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Abstract

The emergence of microbial antibiotic resistance is a global health threat. In clinical settings,

the key to controlling spread of resistant strains is accurate and rapid detection. As tradi-

tional culture-based methods are time consuming, genetic approaches have recently been

developed for this task. The detection of antibiotic resistance is typically made by measuring

a few known determinants previously identified from genome sequencing, and thus requires

the prior knowledge of its biological mechanisms. To overcome this limitation, we employed

machine learning models to predict resistance to 11 compounds across four classes of anti-

biotics from existing and novel whole genome sequences of 1936 E. coli strains. We consid-

ered a range of methods, and examined population structure, isolation year, gene content,

and polymorphism information as predictors. Gradient boosted decision trees consistently

outperformed alternative models with an average accuracy of 0.91 on held-out data (range

0.81–0.97). While the best models most frequently employed gene content, an average

accuracy score of 0.79 could be obtained using population structure information alone. Sin-

gle nucleotide variation data were less useful, and significantly improved prediction only for

two antibiotics, including ciprofloxacin. These results demonstrate that antibiotic resistance

in E. coli can be accurately predicted from whole genome sequences without a priori knowl-

edge of mechanisms, and that both genomic and epidemiological data can be informative.

This paves way to integrating machine learning approaches into diagnostic tools in the

clinic.
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Author summary

One of the major health threats of 21st century is emergence of antibiotic resistance. To man-

age its human health and economic impact, efforts are made to develop novel diagnostic tools

that rapidly detect resistant strains in clinical settings. In our study, we employed a range of

powerful machine learning tools to predict antibiotic resistance from whole genome sequenc-

ing data for E. coli. We used the presence or absence of genes, population structure and isola-

tion year of isolates as predictors, and could attain average precision of 0.92 and recall of 0.83,

without prior knowledge about the causal mechanisms. These results demonstrate the poten-

tial application of machine learning methods as a diagnostic tool in healthcare settings.

Introduction

Antibiotic resistance has turned into an acute global threat. The rise of bacterial strains resis-

tant to multiple antibiotics is expected to dramatically limit treatment effectiveness [1], leading

to potentially incurable outbreaks. In addition to new drug development efforts, there is an

urgent need for preclinical tools that are capable of effective and rapid detection of resistance

[2, 3], as culture-based laboratory diagnostics test are usually time consuming and costly [3].

To accelerate the diagnosis, genetic tests have been devised to identify known resistance

genes. The increasingly affordable and available whole genome sequencing data from clinical

strains has helped to robustly identify antibiotic resistance determinants, and to curate them

in dedicated databases [4, 5]. Given sequence from a new strain, computational methods can

then look up known causal genes in these resources [5, 6]. Whilst such rule-based models are

highly accurate for some common pathogens with well-characterized resistance mechanisms

(e.g. Mycobacterium tuberculosis and Staphylococcus aureus) [7], they cannot be employed to

detect resistance caused by unknown mechanisms in other major pathogenic strains, and

require regular curation to remain effective.

Prediction approaches based on machine learning have the potential to overcome these

restrictions of rule-based tests. As general-purpose methods, they are agnostic to the causal

mechanisms, and learn useful features directly from data [8–11]. Already, decision tree based

models have proven valuable for predicting resistance and pathogen invasiveness from geno-

mic sequences [12–16]. However, these studies were limited in both the genetic features used

and the methods applied. In particular, both population structure and accessory genome con-

tent could contain predictive information, as resistance determinants may be transferred hori-

zontally from other strains, or inherited vertically from an ancestor [2]. Further, the powerful

deep learning methods that can utilize complex features interactions were not examined.

Here, we systematically evaluate the performance of machine learning algorithms for pre-

dicting antibiotic resistance from E. coli whole genome sequence data. We present genome

sequences and resistance measurements of 255 new isolates and consider them together with

published data from recent large-scale studies, as well as simulated datasets. We test whether

prediction accuracy improves with including temporal data, population structure, and acces-

sory genome content, and assess how a range of population parameters, such as mutation and

recombination rates, influence predictions.

Methods

Isolates

We used 1681 strains from four large-scale clinical and environmental E. coli collections, with

available data on the year of isolation, drug susceptibility phenotypes, and whole genome
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sequence [17, 18]. Furthermore, we collected 255 strains from a range of ecological niches:

hospital sewage and water treatment plant from Sweden (Carl-Fredrik Flach); human clinical

isolates isolated in Pakistan, Syria, Sweden and USA (Culture Collection University of Gothen-

burg); a collection of strains producing extended-spectrum β-lactamases isolated in Sweden

(Christina Åhrén) and environmental samples from Belgium (Jan Michiels).

