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Plasma Metabolites Associated with a Protein-Rich Dietary
Pattern: Results from the OmniHeart Trial
Hyunju Kim, Alice H. Lichtenstein, Karen White, Kari E. Wong, Edgar R. Miller III,
Josef Coresh, Lawrence J. Appel, and Casey M. Rebholz*

Scope: Lack of biomarkers is a challenge for the accurate assessment of
protein intake and interpretation of observational study data. The study aims
to identify biomarkers of a protein-rich dietary pattern.
Methods and Results: The Optimal Macronutrient Intake Trial to Prevent
Heart Disease (OmniHeart) trial is a randomized cross-over feeding study
which tested three dietary patterns with varied macronutrient content
(carbohydrate-rich; protein-rich with about half from plant sources; and
unsaturated fat-rich). In 156 adults, differences in log-transformed plasma
metabolite levels at the end of the protein- and carbohydrate-rich diet periods
using paired t-tests is examined. Partial least-squares discriminant analysis is
used to identify a set of metabolites which are influential in discriminating
between the protein-rich versus carbohydrate-rich dietary patterns. Of 839
known metabolites, 102 metabolites differ significantly between the
protein-rich and the carbohydrate-rich dietary patterns after Bonferroni
correction, the majority of which are lipids (n = 35), amino acids (n = 27), and
xenobiotics (n = 24). Metabolites which are the most influential in
discriminating between the protein-rich and the carbohydrate-rich dietary
patterns represent plant protein intake, food or beverage intake, and
preparation methods.
Conclusions: The study identifies many plasma metabolites associated with
the protein-rich dietary pattern. If replicated, these metabolites may be used
to assess level of adherence to a similar dietary pattern.

1. Introduction

Diet plays a central role in the etiology of chronic dis-
eases. Whether protein intake relative to carbohydrate intake is
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associatedwith chronic diseases has been
a major interest in nutrition research.
However, lack of biomarkers is a chal-
lenge for the accurate assessment of pro-
tein intake and interpretation of obser-
vational study data. Typically, in observa-
tional studies, protein intake is assessed
using a food frequency questionnaire, 24-
h dietary recalls, or diet records. These
methods have limitations (e.g., recall
bias, social desirability bias, underreport-
ing) and are subject to systematic errors
(e.g., inaccuracies in nutrition databases
used to analyze dietary intake).[1,2] Objec-
tive biomarkers which are not influenced
by these errors can contribute to accurate
estimation of protein intake. For protein
intake, 24-h urea nitrogen is considered
the gold standard, but it can suffer from
incompleteness, and is burdensome
for participants to collect all urine out-
put over a 24-h period. Furthermore,
multiple 24-h urine collections may be
needed to approximate usual protein
intake.[3,4] Therefore, collection of 24-h
urea nitrogen may be difficult in large
epidemiological studies. Novel biomark-
ers of protein intake, which are not
subject to systematic errors from self-
reported diets and are less burdensome
for study participants are needed.

Controlled feeding studies provide an excellent opportunity
to discover biomarkers of dietary intake. All participants in
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controlled feeding studies are provided with foods that are de-
veloped from standardized menus, which reduce variability in
dietary intake across participants, and ensure intake of similar
types of foods and preparation methods. The Optimal Macronu-
trient Intake Trial to Prevent Heart Disease (OmniHeart) was
a controlled feeding study which tested whether three health-
ful diets that varied in macronutrient composition improved
cardiovascular risk factors.[5] The trial found that, compared to
the carbohydrate-rich dietary pattern, the protein-rich dietary
pattern improved cardiovascular risk factors [e.g., reduced sys-
tolic blood pressure (SBP) and diastolic blood pressure (DBP)
and reduced low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), total cholesterol, non-high-density lipoprotein, and
triglycerides].[5]

Untargeted metabolomic profiling, an approach which de-
tects many small molecules in biospecimens, can help identify
metabolites which may be used as surrogate measures of protein
intake. Thus, in the present study, we aimed to identify biomark-
ers of the protein-rich dietary pattern relative to the carbohydrate-
rich dietary pattern in the OmniHeart trial.

