant CD34+ cells [3,47–49]. Instead, the CCL2/CCR2
axis is expressed in the majority of monocytoid AML blasts and is involved in cell trafficking and
proliferation [50].

LSCs are capable of remodeling the niche to a self-reinforcing leukaemic niche [51,52].
Niche alterations occur by means of exosomes [53], microvesicles [54], and DNA fragments [55].
Exosomes secreted by AML cells alter mesenchymal stromal cells [53]. CXCR4-expressing
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microparticles, which modulate BM homing of leukaemic cells, were detected in plasma samples of
newly diagnosed adult AML patients and correlated with white blood count [54]. AML cell-released
fragmented DNA has a drastic effect on neighboring cells as it damages the microenvironment and
allows AML blasts to leave the BM and enter the bloodstream [55].

Moreover, positive feedback loops mediated by disease can cause inflammatory overexpression of
AMs on activated endothelial cells [3]. AML cells express HCELL and cutaneous lymphocyte antigen-1
(CLA-1), the principal ligands of E-selectin, which may be over-expressed on endothelia due to tumor
necrosis factor α production by AML cells [12,56,57]. In addition, the LFA-1 integrin, upon binding
ICAM-1 (present on AML blasts) stimulates platelet derived growth factor (PDGF), endothelial growth
factor (EGF), and vascular endothelial growth factor (VEGF) receptors [3,12,47,58]. Together, such
stimuli cause adhesion of AML cells to the niche leading to protection from apoptosis, LSC quiescence,
escape from the immune system and chemoresistance that may be followed by detachment of AML
blasts and subsequent proliferation, leading to relapse [3,12,47]. The acquisition of resistance through
enhanced adhesion is so relevant that the term “environment-mediated drug resistance” has been
coined [59].

4. The Balance between Homing and Migration in Normal and Leukaemic Cells

Whereas transplanted HSCs and progenitors injected into the bloodstream home to sites of
haematopoiesis, they can be mobilized from these niches into the blood through either physiologically
or pharmacologically-induced mechanisms (Figure 2A). Sialomucins, selectins, and integrins play
important roles in migration and homing of HSCs [4,60]. Migration implies that HSCs translocate from
the endosteal to the vascular niche and subsequently enter blood vessels through transendothelial
migration, and ultimately, circulate in the blood stream. When in the vessel lumen, HSCs remain in
constant contact with the endothelium. HSC homing is the opposite of this process, i.e., HSCs leave the
blood stream through the endothelium, reach the vascular niche and then return to the endosteal niche.

Cytokines such as stem cell factor, chemokines such as SDF-1 and IL-8, and proteolytic enzymes
such as the metalloprotease superfamily are also involved in migration and homing. HCELL is of
particular relevance in these processes: It is the most potent ligand for E and L-selectins that regulate
cell movement (cell rolling) and promote weak HSC adhesion to BM vessels [61]. The expression of
the CXCR4 chemokine receptor on HSC surface promotes cell activation via SDF-1 ligand binding.
Following higher affinity interactions between LFA-1/ICAM-1 and VLA-4/VCAM-1, HSCs come
to a stop on the endothelial surface and migrate across the basal lamina. Additionally, migration is
promoted by VLA-4 and VLA-5 interaction with fibronectin, present in the ECM [62].

Similarly to normal HSCs, LSCs home to the BM and they exit it (Figure 2B). LSC homing is a
property used for passaging murine AML cells in mice in order to expand primary leukaemic cells
and create cohorts of nearly identical mice for experiments such as in vivo drug testing. Multiple
signaling pathways underlie the mobilization of AML blasts. An example is the VEGFR-1, β1 integrin,
and human eag-related gene-1 K+ channel complex that mediates cell migration and invasion and
hence confers a higher invasiveness to leukaemic cells in vivo [63]. Moreover, the activation of the
complement cascade in leukaemia/lymphoma patients (e.g., due to accompanying infections) enhances
the motility of malignant cells and contributes to their spreading in a p38 mitogen-activated protein
kinase–heme oxygenase-1-dependent manner [64].

Dislodging AML blasts from the niche is a way of increasing their chemosensitivity and
improving the efficacy of anti-AML therapies and will be discussed in more detail in the section
of targeted therapies.
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Figure 2. The balance between homing and migration in normal and leukaemic cells. (A) Normal
HSCs home to the bone marrow niches and exit the niches in response to differentiating and mobilizing
stimuli. (B) LSCs use the niche for protection from chemotherapeutic agents and detach from it in
order to spread possibly deploying the EMT machinery.