Antimicrobial susceptibility testing

Antimicrobials tested for the newly sequenced genomes included beta-lactams (penicillin:

ampicillin (AMP, C.B. (clinical breakpoint): 6μg/ml); cephalosporins: cefuroxime (CXM, C.B.:

8μg/ml), cefotaxime (CTX, C.B.: 4μg/ml), cephalothin (CET, C.B.: 20μg/ml) and ceftazidime

(CTZ, C.B.: 0.25μg/ml)), aminoglycosides (gentamicin (GEN, C.B.: 4μg/ml) and tobramycin

(TBM, C.B.: 8μg/ml)), and fluoroquinolones (ciprofloxacin (CIP, C.B.: 1μg/ml)). Besides these

antibiotics, antimicrobial susceptibility testing results were available for amoxicillin-clavula-

nate (AMC), amoxicillin (AMX) and trimethoprim (TMP) for the previously sequenced

genomes and were used in this study. Antibiotic abbreviations were adopted from the British

Society of Antimicrobial Chemotherapy (www.bsacsurv.org/science/antimicrobials). Concen-

trations used were determined by performing a 2-fold serial dilution, starting from twice the

concentrations listed by the European Committee on Antimicrobial Susceptibility Testing

(EUCAST) on 25/01/2017, until no growth was observed after 16 hours for the common lab

strain BW25113 [19] used as a control in the experiments. In defining resistance, we desig-

nated intermediate strains as resistant.

Sequencing data generation

We extracted DNA with the Bacterial Genomic DNA Isolation 96-Well Kit (Norgen Biotek) as

detailed in the manufacturer’s instructions. Libraries were prepared with standard Illumina

DNA sequencing library preparation protocols, and sequenced on Illumina HiSeq X with 150

bp paired end reads, multiplexing 384 samples per lane, and achieving average depth of cover-

age of 40-fold. We used Kraken, which accurately assigns taxonomic labels to the short DNA

reads [20], to confirm the presence of E. coli reads in the pool. The raw sequences for the

sequenced data in this study have been deposited in the European Nucleotide Archive (ENA)

under the accession numbers described in S1 Table.

Pan-genome determination

Paired-end reads for the isolates sequenced both here and previously were assembled with Vel-

vet [21] and put through an improvement pipeline [22]. In order to reconstruct the pan-

genome, we used the output assemblies and annotated these with Prokka [23]. The annotated

assemblies produced by Prokka were then used as input for Roary [24] to build the pan-

genomes with the identity cut-off of 95%. In the process of pan-genome construction, coding

regions were extracted from the annotated assemblies and then converted to protein sequences

(partial coding sequences were filtered out). Roary yielded clusters of homologous gene groups

and produced a matrix for the presence and absence of ortholog accessory genes. The variant

sites (SNPs) in the core genome alignment were extracted with a SNP sites tool (www.github.

com/sanger-pathogens/snp-sites). To visualize the phylogenetic tree with the associated meta-

data, we used iTOL [25]. The pan-genome data, including sequences of the gene ortholog fam-

ilies, as well as the annotated assemblies for strains are provided in Github (www.github.com/

DaneshMoradigaravand/PanPred).
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Population structure calculation

We mapped the short reads to the reference EC958 genome sequence [26] as detailed in [27],

and calculated the pairwise SNP distance (number of differing sites) for the core genome align-

ment of strains with functions in the ape package in R [28]. We identified clusters within the

population using a distance-based method in the adegenet package [29]. We clustered

sequences using the sequence distance metric with the adegenet package for all possible num-

ber of clusters from 1 to number of strains. To this end, we employed the gengraph function in

the package that produces graphs from genetic distances, in which pairs of strains are con-

nected if their genetic distance is less than a given cut-off. We considered each connected com-

ponent of the obtained graph as a cluster. Based on these clusterings, we constructed the

population structure matrix S, where sij = k if strain i belongs to cluster k in the clustering with

at most j clusters.

Simulated datasets

To evaluate the performance of prediction tools, we simulated pan-genomes with the simula-

tion script in the Scoary package [30] (https://github.com/AdmiralenOla/Simulate_pan_

genome). The simulation process begins with a single genome with 3000 core and 6000 acces-

sory genes that undergoes duplication and gene loss/gain in every generation, and continues

until a desired number of genomes is reached; we tested population sizes of 130, 260, 650 and

1300. We examined penetrances, defined as the probability of acquisition/loss of the resistance

phenotype simultaneously to the acquisition/loss of the causal resistance gene, of 0.5, 0.6, 0.7,

0.8, 0.9 and 1.

Feature calculation

We examined different predictors as inputs: 1) matrix of the presence-absence of accessory

genomes within the pan-genome (G), where gij is 1 if gene i is present in strain j, and 0 other-

wise; 2) matrix of population structure inferred from core-genome (S) defined above, and one-

hot encoded 3) matrix of SNP sites (SNP), where SNPij = 0 if strain j carries the consensus

allele at site i, and 1, 2, 3, 4, 5 if it contained A, T, C, G nucleotide or missing information,

respectively; 5) matrix of indels (indel), where indelij = 0 if strain j has the reference sequence

at site i and 1 if it contained any indel and 6) matrix of years of isolation (Y). We standardized

each feature to have 0 mean and unit variance. Genes, strain clusters, and SNPs with identical

indicator pattern were collapsed, so there are no duplicate rows in the G, S, SNP matrices.

