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BACKGROUND Device-related thrombosis (DRT) occurs in up to 4% of patients undergoing left atrial appendage

occlusion (LAAO) and is associated with substantial morbidity and mortality. However, its pathophysiology, predictors,

and optimal management remain unclear.

OBJECTIVES This study aims to assess flow dynamic factors correlating to DRT.

METHODS A multicenter registry of patients who underwent LAAO and had pre- and post-computed tomography im-

aging was used. Patient-specific 3-dimensional digital models of the left atrium were created, and finite element simu-

lations were performed to implant an LAAO device into each model in a position that matched the clinical deployment.

Computational fluid dynamic simulations were performed to quantify the following flow dynamic parameters: time

averaged wall shear stress, oscillatory shear index, and endothelial cell activation potential.

RESULTS A total of 38 patients (19 with DRT and 19 without DRT) were included. Left atrium volumes and mitral valve

areas were larger in the DRT cohort compared with controls. Patients with DRT had a significantly lower time averaged

wall shear stress (1.76 � 1.24 Pa vs 2.90 � 2.70 Pa), a higher oscillatory shear index (0.19 � 0.11 vs 0.17 � 0.11), and a

higher endothelial cell activation potential (0.23 � 0.58 Pa–1 vs 0.17 � 0.30 Pa�1) than the controls (P < 0.001 for all).

Thrombus locations identified from in-vivo images correlated well with the flow dynamic parameters tested.

CONCLUSIONS Flow dynamic parameters may be able to predict the risk of DRT after LAAO. Further investigation with

a larger patient cohort and long-term follow-up is needed to assess the role of computational fluid dynamics in the

risk stratification of patients considered for LAAO. (JACC Adv. 2024;3:101339) © 2024 The Authors. Published by Elsevier
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ABBR EV I A T I ON S

AND ACRONYMS

BCs = boundary condition

CFD = computational fluid

dynamics

CT = computed tomography

DRT = device-related

thrombosis

ECAP = endothelial cell

activation potential

LA = left atrium

LAA = left atrial appendage

LAAO = left atrial appendage

occlusion

OSI = oscillatory shear index

MV = mitral valve

TAWSS = time averaged wall

shear stress

WSS = wall shear stress
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A trial fibrillation is the most common
arrhythmia affecting over 10 million
individuals in the United States

alone.1 Stroke prevention remains a major
concern in the management of atrial fibrilla-
tion.2,3 While anticoagulants are effective in
mitigating strokes, bleeding risk, noncompli-
ance, and other side effects preclude their
consistent use in >50% of eligible patients.3,4

To address this unmet need, left atrial
appendage (LAA) occlusion (LAAO) emerged
as an alternative approach to prevent poten-
tial strokes.5 The efficacy of LAAO has been
documented in several randomized trials
and a large body of observational studies,
leading to a growing adoption in clinical
practice. A previous computational study by
our group evaluated the efficacy of LAAO.6

However, certain unresolved issues with the
therapy remain, including device related
thrombosis (DRT).7-10 DRT occurs in 3% to 5% of
patients undergoing LAAO and is associated with a
4-fold increase in cardioembolic events.7-12 Further-
more, the treatment of DRT is challenging with a
high frequency of persistence, bleeding risk, and
recurrence rates.13 Therefore, considerable efforts
have been made to identify risk factors for DRT.14

Given the close relationship between thrombosis
and flow stasis, there has been a growing interest in
investigating flow dynamics associated with DRT us-
ing computational fluid dynamics (CFD) tech-
niques.15-17 However, studies assessing CFD
correlates of DRT have been hindered by their small
size and lack of a control group.18-20 To bridge this
gap, we combined patient-specific CFD analyses with
finite element simulations in a larger sample of pa-
tients with and without DRT from multiple
institutions.

This study aims to characterize the fluid dynamic
environment around LAAO devices in attempt to
assess the flow dynamic factors correlating to DRT.

METHODS

PATIENT DATA. This retrospective study used a
database of 38 patients who underwent LAAO pro-
cedure from Mayo Clinic (Rochester, Minnesota,
USA), Aarhus University Hospital (Aarhus, Denmark),
and Copenhagen University Hospital (Copenhagen,
Denmark) of which 19 developed DRT and 19 did not
(control). All DRTs were verified by 2 separate expert
cardiologists. Patient characteristics are shown in
Table 1. The patient data sets included preprocedural
and postprocedural computed tomography (CT) scans
and echocardiographic waveforms. This study was
performed under an approved Institutional Review
Board protocol and data usage agreement between
Michigan Technological University, Mayo Clinic,
Aarhus, and Copenhagen University Hospitals.