5. Involvement of AMs in AML Signaling

In addition to their structural roles in anchorage, AMs transmit signals into the cells in
response to the adhesive state, cell’s location, and surrounding ECM. Such signaling is involved
in tumor development and progression. Thus, accumulating evidence indicates that integrins are
implicated in leukaemia signaling. The binding of the integrin tail to adaptor proteins such as
SRC kinase, focal adhesion kinase (FAK), or integrin-linked kinase (ILK) leads to the activation
of different signal transduction pathways including mitogen activated protein kinase cascades,
phosphoinositide-3-kinase (PI3K)/AKT kinase and protein kinase C [65,66]. ILK is constitutively
active in AML [66] and favors cell growth and survival by the activation of AKT and inhibition of
glycogen synthase kinase-3-β (GSK3B), therefore stabilizing β-catenin [67,68], the transcriptional
co-activator in the canonical Wnt pathway [69]. MAC-1 binds spleen tyrosine kinase (SYK) and
activates signal transducer and activator of transcription 3/5 in AML cells, ultimately causing
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cell survival and proliferation [70]. In addition, β3-integrins were found to be essential for the
development of leukaemia in transgenic and xenograft mouse models [71]. Curiously, their expression
is regulated by HomeoboxA9 and HomeoboxA10 transcription factors implicated in AML. Notably,
the downstream signaling from β3-integrins, also causes the induction of SYK kinase and affects cell
homing, transcription regulation, and induction of differentiation of LSC [72]. Furthermore, Yi et al.
recently reported that αvβ3 integrin enhances β-catenin expression through the PI3K/AKT/GSK3B
pathway [73].

Little is known about selectins’ signaling in AML, albeit Levesque and colleagues demonstrated
that VE-selectin confers protection from chemotherapy by activation of pro-survival NF-κB signaling.
Interestingly, this activation was not observed upon adhesion to P-selectin, CD31 or VCAM-1 [45].
Moreover, upon E-selectin ligand-1 or CD44 binding to E-selectin, Wnt signaling is activated and
promotes AML proliferation [74].

Cadherins’ cytoplasmic domain directly binds β-catenin, which in turn is attached to α-catenin
that serves as a link to actin cytoskeleton. Some evidence has suggested that cadherins can influence
Wnt signaling pathway by competing for the pool of β-catenin [75]. Moreover, the phosphorylation of
β-catenin through AKT, c-SRC or c-jun N-terminal kinase 2 promotes the dissociation of β-catenin
from the junctions [76] decreasing cell adhesion, and inducing the transcription of target genes such as
matrix metalloproteinase that degrade the ECM components influencing cell adhesion and rendering
tumor cells more invasive [77].

6. EMT-Like Programme Activation in AML

The t(8;21)(q21;q22) translocation, which gives rise to the AML1/ETO oncogenic fusion, is
among the most common rearrangements found in AML. We recently reported that AML1/ETO
expression reduces adhesion and enhances migration of haemopoietic cells in vitro [78]. Such a
phenotype translated into a homing defect of AML1/ETO-bearing cells in transplantation experiments
in vivo [78]. The altered balance between adhesion and migration brings to mind the phenomenon of
epithelial-mesenchymal transition (EMT) observed in solid tumors [79]. In recent years, research into
the contribution of EMT to cancer has shed light on the mechanisms that allow a primary cancer to
become invasive and metastasize. Current discoveries suggest that EMT is not merely a mechanism
used by cancer cells to acquire motile phenotype, but is associated with the insurgence of stem cells
able to indefinitely maintain the cancer [80]. Until recently, EMT has not been described or sought
after in haematological malignancies, although there is an ever-increasing body of evidence that,
indeed, an EMT-like process exists in this context. In the case of AML, tumor cells are present in
the haematopoietic tissues throughout the organism right from the clinical onset of the disease. It is
thought that leukaemias derive from the transformation of a single cell and its progeny that evolves in
clones of various fitness. The mechanisms that underlie the spreading of preleukaemic and leukaemic
cells from the primary localization to the entire haematopoietic system are unknown (Figure 2B).
It stands to reason that EMT-like phenomena may play a role at these early stages of leukaemogenesis
and the EMT machinery may be deployed to achieve a more mobile and less adhesive phenotype in
cells bearing leukaemic oncogenes. Such changes could alter the interaction with the haematopoietic
niche [81] and lead to the acquisition of features that allow immature cells to migrate across the BM
barrier. In agreement with such a scenario, EMT inducers such as Twist, Zeb1, Zeb2, and Snail/Slug
have been shown to play critical roles in HSCs and in leukaemia [82]. In addition, the expression
of several EMT-related genes is significantly associated with poor overall survival (OS) of AML
patients [83]. In particular, Zeb2 is essential for embryonic HSCs and progenitor cells differentiation in
the fetal liver [84]. Zeb2 also regulates HSC numbers and the differentiation of myeloid progenitors and
B-cell precursors in a mouse model bearing conditional deletion of Zeb2 in adult haematopoietic cells.
Furthermore, although perhaps counterintuitive for the hypothesis of the contribution of an EMT-like
process to leukaemogenesis, mice with a conditional Zeb2 deletion develop splenomegaly and a
parallel increase in extramedullary haematopoiesis [85]. The knockdown of Zeb1 in MLL/AF9-driven
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leukaemia drastically reduces leukaemic blast invasion [83]. Experiments of retroviral insertional
mutagenesis identified Zeb2 activation as a leukaemogenesis-collaborating event in CALM-AF10
transgenic mice [86]. Moreover, Zeb2 depletion impaired proliferation of human and murine AML
cells and caused aberrant differentiation of human AML cells through transcriptional repression of
myeloid differentiation and deregulation of the cell adhesion and migration signature [87]. Last but
not least, the expression of E-cadherin (CDH1), the loss of which is considered the hallmark of EMT in
solid tumors [79], is low in leukaemia due to the hypermethylation of its promoter [88].