Resistance prediction

We performed prediction using various combinations of input matrices using resistance indi-

cator as the output. We employed 80% of the data for training and tuning the various models,

using 4-fold cross-validation to select the best parameters for each model class according to

mean accuracy. The performance of the selected model was then assessed on the remaining

20% held-out data. Positive and negative corresponded to the resistant label.

Four different models were used along with a rule-based baseline

Logistic regression with L2 regularization. We employed the “LogisticRegression” function in

the Scikit-learn python package (www.scikit-learn.org) [31], with the “lbfgs” solver, and varied

the regularization parameter strength from 0 to 1 with step size 0.01.

Random forest classifier. We employed the “RandomForestClassifier” function in Scikit-

learn. We varied key parameters including the number of trees in the forest (n_estimators;
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100, 600, 2000, 5000) and number of features considered for splitting at each leaf node (max_-

features), i.e. when searching for the best split, we used total number, as well as square root

and binary logarithm selection of the number of features. We also changed parameters con-

trolling the size of tree, including values for minimum number of samples required at a leaf

node (min_samples_leaf) (values: 1,5), minimum number of samples required to split an inter-

nal node (min_samples_split) (values: 2, 3). We also changed the maximum depth (max_-

depth) of the tree by assuming that nodes are expanded until all leaves are pure or until all

leaves contain less than 10 and 50 strains. We used bootstrap samples for building trees, out-

of-bag samples to estimate accuracy, and Gini impurity as the criterion for the information

gain.

Gradient boosted decision trees. We used the “GradientBoostingClassifier” implementa-

tion in Scikit-learn, with learning rate 0.1, and 300, 600 and 5000 boosting stages, and deviance

loss. We aimed to make the parameters considered for random forests and gradient boosted

decision trees as similar as possible. Therefore, we used the hyperparameter values for the deci-

sion tree parameters shared with random forests, including max_features, min_sample_leaf

and mean_samples_split. In order to assess the robustness of feature importance analysis, we

repeated the optimization with 50 random seeds. To account for overfitting, we also ran itera-

tions with a fraction of 0.8 of samples for fitting the individual base learner models. This

turned the model into a stochastic gradient boosting model. As a measure for feature impor-

tance, we counted the number of times a feature used in optimization, as well as the average

feature rank and importance across multiple replicates.

Deep neural networks. We employed the keras library in python (www.keras.io) to build

fully connected deep neural networks. We tested various network topologies, including two,

four and six layer networks, with two output nodes corresponding to resistant and susceptible

states, and 100 and 150 nodes in each internal layer and 200, 400 and 600 nodes for the first

layer. We used Adam to train for 20 epochs, with batch size of 128, learning rate of 0.1, drop-

out of 0 and 0.2, and stopping when the validation set performance decreased. Due to the

small training dataset size compared to the number of features, for ~50% of runs the loss in the

validation did not decrease by the end of training the network. We randomly partitioned the

data into training (56%), validation (14%) and test (30%) sets, and trained models with differ-

ent parameters on the training set, evaluated quality on the validation set, and final perfor-

mance on the test set.

Rule-based baseline. We compared our results with a rule-based method based on the

detection of known resistance genes. To this end, we employed srst2 [32] and mapped

short reads to the ResFinder and the Comprehensive Antibiotic Resistance Database

(CARD) of known resistance genes in the srst2 package, using the cut-off of 60% for the

length coverage. We checked the ESBL and inhibitor-resistance status (for AMC resis-

tance) of beta-lactamases according to the Lahey hospital and medical center database

(www.lahey.org/Studies) and CARD. For aminoglycosides, variants of genes encoding

aminoglycosides modifying enzymes were considered as resistance. For trimethoprim,

variants of dihydrofolate reductase genes were assumed to cause resistance. Finally, for

ciprofloxacin, the qep and oqx genes, belonging to major facilitator superfamily transport-

ers, were considered as resistance genes.

Details of the performance of each hyperparameter set, as well as distribution of known

resistance genes (from CARD and Resfinder), are provided in the Github directory (www.

github.com/DaneshMoradigaravand/PanPred). Prediction results for the best performing

model are detailed in S3 Table.
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Results

Our data comprise 1936 samples that have been full genome sequenced, and phenotyped for

resistance of 11 antibiotics. Resistance was distributed both within specific clades as well as

emerging sporadically on divergent lineages (S1 Fig), with an average frequency of 0.35 per

drug (range: 0.15–0.63). This pattern suggests both vertical and horizontal spread of resistance

determinants. Genome sequences were processed to give gene and polymorphism presence

information (1,390 core genes present in >99% of lineages, 90,261 genes present in more than

one lineage, 1,432,145 variable sites in core genes), and 1,071 population structure features.