DIGITAL 3-DIMENSIONAL MODEL DEVELOPMENT.

The workflow adopted in this study is shown in
Figure 1. CT images of patients with and without
DRT after LAAO were imported into Mimics Research
23.0 (Materialise) for processing. A mask (using a
threshold that isolates blood from soft tissue) was
applied to the CT images and segmentation was
performed to create a patient-specific 3-dimensional
digital model of the left atrium (LA) and LAA. The
mitral valve (MV) was segmented as a saddle shaped
opening and the pulmonary veins were cut at their
ostia. Finite-element computational simulations
were performed by FEops NV to deploy an LAAO
device into each model in a position that matched
the postprocedural CT positioning for each patient
(Supplemental Figure 1).21 The output of the finite
element analysis simulations, that is, the patient-
specific anatomy deformed after the virtual deploy-
ment of the LAA device and the device itself, were
retained and used as input for the CFD simulations.
The novelty of this technique is twofold: 1) an ac-
curate model of the device as seen in postprocedural
imaging is virtually deployed in the atrium models
as opposed to merely creating a sealing surface at
the LAA ostium,22 which accounts for the potential
presence of peri-device leak paths, and 2) the walls
at the region of the deployment are deformed as the
device is expanded into position, accurately depict-
ing real-world device deployment. Thrombi identi-
fied in in-vivo imaging were not included in the
digital models, thus simulating the device-related
flow environment immediately after deployment.
Geometric measurements were recorded for LA vol-
umes, MV areas, and thrombus volumes.

COMPUTATIONAL FLUID DYNAMICS. The digital
models (after virtual device deployment) were im-
ported into Ansys Workbench 2020 R1 for the CFD
simulations. Prior to that, extensions equivalent to
ten times the atrial inlets and outlet diameters were
created to overcome entrance effects and to have an
appropriate velocity profile.23 An element size of
0.8 mm was selected (w14,000,000 elements) based
on a grid independence study; in addition, the initial
tetrahedral mesh was converted to a polyhedral mesh
before performing CFD simulations.24 Boundary
conditions (BCs) necessary to run the computational
simulations were extracted from echocardiographic
data. Briefly, 0-gauge pressure inlet BCs were applied
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TABLE 1 Patient Characteristics

DRT
(n ¼ 19)

Control
(n ¼ 19) P Value

Age >75 (y) 8 (42.1%) 9 (47.4%) 0.6550

Male 14 (73.7%) 10 (52.6%) 0.1902

BMI 29.2 � 6.3 26 � 5.2 0.0932

CHA2DS2-VASc 4.1 � 1.2 4.4 � 1.7 0.5902

Has bled score 3 � 0.9 2.7 � 1.3 0.3547

AF type 0.3253

Paroxysmal 8 (42.1%) 12 (63.2%)

Permanent 10 (52.6%) 5 (26.3%)

Unspecified 1 (5.3%) 2 (10.5%)