In such a context, EMT could be responsible for (or contribute to) not only the motility, but also
for the differentiation block and stemness induction functions of AML-associated oncogenes. If such a
hypothesis were true, EMT could be seen as a universal step needed for every cancer to develop, and
thus a common hub to be targeted for cancer therapy.

7. Clinical Implications

7.1. Prognosis

The serum levels of chemokine or adhesion receptors represent prognostic factors for AML
patients with a clear impact on OS and relapse. In particular, expression levels of VLA-4 and CXCR4
have been associated with patients’ outcome. Several independent studies showed that a high level
of expression of CXCR4 predicts low rates of OS and event-free survival, while a low level correlates
with increased OS, relapse free survival and complete remission (CR) rate [89–92]. On the other hand,
elevated expression of VLA-4 has been correlated with longer survival for paediatric patients affected
by AML [93], whilst increased binding of soluble VCAM-1 via VLA-4 was significantly associated
with longer OS corrected for age in untreated (de novo and secondary) adult AML patients [94].
A recent study measured the expression of VLA-4 and CXCR4 in BM aspirates of 98 patients with
newly diagnosed AML, and proved that the level of VLA-4 was higher in patients that belong to
favorable and intermediate risk classes. Moreover, subjects with high expression of VLA-4 had more
probability to achieve CR and a lower risk of relapse. Contrarily, CXCR4 expression did not correlate
with a different cytogenetic risk category, although high expression of this chemokine increased the
risk of relapse. Thus, patients with low CXCR4 and high VLA-4 expression levels were characterized
by a better outcome in terms of OS and relapse-free survival in comparison to those with high CXCR4
and low VLA-4-expression levels [95]. Phosphorylation of the Serine339 residue of CXCR4, which
impairs the mobilization induced by CXCR4 inhibitors, was associated with poor prognosis in AML
patients and has been implicated in resistance to cytarabine treatment [96].

High level of integrin β3 expression is associated with shorter OS of AML patients, especially in
cases with FLT3-ITD mutations. The expression of integrin β3 was higher in the poor risk group than
in the favorable and intermediate groups [73].

A prognostic value of other AMs, e.g., FAK and protein tyrosine kinase-2 (PYK2), has been
assessed [97]. AML patients treated with intensive regimens were characterized by a heterogeneous
expression of FAK and PYK2, both of which did not correlate either with clinical or cytogenetic features.
The OS was significantly longer for patients with a lower expression of FAK, but did not correlate with
PYK2 levels. Furthermore, another study appraised the prognostic value for OS prediction focusing
on the expression of three different markers: CXCR4, VLA-4, and FAK [92]. Subjects that had an
overexpression of one out of three markers had a longer OS than patients overexpressing two or three
factors [92]. The prognostic utility of CD44 was also analyzed. Expression of CD44 turned out to be
useful as a prognostic marker for elderly AML patients in whom high expression of CD44 is associated
with a reduction of OS [98]. While not predictive for the outcome, high expression of syndecan-1 was
found to have a clinical relevance as it is associated with bleeding thrombocytopathy, endothelial cell
damage, and leukocytosis [99].