We used these input features to test the ability of four machine learning models—logistic

regression, random forests, gradient boosted decision trees, and deep neural networks—to

predict antibiotic resistance. We varied model hyperparameters, as well as input data types, to

establish the most accurate models within each class (Methods). Results were similar on the

training and test datasets, demonstrating lack of bias in their choice (S2 Fig). Gradient boosted

decision trees performed best for predicting resistance of 11/11, and susceptibility of 9/11

drugs (Fig 1), with average precision of 0.93 and recall of 0.83 (S3 Fig, Table 1). Perhaps sur-

prisingly, deep learning models that account for complex non-linear relations amongst fea-

tures did not provide substantial improvement over the simpler logistic regression models, or

random forests (Fig 1).

Knowledge of what features that aid prediction will help prioritize data collection and diag-

nostic efforts. The gene presence and absence predictor (G) was used in all the best predictive

models for each of the considered methods (Fig 1; lower panel). This is not surprising, given

multiple known resistance mechanisms driven by accessory gene content, e.g. for beta-lactams

and aminoglycosides. Population structure information (S) and year of isolation data (Y) were

also used in 11 and 30 out of 44 best models, respectively. Adding gene presence to population

structure features, with or without the year of isolation, improved the accuracy score by 0.12

on average (S4 Fig). In contrast, once gene presence had been accounted for, there was limited

performance gain when including population structure features (S3 Fig). This suggests that

accessory gene content already contains information about population structure, which

reflects the pattern of polymorphisms in the core genome. Indeed, core genome distance and

accessory gene difference matrices are not independent (p< 0.01, Mantel test), which is likely

explained by accessory genes acquired by clade ancestors, followed by limited turnover.

Next, we asked which individual features are most frequently utilized. We measured feature

importance as the number of times it was used for gradient boosted decision trees, the best

performing method, across 50 random fitting replicates on fixed training date (S5 Fig). In gen-

eral, known resistance genes were identified as the most important, and were most frequently

used features for predicting resistance to beta-lactams and aminoglycosides, e.g. ESBLS,

including variants of blaTEM-1 and blaCTX-M-15, and extra copies of ampC and phnP efflux

pump genes (S2 Table). For example, the known beta-lactamase bla-CTX-M gene ranked first

in all models for predicting resistance to beta-lactam ceftazidime, which followed by some

genes with unknown function and ampC (S5A Fig). Further to known genes, genes that are

tightly linked to causal resistance genes may be identified as important. The group_17190
gene, highly ranked for cefuroxime and cefotaxime was linked to blaCTX-M-15 (S2 Table).

For 10 out 11 drugs the year of isolation was used in the best performing model. However

this feature did not improve accuracy when added to the structure and genetic features for

nearly all drugs expect ampicillin and to lesser extend cephalothin (S4A Fig). This was indi-

cated by the temporal distribution of the data, where all the strains collected in 2015 were resis-

tant to these antibiotics. These findings demonstrate that although known resistance genes

were most predictive, other features, i.e. year of isolation, may be reproducibly utilized for
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prediction as well (S5B Fig). Nevertheless, it is clear that the inclusion of some features, such as

collection year, reflects bias in the training data rather than biological importance. Time of iso-

lation is informative when an outbreak of multi-drug resistant strain occurs at a limited time

period. While not mechanistically informed, time of isolation, and perhaps other clinical and

epidemiological features may be integrated and utilized if they robustly improve performance.

Population structure information was less often selected than gene presence and absence

and year of isolation in the best performing models (Fig 1). Nevertheless, training only on pop-

ulation structure produced an average accuracy of 0.79 (range: 0.65–0.91), and this perfor-

mance could not be achieved with randomized phenotypes (S6 Fig). Population structure

features capture both recently diverged and deep clades (Fig 2A), and features included in the

models were not limited to a single lineage or common depth (e.g. Fig 2B). As an example,

CL129 distinguishes clusters by positing a maximum pairwise sequence distance of 129 nucle-

otides between isolates, and was identified as the most important feature. Cluster membership

Fig 1. Prediction performance of the best tuned models. Accuracy and F1 score (harmonic mean of precision and recall; y-axis) for resistant (top panel) and

susceptible (middle panel) phenotypes for four predictive models (red: gradient boosted decision trees; green: logistic regression; teal: random forests; purple: deep

learning) across eleven antibiotics (x-axis). The best model of each class for every drug (x-axis) was identified based on the accuracy for predicting resistance and

employed a number of possible combinations of gene presence, population structure, and year of isolation (lower panel; black: feature used; white: feature not used).

https://doi.org/10.1371/journal.pcbi.1006258.g001
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at this level of similarity informs of resistance, as 73% of clusters with at least two strains con-

tained either only resistant or only susceptible strains (Fig 2C). In these cases, resistance status

of an ancestral strain of the clades was likely retained in descendants and did not change due

to horizontal gene transfer, mutation, or sporadic gene loss. Altogether, the results show that

predictive models can utilize genetic relatedness and population structure for predicting resis-

tance, as has been observed in traditional eukaryotic genetics [9].