2. Results

More than half of the trial participants was men and African
American (Table 1). More than 40% were college graduates,
current alcohol consumers, and had obesity. A majority of
the trial participants were never smokers. Nearly 20% of the
trial participants had blood pressure levels in the hypertensive
range. These baseline characteristics were nearly identical for
the original trial participants (n = 164) and our analytic sample
(n = 156).
Of the 839 known metabolites, 102 metabolites (12%) dif-

fered significantly between the protein-rich dietary pattern and
the carbohydrate-rich dietary pattern after Bonferroni correction
(Table 2). The most common metabolite categories represented
were lipids (n = 35, 34%), amino acids (n = 27, 26%), and xenobi-
otics (n = 24, 24%) (Figure 1). The proportion of metabolites that
were amino acids (26% vs 23%), cofactors and vitamins (6% vs
3%), and xenobiotics (24% vs 13%) was higher among the sub-
set of metabolites that were statistically significantly different be-
tween the protein-rich dietary pattern and carbohydrate-rich di-
etary pattern relative to the distribution of these metabolite cate-
gories in the data set.
Metabolites with strong positive mean differences (>0.5;

indicating higher metabolite levels for protein vs carbohydrate)
were mostly xenobiotics representing food components/plants
(piperine, sulfate of piperine metabolite, glucuronide of pipier-
ine metabolite), metabolites involved in benzoate metabolism
(4-ethylphenyl sulfate, 4-acetylphenyl sulfate), and an amino
acid (tryptophan betaine) (Figure 2). Metabolites with weak to
moderate positive mean differences (>0 and <0.5) were creatine
and essential amino acids related to the metabolism of leucine,
isoleucine, valine, phenylalanine, histidine, and tryptophan.
Metabolites with weak to moderate negative mean differences
(<0 and >–0.5) were mostly lipids in the androgenic steroids,
ceramides, hexosylceramides, phosphatidylcholine, phos-
phatidylinositol, and sphingomyelin pathways. Metabolites
with strong negative mean differences (<-0.5) included three
xenobiotics (quinate, benzoylcarnitine, and hippurate).

Table 1. Baseline characteristics of participants in the OmniHeart trial.

Characteristica) Trial participants
(N = 164)

Analytic sample
(N = 156)

Age, y 53.1 (10.8) 53.0 (10.6)

Women, n (%) 73 (44.5) 70 (44.9)

African American, n (%) 90 (54.9) 85 (54.5)

Income, n (%)

<$30000 52 (31.7) 49 (31.4)

$30000–$59999 60 (36.6) 57 (36.5)

≥$60000 45 (27.4) 43 (27.6)

Unknown or refused 7 (4.3) 7 (4.5)

Education, n (%)

High school graduate or less 33 (20.1) 32 (20.5)

Some college 56 (34.1) 53 (34.0)

College graduate 75 (45.7) 71 (45.5)

Smoking, n (%)

Current smoker 18 (11.0) 18 (11.5)

Former smoker 46 (28.0) 42 (26.9)

Never smoker 100 (61.0) 96 (61.5)

Current alcohol consumer, n (%) 73 (44.5) 69 (44.2)

Total energy intake, kcal 2315 (1174) 2316 (1187)

BMI, kg/m2 30.3 (6.1) 30.0 (5.8)

BMI category, n (%)

Not overweight or obese 34 (20.7) 34 (21.8)

Overweight 55 (33.5) 52 (33.3)

Obese 75 (45.7) 70 (44.9)

SBP, mm Hg 131 (9) 131 (9)

DBP, mm Hg 77 (8) 77 (8)

Hypertensive status
b)

32 (20) 30 (19)

a)
Values are n (%) for categorical variables and mean (standard deviation) for con-

tinuous variables;
b)
Hypertensive status was defined as SBP ≥140 mmHg or DBP

≥90 mmHg. BMI indicates body mass index; DBP, diastolic blood pressure; SBP,
systolic blood pressure.

Metabolites significantly different between the two diets were
involved in a total of 95 subpathways (Table S1, Support-
ing Information). Of these 95 pathways, six pathways (hexo-
sylceramides, food component/plant, tocopherol metabolism,
androgenic steroids, tryptophan metabolism, and benzoate
metabolism) were overrepresented (Fisher’s exact test p < 0.05)
(Table 3). Of these pathways, hexosylceramindes had the smallest
p value (p = 1.30 × 10−4).
Using partial least-squares discriminant analysis(PLS-DA), the

first and second components explained 17.1% and 14.3% of the
variance, respectively. The 10 metabolites which were influen-
tial in discriminating the protein-rich dietary pattern relative
to the carbohydrate-rich dietary pattern were all xenobiotics: 4-
ethylphenyl sulfate, quinate, piperine, 5 sulfate or glucuronide
piperine metabolites, 4-acetylphenyl sulfate, and benzoylcarni-
tine (Table 4).
These 10metabolites were predictive of the protein-rich dietary

pattern individually (testing sample range in C-statistics= 0.776–
0.877; validation sample range in C-statistics = 0.741–0.894) and
collectively (testing sample C-statistic = 0.996, validation sample
C-statistic = 0.989) (Table 4).