Interestingly, important EMT markers seem to have prognostic relevance. In particular, a poor
clinical outcome is linked to elevated mRNA expression of vimentin. Analysis of mRNA expression
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data from 173 AML patients from the cancer genome atlas dataset, suggested that patients older than
60 years, with a normal karyotype and high vimentin expression have poor clinical outcome [100].
Similarly, low levels of CDH1 expression were found to be of prognostic value in normal karyotype
AML, correlating with a markedly shorter OS [101].

7.2. Targeted Therapies

Currently, no therapeutic strategies for AML patients perform better than conventional
chemotherapy. Sadly, the outcome remains poor and the standard of cure represents an option
that is not always applicable as many patients are unfit for intensive regimes [102,103]. Thus, new
alternatives need to be exploited and the interaction between AML cells and the BM microenvironment
may represent a valid target (Figure 3). However, such a strategy remains a challenge as it may also
eliminate normal HSCs [4,47,104–106]. Several preclinical and early phase clinical trials using agents
that target the AML-niche interaction confirmed the influence of the microenvironment on proliferation,
differentiation, and apoptosis of AML blasts. The possible targetable AML-stroma interactions include
AMs, CXCR4/SDF-1 signaling, and hypoxia.Cells 2019, 8, x FOR PEER REVIEW  11 of 21 
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The AM-ligand interactions harnessed in AML therapy so far include: VLA-4 with VCAM-1,
VLA-4 and CD44 and E-selectin, E-selectin ligand-1 and E-selectin, as well as the integrin/CD44
interaction with osteopontin, a glycoprotein of the ECM.

AS101 is an agent against VLA-4 targeting the fibronectin-bound form. Based upon in vivo
studies, AS101 inhibits the PI3K/Akt signaling pathway and acts as chemosensitizer of chemoresistant
cells [107]. An ongoing clinical trial is investigating the efficacy of AS101 in combination with
chemotherapy, for elderly patients affected by AML and myelodysplastic syndrome [108]. Moreover,
FNIII14, a VLA-4 antagonist, helps to overcome the drug resistance mediated by cell adhesion
and, when administered in concert with standard treatments, successfully eradicated MRD [109].
Encouraging in vivo results were similarly achieved with a FDA-approved humanized anti-VLA-4
antibody, Natalizumab. However, its utility has been limited due to the unforeseen progressive
multifocal leukoencephalopathy [110]. The in vitro experiments of blocking αvβ3 integrin with
antibodies that enhanced AML cell lines sensitivity to sorafenib [73] and of knockdown of CX25 that
sensitized AML cell lines to chemotherapeutic agents are also promising [33].

Inhibition of E-selectin employing a specific small molecule, GMI-1271, augments the effect of
chemotherapeutic agents and decreases tumor burden in xenograft mouse models [74]. A current
phase I clinical study has demonstrated the safety and the pharmacokinetics of this compound on
healthy subjects, whilst the evaluation of its activity on haematological malignancies is ongoing [111].
Lastly, it has been shown that inhibition of the osteopontin pathway induces the exit from quiescence
of LSCs, reduces homing, and increases sensitivity to cytarabine treatment in engrafted mice [39].

Given CXCR4/CXCL12 involvement in homing, quiescence and proliferation of AML blasts [112]
it has long been explored as a target. CXCR4 inhibitors, usually combined with standard treatment,
have given positive results both in vitro and in vivo, as well as in AML clinical trials (phase I/II).
Preclinical studies reported that CXCR4 inhibitors decrease adhesion and migration through stromal
and endothelial cell monolayers, induce cell differentiation, and abrogate the protective effect of BM
stromal cells thereby enhancing cell apoptosis and chemosensitivity [49,113–118]. AMD3100, also
known as plerixafor, is an FDA-approved CXCR4 inhibitor. An increase in blast mobilization, a CR, and
CR with incomplete haematological recovery (CRi) accompanied by few adverse effects were observed
in patients with both newly diagnosed and relapse/refractory AML treated with AMD3100 in addition
to chemotherapy [119–121]. Other clinical trials underlined a positive effect of Ulocuplumab [122,123],
BL-8040 (BLT40) [124,125] and LY2510924 [126], a human IgG4 monoclonal antibody against CXCR4
and two peptidic CXCR4 antagonists, respectively, in terms of the mobilization of blasts, induction
of apoptosis, differentiation of leukaemia cells, and achievement of CR and a CRi in patients with
relapsed/refractory AML. Finally, a polysaccharide derived from heparinoids, known as CX-01, was
shown to disrupt the CXCR4/CXCR12 axis and induce, together with chemotherapy, a morphological
remission in AML patients [127,128].