Due to the correlation between the pan-genome and structure data, determining the rela-

tive contribution of gene content to prediction is not straightforward (see Discussion). In

order to obtain insights into this, we assessed the performance of the model on a new lineage.

To this end, we used the ST131 lineage as test dataset, and the rest of the data for training, and

compared performance of gene, population structure, and combined models to random selec-

tion of equally-sized test data (S7 Fig). For drugs with a known causative resistance gene, (i.e.

every drug except CIP), adding gene information increases prediction accuracy by an average

0.24. The improvement is more pronounced if the resistance accessory gene has high pene-

trance and arises independently across different lineages (e.g. the trimethoprim resistance

caused by the dfrA genes). No accessory gene is responsible for ciprofloxacin resistance and

ST131 is highly resistant to ciprofloxacin. As a result, models with accessory gene and structure

inputs perform equally well. Further, it is worth noting that the control accuracy (where held-

out isolates were randomly sampled) was on average 0.28 higher for all drugs excluding AMP,

AMX and CET, mainly due to higher sensitivity (S7 Fig). For these remaining antibiotics, the

performance on the held-out clade was as good as for control. This is likely explained by more

than 90% of the clade strains being resistant, and any clade correlate, either accessory gene

presence, or population structure indicator, enabling accurate prediction. Overall, the results

show that the accessory gene content may be used both for its genetic content of causative

resistance determinants, and a proxy for structure, although the performance can worsen on

novel lineages.

While the major mechanism for evolving antibiotic resistance is gene acquisition, muta-

tions and indels on chromosomes may also play a role, and therefore aid prediction. We thus

next included single nucleotide polymorphism (SNP) and indel data for gradient boosted deci-

sion trees and re-fitted the model. Predictive performance improved for 8 of the 11 antibiotics,

and significantly so for cefuroxime and ciprofloxacin (S4B Fig). As anticipated, the largest

accuracy improvement of 2.8% (C.I.: 1.61%-3.85%) occurred for ciprofloxacin, resistance

Table 1. Prediction metrics on held out data for the best performing gradient boosted decision trees model.

Antibiotic TN FP FN TP S.PRC S.RCL R.PRC R.RCL S.FSc R.FSc ACC

AMP 24 5 5 118 0.83 0.96 0.83 0.96 0.83 0.96 0.93

AMX 80 8 15 115 0.84 0.93 0.91 0.89 0.87 0.91 0.89

AMC 221 34 29 52 0.89 0.60 0.87 0.64 0.87 0.62 0.81

CTZ 309 4 13 50 0.96 0.92 0.99 0.80 0.97 0.85 0.95

CTX 281 5 6 66 0.98 0.93 0.98 0.922 0.98 0.92 0.97

CXM 273 11 24 68 0.92 0.86 0.96 0.74 0.94 0.79 0.91

CET 38 12 17 85 0.70 0.88 0.76 0.83 0.72 0.85 0.81

GEN 316 1 11 48 0.97 0.98 0.99 0.81 0.98 0.89 0.97

TBM 104 3 7 38 0.94 0.92 0.98 0.84 0.95 0.89 0.93

TMP 73 7 10 62 0.88 0.90 0.91 0.86 0.90 0.88 0.89

CIP 281 10 16 69 0.95 0.87 0.97 0.81 0.95 0.84 0.93

TN: true negatives, FN: false negatives, FP: false positives, TP: true positives, PRC: precision, RCL: recall, S: susceptibility, R: resistance, ACC: accuracy for resistance.

https://doi.org/10.1371/journal.pcbi.1006258.t001
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against which is known to involve chromosomal mutations [33, 34]. Accordingly, the three

most important identified features were variants in chromosomal quinolone-resistance-deter-

mining regions of the genes encoding DNA gyrase (gyrA), and topoisomerase IV parC. For

other antibiotics, the addition of SNP data either did not greatly improve or worsened predic-

tion performance (S4B Fig, Discussion). The addition of indel information did not signifi-

cantly improve prediction, perhaps due to low frequency of such mechanisms.