History

Heart failure 5 (26.3%) 4 (21.1%) 0.7213

Diabetes 6 (31.6%) 3 (15.8%) 0.2671

Ischemic stroke or TIA 6 (31.6%) 5 (26.3%) 0.7381

Other vascular disease 7 (36.8%) 4 (21.1%) 0.2982

Hypertension 15 (78.9%) 13 (68.4%) 0.4790

Abnormal liver function 0 (0%) 0 (0%) 1.0000

Abnormal renal function 5 (26.3%) 8 (42.1%) 0.3200

Ischemic heart disease 9 (47.4%) 8 (42.1%) 0.7604

PCI 5 (26.3%) 4 (21.1%) 0.7213

CABG 4 (21.1%) 1 (5.3%) 0.1628

LVEF (%) 55.7 � 5.1 54 � 10.3 0.6774

Valvular heart disease 3 (15.8%) 5 (26.3%) 0.4445

CRT/pacemaker/ICD 2 (10.5%) 3 (15.8%) 0.6537

Indications

Intracranial hemorrhage 6 (31.6%) 3 (15.8%) 0.2671

GI bleed 5 (26.3%) 5 (26.3%) 1.0000

Urinary tract bleeding 0 (0%) 0 (0%) 1.0000

Other spontaneous bleeding 1 (5.3%) 2 (10.5%) 0.5739

Stroke despite OAC 5 (26.3%) 5 (26.3%) 1.0000

Cerebral amyloid angiopathy 0 (0%) 2 (10.5%) 0.1627

Cognitive impairment 3 (15.8%) 0 (0%) 0.0802

Patient preference/lack of compliance/side
effects

7 (36.8%) 5 (26.3%) 0.5025

Device size 0.6530

20 mm 1 (5.3%) 0 (0%)

22 mm 0 (0%) 1 (5.3%)

24 mm 0 (0%) 2 (10.5%)

25 mm 2 (10.5%) 0 (0%)

27 mm 10 (52.6%) 7 (36.8%)

30 mm 0 (0%) 1 (5.3%)

31 mm 4 (21.1%) 7 (36.8%)

34 mm 1 (5.3%) 0 (0%)

35 mm 1 (5.3%) 1 (5.3%)

Device type

WATCHMAN 1 (5.3%) 3 (15.8%)

WATCHMAN FLX 14 (73.7%) 13 (68.4%)

Amplatzer Amulet 4 (21.1%) 3 (15.8%)

Discharge antithrombotics

Continued on the next page
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at the pulmonary veins and a time-dependent veloc-
ity waveform from the MV (Vout), which matched the
rhythm of each patient, was applied at the outlet
(Figure 1). These BCs were in accordance with our
previous work and similar published studies in liter-
ature.24,25 CFD simulations were performed using
Ansys Fluent and based on the finite volume
approach to discretize the Navier-Stokes equations
(Supplemental Appendix). Blood was simulated as an
incompressible Newtonian fluid with a density
r ¼ 1,060 kg/m3 and a dynamic viscosity
m ¼ 0.0035 Pa s. Because the Reynolds number, esti-
mated from peak MV at the E-wave and the MV
diameter, was <2000 in all cases, a laminar model
was chosen. This was also in accordance with other
studies in literature.24,25 Three cycles of a transient
simulation were carried out to ensure stability and to
overcome transitional effects.23,25 For data analysis,
the final cycle was used for stability.

FLOW DYNAMIC PARAMETERS. Nonphysiological levels
of wall shear stress (WSS) have been associated with
platelet and endothelial cell activation resulting in
thrombogenesis.26 In this study, we computed
several flow dynamic parameters with WSS as a
function. This includes time averaged wall shear
stress (TAWSS), oscillatory shear index (OSI), and
endothelial cell activation potential (ECAP). The
derivations for each parameter are listed in the
Supplemental Appendix.

TAWSS is the average WSS over the cardiac cycle.
Averaging the change in WSS across the cardiac cy-
cle may highlight regions of nonphysiological WSS
levels, which might in turn, be associated with
thrombogenesis.27 OSI describes the deflection
(change in direction) of the WSS vectors from the
main flow direction throughout a cardiac cycle.28

OSI has an interval of 0 to 0.5, where 0 and 0.5
indicate no deflection and a deflection of 180�,
respectively. Regions of high OSI have been shown
to induce an inflammatory response,27 promoting
thrombogenesis as described within the triad of
Virchow.29 ECAP consists of the ratio between OSI
and TAWSS. It has been proposed as a useful flow
dynamic parameter as it may be utilized for identi-
fying vasculature with a higher possibility of
thrombogenesis.30 A high ECAP indicates low
TAWSS and high OSI, which have been shown to be
associated with thrombogenesis.27

STATISTICS. Statistical analysis was performed using
JMP Pro, version16.0.0 (SAS Institute Inc). All data are
presented as mean � SD. A t-test test was used to
compare the means (if the distribution was normal)
and the Wilcoxon test was used for non-normal data
distributions. P < 0.05 was considered statistically
significant. Statistical analysis was conducted on the
value taken from the nodal elements of each patient’s
device, resulting in tens of thousands of data points
for both groups while verifying the
normality assumption.
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TABLE 1 Continued

DRT
(n ¼ 19)