Mol. Nutr. Food Res. 2022, 66, 2100890 2100890 (2 of 11) © 2022 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.mnf-journal.com


www.advancedsciencenews.com www.mnf-journal.com

Table 2. Metabolites (N = 102) significantly associated with the protein-rich dietary pattern relative to the carbohydrate-rich dietary pattern in the Om-
niHeart trial.

Metabolite Superpathway Subpathway Mean
differencea)

p-value

Hydroxyasparagine Amino acid Alanine and aspartate metabolism –0.0690 1.85 × 10−7

Creatine Amino acid Creatine metabolism 0.1189 2.23 × 10−6

Pyroglutamine* Amino acid Glutamate metabolism −0.1294 4.88 × 10−5

N-acetylglycine Amino acid Glycine, serine and threonine
metabolism

0.1827 3.62 × 10−7

Glycine Amino acid Glycine, serine and threonine
metabolism

–0.0548 2.35 × 10−5

Betaine Amino acid Glycine, serine and threonine
metabolism

–0.0514 1.72 × 10−5

Guanidinosuccinate Amino acid Guanidino and acetamido metabolism 0.3052 4.47 × 10−12

1-methyl-5-imidazoleacetate Amino acid Histidine metabolism 0.2676 2.00 × 10−6

hydantoin-5-propionate Amino acid Histidine metabolism 0.1899 2.05 × 10−5

1-ribosyl-imidazoleacetate* Amino acid Histidine metabolism −0.0670 4.87 × 10−5

Tiglyl carnitine (C5) Amino acid Leucine, isoleucine and valine
metabolism

0.3195 1.93 × 10−16

Isobutyrylcarnitine (C4) Amino acid Leucine, isoleucine and valine
metabolism

0.2009 2.44 × 10−8

3-hydroxyisobutyrate Amino acid Leucine, isoleucine and valine
metabolism

0.1937 2.42 × 10−6

3-methylglutaconate Amino acid Leucine, isoleucine and valine
metabolism

0.1570 8.21 × 10−8

N,N,N-trimethyl-5-aminovalerate Amino acid Lysine metabolism −0.1228 4.34 × 10−12

S-methylcysteine Amino acid Methionine, cysteine, SAM and taurine
metabolism

−0.1868 4.44 × 10−7

Phenylacetate Amino acid Phenylalanine metabolism 0.2406 3.27 × 10−5

2-hydroxyphenylacetate Amino acid Phenylalanine metabolism 0.2030 9.48 × 10−7

Tryptophan betaine Amino acid Tryptophan metabolism 0.5422 2.91 × 10−25

Indolepropionate Amino acid Tryptophan metabolism −0.3145 1.24 × 10−8

Xanthurenate Amino acid Tryptophan metabolism 0.2351 7.98 × 10−6

N-formylanthranilic acid Amino acid Tryptophan metabolism 0.2310 2.06 × 10−7

3-indoxyl sulfate Amino acid Tryptophan metabolism 0.1916 2.92 × 10−5

6-bromotryptophan Amino acid Tryptophan metabolism −0.0944 9.46 × 10−9

3-methoxytyrosine Amino acid Tyrosine metabolism −0.0975 2.54 × 10−5

Urea Amino acid Urea cycle; arginine and proline
metabolism

0.2094 1.19 × 10−19

Argininate* Amino acid Urea cycle; arginine and proline
metabolism

0.2048 6.57 × 10−7

Glycerate Carbohydrate Glycolysis, gluconeogenesis, and
pyruvate metabolism

−0.0781 5.50 × 10−7

Ribulonate/xylulonate/lyxonate* Carbohydrate Pentose metabolism –0.1664 3.71 × 10−9

Arabonate/xylonate Carbohydrate Pentose Metabolism –0.1121 5.32 × 10−5

Oxalate (ethanedioate) Cofactors and vitamins Ascorbate and aldarate metabolism –0.1075 1.20 × 10−8

N1-Methyl-2-pyridone-5-carboxamide Cofactors and vitamins Nicotinate and nicotinamide metabolism 0.1493 9.76 × 10−6

Gamma-CEHC glucuronide* Cofactors and vitamins Tocopherol metabolism −0.3241 5.09 × 10−7

Gamma-CEHC Cofactors and vitamins Tocopherol metabolism −0.3051 6.59 × 10−13

delta-CEHC Cofactors and vitamins Tocopherol metabolism –0.2690 2.23 × 10−6

Pyridoxate Cofactors and vitamins Vitamin B6 metabolism 0.1542 8.98 × 10−7

(Continued)
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Table 2. (Continued).