A possible limitation for applying machine learning methods to detect antibiotic resistance

is the unavoidably small number of samples (1,936 in this study) compared to the number of

features (~18,270 in this study after collapsing the fully correlated features). To better under-

stand how this imbalance impacts performance, we simulated data from different sample sizes

using a range of penetrances for a single resistance determinant. As anticipated, the

Fig 2. Population structure and phenotypic distribution of the input data. A) Phylogenetic distribution of clusters identified in the population for SNP distance cut-

off values of 2, 143, 5054 and 14489 (outer circles) relative to the phylogenetic tree. B) Phylogenetic distribution of correct calls (true positives, true negatives) and errors

(false positives, false negatives) when predicting cephalothin (CIP) resistance with the best performing gradient boosted model. The accuracy for resistance was 0.91. C)

Phylogenetic distribution of the most important identified population structure feature, clustering with SNP cut-off of 129 (outer ring), compared with the phylogenetic

distribution of resistance phenotype (inner ring; blue: susceptible; light red: intermediate and red: resistant) on the test dataset. Clusters with more than one member are

shown.

https://doi.org/10.1371/journal.pcbi.1006258.g002
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performance of gradient boosted decision trees dropped when the penetrance of the resistance

determinant decreased (S8 Fig). However, there was no reduction in prediction and recall for

resistance upon decreasing the population size, even when using only 130 strains. Overall,

these findings suggest that the large number of features relative to sample size does not impact

model performance for high frequency causal genes.

The current methods employ rule-based models to predict resistance from a small number

of known determinants. We used srst2 [32] to identify known resistance genes for cephalospo-

rins, penicillins, aminoglycosides, trimethoprim and ciprofloxacin, and used this to compare

the performance of our models with the prediction based on the presence of known genes in

two databases. Except for amoxicillin, machine learning models attained a higher accuracy for

prediction that rule-based approaches (S9 Fig). This is mainly due to reducing false negatives

for resistance, where no known resistance gene was detected in the resistant strains.

Finally, we utilized the information from rule-based methods to better understand predic-

tion errors for our model (Table 2). There were up to 47 false positive resistance calls across

different antibiotics for strains that carried known resistance genes (beta-lactams, aminoglyco-

side modifying enzymes and dfr genes from CARD and Resfinder databases), but were anno-

tated as susceptible. Manual inspection confirmed that all of these genes were fully covered by

sequence data, and almost identical to the known resistance genes. In a similar vein, up to 17

false negative resistance calls did not contain a known causal determinant according to the

same databases. Further, up to 65 resistant strains were correctly marked as resistant by our

model, but contained no known resistance gene (Table 2). These discrepancies may be

explained by unknown mechanisms for resistance, phenotypic resistance testing error, or

genomic sequence coverage. As neither approach was perfect, predictive models in combina-

tion with rule-based methods may help identify cases that require further analysis or repeating

the susceptibility tests, ultimately leading to improved diagnostics and novel mechanisms.

Moreover, the discrepancy between rule-based and machine learning methods is most pro-

nounced for CIP and AMC resistance. This is not surprising, as the resistance gene for CIP

determine relatively small increases in the MICs of quinolones and are not considered in resis-

tance screening [35]. Despite genome sequence information not being complete for any of the

strains, our best performing model attained an accuracy of 0.93. This was achieved due to the

use of genetic information correlated with resistance genes. For AMC resistance, bla-TEM

Table 2. Comparison of prediction results with a rule-based models with Resfinder and CARD database of antibiotic resistance genes.

Antibiotic Acc.

ML

Acc.

CARD

Acc.

ResFinder

TP w/o Res.

gene (CARD)

FN w/o Res.

gene (CARD)

FP w Res. gene

(CARD)

TP w/o Res. gene

(ResFinder)

FN w/o Res. gene

(ResFinder)

FP w Res. gene

(ResFinder)

AMP 0.93 0.88 0.72 1/118 1/5 3/5 25/118 3/5 2/5

AMX 0.89 0.85 0.69 2/116 8/14 7/9 12/116 3/14 5/9

AMC 0.81 0.6 0.73 16/49 16/32 15/31 48/49 31/32 1/31

CTZ 0.95 0.8 0.65 0/49 2/14 1/4 10/49 5/14 4/4

CTX 0.97 0.8 0.64 0/67 0/5 1/2 9/67 3/5 1/2

CXM 0.91 0.8 0.67 0/67 8/25 4/7 15/67 13/25 5/7

CET 0.81 0.71 0.67 4/85 9/17 6/11 24/85 8/17 5/11

GEN 0.97 0.64 0.63 0/48 4/11 1/1 1/48 4/11 1/1

TBM 0.93 0.64 0.62 0/38 1/7 3/3 0/38 1/7 3/3

TMP 0.89 0.74 0.86 9/62 8/10 3/5 4/62 2/10 5/5

CIP 0.93 0.76 0.75 63/68 17/17 3/9 65/68 17/17 0/9

True positives (TP), false positives (FP) and false negatives (FN) from Table 1.

https://doi.org/10.1371/journal.pcbi.1006258.t002
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gene was the most important feature used in prediction. However, not all variants of bla-TEM
are known to exhibit inhibitor resistance [36]. In this case, prediction based on the presence of

this gene may result in discrepant results with observed phenotypes. There results demonstrate

that when genetic information on a key resistance gene is missing or incomplete in some resis-

tant strains, the use of correlated genetic information leads to a reduction in false negatives for

resistance, and improves accuracy.