Control
(n ¼ 19) P Value

Acetylsalicylic acid (ASA) therapy (aspirin) 16 (84.2%) 14 (73.7%) 0.4445

P2Y12-inhibitor (clopidogrel, ticagrelor, etc.) 8 (42.1%) 9 (47.4%) 0.7604

Vitamin K antagonist (VKA) (warfarin) 2 (10.5%) 3 (15.8%) 0.6537

DOAC (apixaban, rivaroxaban, edoxaban,
dabigatran)

4 (21.1%) 4 (21.1%) 1.0000

Low-molecular-weight heparin (LMWH) 0 (0%) 0 (0%) 1.0000

No antithrombotic therapy 0 (0%) 0 (0%) 1.0000

Time from follow-up (LAAO to post-CT) 112.5 � 118 105.8 � 108.4 0.8100

Values are n (%) or mean � SD.

AF ¼ atrial fibrillation; CABG ¼ coronary artery bypass graft surgery; CRT ¼ cardiac resynchronization therapy;
CT ¼ computed tomography; DOAC ¼ direct oral anti-coagulation; DRT ¼ device-related thrombosis;
GI ¼ gastrointestinal; ICD ¼ implantable cardioverter-defibrillator; LAAO ¼ left atrial appendage occlusion;
LVEF ¼ left ventricular ejection fraction; OAC ¼ oral anti-coagulation; P2Y12 ¼ purinergic receptor P2Y,
G-protein coupled, 12 protein; PCI ¼ percutaneous coronary intervention; TIA ¼ transient ischemic attack.
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RESULTS

TIME AVERAGED WALL SHEAR STRESS. The TAWSS
contour plots are shown in Supplemental Figure 2;
only the portion of the device exposed to the atrial
flow is shown. To quantify the differences between
patient populations, Table 2 shows a global account of
the TAWSS values and Figure 2A shows a sample of
contours. The mean TAWSS was found to be
1.76 � 1.24 Pa for the DRT cohort and 2.90 � 2.70 Pa
for the control cohort with P < 0.0001.

OSCILLATORY SHEAR INDEX. The OSI contour plots
are shown in Supplemental Figure 3; only the portion
of the device exposed to the atrial flow is shown. To
quantify the differences between patient pop-
ulations, Table 2 shows a global account of the OSI
values and Figure 2B shows a sample of contours. The
mean OSI was found to be 0.19 � 0.11 for the DRT
cohort and 0.17 � 0.11 for the control cohort
with P < 0.0001.

ENDOTHELIAL CELL ACTIVATION POTENTIAL. The
ECAP contour plots are shown in Supplemental
Figure 4; only the portion of the device exposed to
the atrial flow is shown. To quantify the differences
between patient populations, Table 2 shows a global
account of the ECAP values and Figure 2C shows a
sample of contours. The mean ECAP was found to be
0.23 � 0.58 Pa-1 for the DRT cohort and 0.17 � 0.30 Pa-1

for the control cohort with P < 0.0001.

THROMBUS LOCATION AND VOLUME FROM IN-VIVO

IMAGING. The boundaries of the thrombi found in
each DRT patient’s post-CT scan are overlayed for
each flow dynamic parameter (Supplemental
Figures 2 to 4). The thrombi were mainly observed
in regions of low WSS, high OSI, and high ECAP.
The total mean volume of the thrombi was
1.44 � 2.06 mL (Table 2).

GEOMETRIC MEASUREMENTS. Measurements of the
LA volume and MV area are shown in Table 2. Mean
LA volume was larger among the DRT cohort
compared with the controls (171.49 � 69.16 mL and
127.90 � 33.82 mL, respectively; P < 0.05). Also, the
mean MV area was larger for the DRT cohort
(1,340.64 � 401.37 mm2 and 1,061.89 � 380.07 mm2,
respectively; P < 0.05).

DISCUSSION

This study represents the most comprehensive
assessment to identify flow dynamics patterns that
correlate with DRT to date. Using a novel approach
that combined patient-specific modeling with CFD
and finite element simulations to obtain a more
realistic patient-specific and device deformation, we
documented a strong association between certain
flow parameters and DRT. Accordingly, patients with
clinically adjudicated DRT displayed lower TAWSS,
higher OSI, and higher ECAP than controls (P < 0.001
for all), supporting existing pathophysiological con-
cepts. This computational approach approximates a
realistic model for assessing flow dynamics in relation
to DRT and represents a step forward in the growing
trends to incorporate computational simulations in
the planning of LAAO procedures.