Metabolite Superpathway Subpathway Mean
differencea)

p-value

Succinylcarnitine (C4) Energy TCA Cycle −0.0982 2.93 × 10−5

5alpha-androstan-3alpha,17beta-diol
monosulfate (1)

Lipid Androgenic steroids −0.1710 3.28 × 10−6

Androstenediol (3beta,17beta)
monosulfate (2)

Lipid Androgenic steroids −0.1573 1.43 × 10−9

5alpha-androstan-3beta,17beta-diol
disulfate

Lipid Androgenic steroids −0.1544 4.85 × 10−6

Androsterone sulfate Lipid Androgenic steroids −0.1344 1.86 × 10−7

Androstenediol (3beta,17beta) disulfate
(1)

Lipid Androgenic steroids −0.1300 2.47 × 10−7

Androstenediol (3alpha, 17alpha)
monosulfate (3)

Lipid Androgenic steroids −0.1002 2.21 × 10−5

N-stearoyl-sphingosine (d18:1/18:0)* Lipid Ceramides −0.1253 2.47 × 10−7

Ceramide (d18:2/24:1, d18:1/24:2)* Lipid Ceramides −0.1212 2.00 × 10−5

3,4-methyleneheptanoylcarnitine Lipid Fatty acid metabolism(Acyl Carnitine) −0.3080 8.90 × 10−8

Lignoceroylcarnitine (C24)* Lipid Fatty acid Metabolism(Acyl Carnitine) 0.1494 1.31 × 10−6

Picolinoylglycine Lipid Fatty acid metabolism(Acyl Glycine) 0.2212 4.83 × 10−9

16-hydroxypalmitate Lipid Fatty acid, monohydroxy −0.1073 5.88 × 10−5

Glycosyl-N-(2-hydroxynervonoyl)-
sphingosine
(d18:1/24:1(2OH))*

Lipid Hexosylceramides (HCER) −0.3066 8.55 × 10−8

Glycosyl-N-nervonoyl-sphingosine
(d18:1/24:1)*

Lipid Hexosylceramides (HCER) –0.1456 5.65 × 10−10

Glycosyl ceramide (d18:2/24:1,
d18:1/24:2)*

Lipid Hexosylceramides (HCER) −0.1416 2.96 × 10−8

Glycosyl-N-stearoyl-sphingosine
(d18:1/18:0)

Lipid Hexosylceramides (HCER) −0.1408 4.08 × 10−8

Glycosyl-N-palmitoyl-sphingosine
(d18:1/16:0)

Lipid Hexosylceramides (HCER) −0.0670 2.62 × 10−5

1-linolenoyl-GPC (18:3)* Lipid Lysophospholipid −0.2207 5.66 × 10−9

1-linoleoyl-GPE (18:2)* Lipid Lysophospholipid −0.1425 5.28 × 10−6

1-stearoyl-2-docosahexaenoyl-GPC
(18:0/22:6)

Lipid Phosphatidylcholine (PC) −0.1268 1.72 × 10−12

1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine (PC) −0.1148 2.86 × 10−7

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) Lipid Phosphatidylcholine (PC) −0.0751 2.81 × 10−6

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Lipid Phosphatidylcholine (PC) −0.0648 5.03 × 10−5

1-palmitoyl-2-arachidonoyl-GPI
(16:0/20:4)*

Lipid Phosphatidylinositol (PI) −0.1552 7.81 × 10−6

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) Lipid Phosphatidylinositol (PI) −0.1434 4.46 × 10−6

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE
(P-16:0/20:4)*

Lipid Plasmalogen 0.1394 4.66 × 10−8

1-(1-enyl-stearoyl)-2-arachidonoyl-GPE
(P-18:0/20:4)*

Lipid Plasmalogen 0.0980 1.19 × 10−5

1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC
(P-16:0/20:4)*

Lipid Plasmalogen 0.0901 3.29 × 10−8

Sphingomyelin (d18:2/14:0, d18:1/14:1)* Lipid Sphingomyelins −0.0971 1.04 × 10−7

Sphingomyelin (d18:1/25:0, d19:0/24:1,
d20:1/23:0, d19:1/24:0)*

Lipid Sphingomyelins 0.0873 2.02 × 10−6

Sphingomyelin (d18:2/23:1)* Lipid Sphingomyelins −0.0859 7.32 × 10−6

Sphingomyelin (d17:1/14:0, d16:1/15:0)* Lipid Sphingomyelins −0.0802 3.04 × 10−5

(Continued)
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Table 2. (Continued).