Discussion

We examined the ability of four different machine learning methods to predict antibiotic resis-

tance from pan-genome data in E.coli, without making assumptions about the underlying

genetic mechanisms. Our tests revealed that accessory genome data is needed for high accu-

racy in general, but that population structure information alone also allows prediction well

above chance. This is particularly helpful when the genetic relatedness is known from a novel

strain, whilst the underlying genetic resistance mechanism is unknown or less well-known,

such as tend to be the case for recently introduced antibiotics. The quantification of the contri-

bution of the population structure features remains out of the scope of this study.

Our input dataset was diverse. The collection comprised seven sequence types and strains

from 15 consecutive years across a range of geographical locations. The majority of isolates

(1509 of 1936 samples) were from a nationwide study across hospitals in the United Kingdom

and Ireland [17], and associated with bacteremia. This geographical bias is not expected to

affect the performance of the model on a new clinical dataset, since E. coli sequence types (e.g.

ST131 clone [37]) are circulated across hospitals worldwide. However, as isolates from poten-

tial reservoirs, including hospital sewage and wastewater treatment plants, were underrepre-

sented in training data (99 of 1936 samples), we cannot conclusively assess how well the

trained models detect resistance in samples from these sources. More data are needed to

develop robust models across the entire species range, especially if resistance mechanisms dif-

fer in the various niches.

The phenotype data was binary—each isolate was deemed either resistant or not to a com-

pound. It is clear that this is an oversimplification of reality, as substantial variation hides

within both categories. As evolutionary pressure is applied to the resistant population through

the use of antibiotics, it will influence how quickly it spreads within and between patients, as

well as in bacterial populations at large. To predict treatment outcomes, correctly design inter-

ventions and allocate societal resources, it will therefore be important to be able to accurately

predict resistance quantitatively as well. This requires non-binary resistance data, acquired at

high accuracy and throughput.

We compared five models, including a rule-based standard. As a baseline machine learning

approach, we employed logistic regression, and contrasted it against arguably the most useful

current methods. Indeed, deep neural networks, random forests, and gradient boosting form

the top three most frequent winners in Kaggle (the world’s largest community of data scientists

and machine learners) competitions (https://www.kaggle.com/antgoldbloom/what-

algorithms-are-most-successful-on-kaggle). In this regard, our findings confirm the utility of

ensemble methods, and in particular boosting models, for predicting antibiotic resistance.

While deep learning models are able to capture higher order interactions between features,

and therefore often outperform simpler alternatives [38], they did not provide additional

advantage here. Tree-based methods are often used as an intermediate between simple models

that treat features independently, like logistic regression, and more complex, but poorly inter-

pretable models. Indeed, random forest readouts can be analysed for feature importance as we

have done here, and even detecting genetic interactions (e.g. [39]).
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While the most frequently used features often captured information about known resis-

tance genes, we do not attempt to interpret the identified links as causal. As for association

methods [30, 40], the true impact of genetic features is confounded by their phylogenetic dis-

tribution and population structure. Therefore, approaches to distinguish causal resistance

genes from all correlated markers require additional experimental study.

Recent reports have confirmed the strength of tree-based methods for predicting clinical

attributes. For example, Wheeler et al. used random forests to predict invasiveness of Salmo-
nella enterica lineages [16]. In another study, a tree ensemble was trained with boosting to pre-

dict the minimum inhibitory concentration from DNA k-mers for a large-scale Klebsiella
pneumoniae panel [12], but the value of using core genome compared to accessory genes was

not investigated. A very recent study [11] employed a different set of machine learning meth-

ods to predict resistance phenotype from pan-genome data but this study was conducted a

small data set without testing gradient boosting and neural networks.

Including variant data or k-mers in the model greatly increases the number of features.

However, adding the ~1 million additional single nucleotide features to ~20,000 others did not

improve the results for most drugs in our dataset. This suggests that for E. coli collections or

similar Enterobacteriaceae, in which resistance is driven to a great extent by horizontal transfer

of entire genes, only pan-genome data may be directly useful in early screenings for resistance,

and including nucleotide-level information may become more beneficial in the future, once

causality is established for a broader range of genes, SNPs and indels. Furthermore, we expect

methods that take population structure features as input to perform better in clonal organisms

like E. coli compared with more recombinogenic species. The relative contributions of SNPs

and population structure features to prediction will likely vary when methods are applied to

different pathogens.

What is keeping predictive models from reaching 100% accuracy? One of the reasons for

limited improvement due to SNP data could be their high false negative rate. Our model will

fail to identify SNPs in regions that are too large for SNP detection, or SNPs that do not occur

in the core genome, i.e. in the accessory genome. Furthermore, several non-genetic causes may

influence predictive ability. The genome-based prediction cannot account for various non-

genomic resistance mechanisms, such as resistance due to biofilm formation, or alteration of

methylation patterns. Consequently, future studies should assess the value of even broader

data for accurate prediction, ranging from transcriptome and proteome to other clinical and

epidemiological data, such as cross-resistance and history of antibiotic therapy. Integrating

these information sources from large isolate panels into a single predictive framework will lead

to a rational basis for introducing machine learning in decision-making in public health.