Endothelial cell dysfunction is a known predictor
of thrombus formation.26,31,32 Numerous studies have
explored WSS as a possible factor in endothelial
dysfunction,26,31,33 particularly noting the association
of low WSS levels with thrombogenesis.27,34 In line
with these previous findings, our study shows that
DRT patients had a lower TAWSS compared to the
controls. A low TAWSS indicates a region of blood
stasis, which can induce thrombosis due to the
accumulation of procoagulant components.35

Furthermore, our study documented that DRT was
mainly located within or close by to regions with low
levels of TAWSS. These lower TAWSS values may be
related to device deployment. Zhong et al18 have
shown that a deep device deployment depth resulted
in lower TAWSS whereas a device deployed at the
LAA ostium was higher. Clinical studies have also
shown a higher incidence of DRT with deeper device
deployments.36,37 When the device is deployed deep
into the LAA, a shallow “valley” is created above the
device that serves as a nidus for blood stagnation and
thrombus formation. The larger atrial volumes and
MV areas observed in the DRT patients might lead to
lower velocities, ultimately yielding an increased risk
of flow stagnation and thrombus formation.

https://doi.org/10.1016/j.jacadv.2024.101339
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FIGURE 1 Workflow Adopted for This Study, Utilizing a Sequence of Finite Element Analysis and Computational Fluid Dynamics

CT ¼ computed tomography; ECAP ¼ endothelial cell activation potential; OSI ¼ oscillatory shear index; TAWSS ¼ time averaged wall shear

stress; TTE ¼ transthoracic echocardiogram.
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TABLE 2 Flow Dynamics Metrics and Geometric Measurements of Device-Related

Thrombosis and Control Patients

Group Mean Median SD IQR P Value

Flow dynamics metrics

TAWSS (Pa) DRT 1.76 1.43 1.24 1.42 <0.0001

CTL 2.90 2.14 2.70 2.86

OSI DRT 0.19 0.17 0.11 0.17 <0.0001

CTL 0.17 0.15 0.11 0.17

ECAP (Pa-1) DRT 0.23 0.12 0.58 0.20 <0.0001

CTL 0.17 0.07 0.30 0.15

Geometric measurements

Left atrium volume (mL) DRT 171.49 143.11 69.16 88.91 <0.05

CTL 127.90 127.36 33.82 61.30

Mitral valve area (mm2) DRT 1,340.64 1,309.88 401.37 573.25 <0.05

CTL 1,061.89 963.94 380.07 491.83

Thrombus volume (mL) DRT 1.44 0.53 2.06 1.72

Low TAWSS, high OSI, and high ECAP are associated with thrombosis.

CTL ¼ control; DRT ¼ device-related thrombosis; ECAP ¼ endothelial cell activation potential;
OSI ¼ oscillatory shear index; TAWSS ¼ time averaged wall shear stress.

Vogl et al J A C C : A D V A N C E S , V O L . 3 , N O . 1 1 , 2 0 2 4

Flow Dynamics of Device-Related Thrombosis N O V E M B E R 2 0 2 4 : 1 0 1 3 3 9

6

Another important flow dynamic parameter inves-
tigated was OSI. Oscillatory flow can promote an in-
flammatory state which can result in endothelial cell
dysfunction, a potential nidus for thrombus forma-
tion.27,32 The presence of an LAAO device may influ-
ence the flow patterns within the atrium, potentially
resulting in increased oscillatory shear. In the case of
a deeper device deployment, a recirculation region
develops on top of the device increasing the oscilla-
tory shear around the device.38,39 In this study, the
DRT cohort was observed to have higher OSI than the
controls. In addition, there was a correlation between
the location of the thrombus identified from in-vivo
imaging and regions of high OSI. Although not seen
in this study, residual (micro) peri-device leaks may
also influence OSI.

ECAP has been shown in various studies to confer
areas of susceptibility at the vessel walls.18,30,40,41

ECAP is defined as the ratio of OSI and TAWSS,
where a high value indicates a high OSI and a low
TAWSS, both of which have been shown to be related
to thrombogenesis. Endothelial cells naturally pro-
vide an antithrombotic surface,32,42 but when acti-
vated, this property is negated, which can result in
thrombus formation.32,35 In this study, we observed
an elevated ECAP for the DRT cohort compared to the
controls further confirming the potential role of CFD
parameters in predicting DRT.