An alternative approach for targeting the CXCR4/CXCR12 axis is via the inhibition of CXCR12.
Recently, a study revealed that NOX-A12, a CXCR12 inhibitor, induces chemosensitisation and
interferes with migration of chronic lymphocytic leukaemia (CLL) cells [129]. It is being currently
tested in phase II trials in relapsed CLL and multiple myeloma patients [130]. While all these agents
are well tolerated, additional clinical trials (phase II/III) are needed to optimize the combination and
avoid the major adverse effect of CXCR4 inhibitors such as hyperleukocytosis [131].

An additional factor that impairs the effect of chemotherapy is the hypoxic BM microenvironment
and the resulting hypoxia-inducible factor-1α transcription factor induction which in turn upregulates
the expression of AMs (selectin ligands, syndecan-4 or α5 integrin [132]) or CXCR4 [133] on cancer
cells. AML cells localized in the hypoxic niche are exposed to lower amounts of chemotherapeutic
agents [134]. Furthermore, hypoxia boosts angiogenesis and cytokine secretion, both of which are
involved in resistance to chemotherapy [133]. Indeed, AML cells derived from chemo-resistant
patients treated with TH-302, a prodrug that under hypoxic conditions releases the DNA cross-linker
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bromo-isophosphoramide mustard, became sensitive to standard chemotherapy [135]. A phase I study
demonstrated a transient cytoreduction in all refractory AML patients [136].

Other strategies aimed at increasing mobilization and response to drug treatment are under
investigation. Indeed, targeting the kinases involved in the phosphorylation of CXCR4 (e.g., PIM1,
GRK6, or PKC) with small-molecule inhibitors may decrease the retention of AML cells in the BM
niche [96].

8. Conclusions

Adhesion plays an important role in the physiology and pathology of tissue homeostasis. Several
of the findings in the adhesion field are surprising and may be non-instinctive: AML is more “solid”
than it seems, adhesion loss is not equal to cancer spreading and EMT plays a role in the progression
of a non-epithelial tumor. For years, the notion that loss of adhesion leads to cancer metastasis has
been considered a paradigm. An ever-growing body of evidence calls for paradigm shift by suggesting
that the opposite may be true [137]. Indeed, adhesion molecules are not only responsible for the
joining of cells, but are also receptors whose activation leads to downstream intracellular signaling that
contributes to (or drives) tumor progression. Accordingly, as shown in this review, the interactions
between AML blasts and the BM niche influence haematopoiesis, leukaemogenesis, cell survival,
and chemotherapy response. When reviewing the literature, we noticed a circa 15-year-gap in AML
adhesion research. There has been a wave of surface molecule studies in the 1990s that came to an
end at the beginning of the 21st century followed by a more functional and mechanistic phase in
recent years. It is hard to draw conclusions and make statements as both protein names and AML
classification system have considerably changed since. Moreover, AM expression was studied in
diverse patient cohorts, using a variety of methods and looking at different cellular populations
(e.g., bulk in some studies versus CD34+ cells in others).

Current research explores new aspects, such as the mechanism by which physical forces and local
pliability regulate adhesion and it seems that the signals they produce are of particular interest in
tumor biology [138]. The role of EMT-like process in AML merits additional dissection. Furthermore,
the contribution of AMs to symmetric/asymmetric LSC division and the role of ECM in leukaemia
warrant more work.

Overall, much progress has been made; however, some questions still await an answer and only
a small number of therapeutic agents have emerged. It is certain that there is a great potential for
devising novel adhesion-related diagnostic, prognostic, and therapeutic tools. For example, syndecan-1
that is expressed on AML cells, is a therapeutic target under investigation in multiple myeloma [139],
while the inhibition of ILK has been tested in chronic lymphocytic leukaemia, prostate, and breast
cancer cell lines [140]. There are also some suggestions that therapy targeting the LSC-niche interaction
should be sequential to debulking and serve the precise aim of LSC eradication. Taken together, the
full comprehension of the mechanisms that lay beneath the adhesive interactions and signaling will
help to identify rational adhesion-targeting treatments to improve the curability of AML.
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