Supporting information

S1 Fig. Phylogenetic distribution of resistance and Sequence Types (ST)s across the phylo-

genetic tree. A) A neighbor-joining phylogenetic tree from SNPs with associated resistance

and susceptibility, major STs, and year of isolation information. B) Number of resistant (dark

red), intermediate (light red) and susceptible (blue) strains (y-axis) for each of the 11 consid-

ered antibiotics (x-axis).

(TIF)

S2 Fig. Comparison of the accuracy of prediction on the training dataset and the held-out

data set. Bars with dark colors show the mean accuracy for the tuned model with 4-fold cross

validation on the training dataset. The error bars are standard deviations. Bars with light colors

are the accuracy of the tuned model on the held-out (test) dataset.

(TIF)
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S3 Fig. Prediction performance of the best tuned models. The precision (panels 3,4) and

recall (panels 1, 2) for resistance and susceptibility for the best tuned predictive models on

held out data for four predictive models (red: gradient boosted random forests; green: logistic

regression; teal: random forests; purple: deep learning) across eleven antibiotics (x-axis). The

best model, i.e. model with highest accuracy for resistance, of each class for every drug (x-axis)

employed a number of possible combinations of gene presence, population structure, and year

of isolation (lower panel; black: feature used; white: feature not used).

(TIF)

S4 Fig. Improvement in the prediction performance. This was measured as increase or

decrease in accuracy scores for resistance, after the inclusion of A) gene presence-absence (G)

and population structure (S) input data and year of isolation (Y). B) SNP and indel data. Each

bar shows the difference (extended feature set performance minus original feature set perfor-

mance) between the mean accuracy scores for best performing models on the training data,

with 4-fold cross validation. The error bars show the harmonic mean of standard deviation val-

ues for the two compared conditions, as defined in S3 Fig.

(TIF)

S5 Fig. Feature importance analysis for the gradient boosted decision trees results. A)

Average ranking (y-axis) and average importance (x-axis) of each feature across 50 random

restarts of training for each feature (markers; size proportional to the frequency of feature utili-

zation) for ceftazidime (CTZ). Annotations for top genes is shown in the figure. A full list of

the genes is provided in S2 Table. B) Frequency (y-axis) of the year (green), population struc-

ture (blue) and gene presence (red) features for 100 most important features (x-axis) in the 11

antibiotics (panels) across the 50 random training restarts. The best performing model inputs,

shown in Fig 1, are denoted to the right of each plot.

(TIF)

S6 Fig. Prediction information of population structure data. Accuracy score for prediction

of antibiotic resistance from population structure alone (y-axis) for randomized labels (violin

plots) and real data (red marker) across 11 antibiotics (x-axis). The violin plots aggregate

results from 100 bootstrap replicates of randomly sampled phenotype labels. A gradient

boosted decision trees model with 600 iterations was used as predictive model.

(TIF)

S7 Fig. Assessment of the performance of model with different features on a new lineage

for 11 drugs. We left out ST131 strains as test data set and trained the model on the rest of

strains (w/o ST131). Results are compared with a control case, in which test and train datasets

with the same size as w/o ST131 were created by a random selection (Control). Models were

tuned with three features combinations, i.e. S (population structure), G (Accessory genes) and

G+S (Accessory genes and population structure). The first row shows frequency of resistant

strains in the train and test datasets for the two cases. The second panel shows the accuracy for

predicting resistance and the difference between the accuracy values, i.e. Accuracycontrol-

Accuracyw/o ST131. The two last panels show precision and recall for resistance with three fea-

ture combinations.

(TIF)

S8 Fig. Effect of sample size on the performance of the predictive model. Precision (left

panel) and recall (right panel) for resistance phenotype for different population sizes (colors)
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and penetrances (x-axis) in simulated pan-genome data using gradient boosted decision trees.

(TIF)

S9 Fig. Comparison between rule based and machine learning methods. Results from Rule

based methods with two databases of known resistance genes, i.e. ResFinder and CARD, were

compared with results from the best performing models from our study for 11 drugs. We eval-

uated the performance on the held-out dataset used in assessing predictive models.

(TIF)

S1 Table. List of isolates with associated metadata and accession numbers in the European

Nucleotide Archive (ENA).

(CSV)

S2 Table. List of important accessory genes and their functions for feature importance

analysis with the best performing gradient boosted decision trees models shown in S4 Fig.

The importance metrics include the number of runs (total 50 runs), in which the feature was

used during model optimization and the average ranking and importance for the feature in

these runs. Sequences for the genes are provided in the Github directory (see Methods).

(CSV)

S3 Table. Prediction results for the best performing model for 11 drugs.

(CSV)
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