Our findings have important practical implica-
tions. Mitigating the occurrence of DRT remains a
key challenge in LAAO. The first step to address this
problem is to understand the possible causes and to
identify potential predictors of DRT. Clinical studies
attempted to identify predictors of DRT but studies
identifying risk factors did not account for flow
dynamics, despite DRT being pathophysiologically
intimately related to flow patterns. Therefore, our
study provides a comprehensive understanding and
characterization of the flow environment around the
LAAO device to see what the differences are be-
tween patients with DRT and without DRT. Our
study provides evidence that certain flow parame-
ters (lower TAWSS, higher OSI, and higher ECAP)
are associated with DRT. This information may, in
time: 1 help estimate the likelihood of DRT prior to
LAAO, guiding shared decision-making and
improving appropriate patient selection; and 2)
assist the design of future research to assess
whether a tailored device implant or positioning
might further mitigate the risk of DRT in patient-
specific anatomies.

The uniqueness of this work stems from combining
the finite element with the CFD approach, while
implementing the deformation of the atrium and the
device after deployment. In addition, this work in-
volves a unique data set of LAAO patients who
developed DRT with full imaging from three different
medical institutions.

STUDY LIMITATIONS. The cohort used included only
19 individuals in each group. A larger patient popu-
lation may help to better identify the threshold for
each parameter studied associated with DRT. In
addition, the study did not employ fluid structure
interaction analysis, which might improve reproduc-
ibility of the LA flow dynamics. Due to CT quality and
limitations in the FE process, not all patients are
matched by age and sex. Therefore, we have opted to
show a global comparison between the two groups as
opposed to a direct comparison of each patient.

CONCLUSIONS

In this comprehensive study of flow dynamics in pa-
tients undergoing LAAO, we documented a charac-
teristic flow profile in patients with DRT (low TAWSS,
high OSI, and high ECAP) as compared with controls.
Our novel approach combining CFD assessment with
finite element simulations may improve risk stratifi-
cation among patients referred for LAAO (Central
Illustration). Further research involving a larger pa-
tient cohort and long-term follow-up is necessary to
understand the impact of the routine evaluation of
flow dynamic parameters on risk stratification of
LAAO candidates.



FIGURE 2 Sample of TAWSS, OSI, and ECAP Contours for the Top Surface of Each Device for the DRT and CTL Populations

Sample of time averaged wall shear stress (A), oscillatory shear index (B), and endothelial cell activation potential (C) contours for the top

surface of each device for the device-related thrombosis, and control populations. Thrombus locations from in-vivo imaging are shown by the

black line for each drt patient displayed. The line represents the border of the thrombus. DRT ¼ device-related thrombosis; CTL ¼ control;

other abbreviations as in Figure 1.

CENTRAL ILLUSTRATION Flow Dynamic Factors Correlated With Device-Related Thrombosis After Left Atrial
Appendage Occlusion

Vogl BJ, et al. JACC Adv. 2024;3(11):101339.

Patient-specific modeling (A) of the left atrium and left atrial appendage occlusion devices for use in a combined finite element and computational fluid dynamics

simulations (B) to identify fluid dynamics predictors of device related thrombosis (DRT). (C) Patients with DRT had lower time averaged wall shear stress, high

oscillatory shear index, and high endothelial cell activation potential, indicating an increased likelihood of thrombosis. ECAP ¼ endothelial cell activation potential;

OSI ¼ oscillatory shear index; TAWSS ¼ time averaged wall shear stress; abbreviations as in Figures 1 and 2.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In

this analysis, we demonstrated through a combined

finite element analysis and computational fluid dy-

namic approach—where the device and LAA defor-

mation were replicated similar to in-vivo—that

patients with DRT exhibit larger LA volumes and MV

areas in addition to more elevated oscillatory shear

and ECAP combined with lower shear stress. The

location of the thrombi verified the hemodynamic

findings.

TRANSLATIONAL OUTLOOK: Further research

involving a larger patient cohort and long-term

follow-up is necessary to understand the impact of

the routine evaluation of flow dynamic parameters on

risk stratification of LAAO candidates.
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