Metabolite Superpathway Subpathway Mean
differencea)

p-value

Sphingomyelin (d18:2/24:2)* Lipid Sphingomyelins −0.0753 2.77 × 10−6

Stearoyl sphingomyelin (d18:1/18:0) Lipid Sphingomyelins −0.0665 1.24 × 10−5

Sphingomyelin (d18:2/24:1, d18:1/24:2)* Lipid Sphingomyelins −0.0664 3.51 × 10−6

Uracil Nucleotide Pyrimidine metabolism, uracil containing 0.2314 1.22 × 10−7

Uridine Nucleotide Pyrimidine metabolism, uracil containing 0.0832 3.88 × 10−6

Glycine conjugate of C10H14O2 (1)* Partially characterized
molecules

Partially characterized molecules −0.2161 1.96 × 10−5

Metabolonic lactone sulfate Partially characterized
molecules

Partially characterized molecules −0.2154 4.37 × 10−18

Phenylacetylglutamate Peptide Acetylated peptides 0.3346 3.26 × 10−5

Phenylacetylglutamine Peptide Acetylated peptides 0.2313 1.07 × 10−5

1H-indole-7-acetic acid Xenobiotics Bacterial/fungal 0.4521 1.46 × 10−6

4-ethylphenyl sulfate Xenobiotics Benzoate metabolism 1.2830 8.94 × 10−22

4-acetylphenyl sulfate Xenobiotics Benzoate metabolism 0.6736 1.63 × 10−12

Hippurate Xenobiotics Benzoate metabolism −0.5706 4.07 × 10−11

4-vinylphenol sulfate Xenobiotics Benzoate metabolism 0.4873 2.29 × 10−7

Guaiacol sulfate Xenobiotics Benzoate metabolism −0.3593 5.86 × 10−8

Catechol sulfate Xenobiotics Benzoate metabolism −0.3333 3.54 × 10−8

Benzoylcarnitine* Xenobiotics Chemical −0.6127 6.89 × 10−16

Indoleacetylcarnitine* Xenobiotics Chemical 0.3876 6.43 × 10−9

6-hydroxyindole sulfate Xenobiotics Chemical 0.2068 3.26 × 10−5

Quinate Xenobiotics Food component/Plant −1.0307 2.35 × 10−15

Piperine Xenobiotics Food component/Plant 0.8829 8.53 × 10−14

Sulfate of piperine metabolite
C18H21NO3 (1)*

Xenobiotics Food component/Plant 0.7956 1.90 × 10−19

Sulfate of piperine metabolite
C16H19NO3 (3)*

Xenobiotics Food component/Plant 0.7655 9.00 × 10−15

Sulfate of piperine metabolite
C16H19NO3 (2)*

Xenobiotics Food component/Plant 0.7431 1.48 × 10−15

Sulfate of piperine metabolite
C18H21NO3 (3)*

Xenobiotics Food component/Plant 0.6537 1.33 × 10−18

Glucuronide of piperine metabolite
C17H21NO3 (4)*

Xenobiotics Food component/Plant 0.6100 3.52 × 10−10

Glucuronide of piperine metabolite
C17H21NO3 (3)*

Xenobiotics Food component/Plant 0.5843 4.53 × 10−10

Genistein sulfate* Xenobiotics Food component/Plant 0.5504 3.38 × 10−8

Glucuronide of piperine metabolite
C17H21NO3 (5)*

Xenobiotics Food component/Plant 0.4446 6.10 × 10−8

Pyrraline Xenobiotics Food component/Plant 0.3915 5.20 × 10−7

Stachydrine Xenobiotics Food component/Plant −0.3181 5.99 × 10−11

3,4-methyleneheptanoate Xenobiotics Food component/Plant −0.3098 2.89 × 10−5

homostachydrine* Xenobiotics Food component/Plant −0.2137 1.22 × 10−8

a)
Mean difference represents differences in plasma levels comparing the protein-rich dietary pattern versus the carbohydrate-rich dietary pattern at the end of the 6-week

intervention. Positive mean difference indicates that themetabolite was higher after the protein-rich relative to the carbohydrate-rich dietary patterns. Negativemean difference
indicates that the metabolite was higher after the carbohydrate-rich relative to the protein-rich dietary patterns. Only metabolites which passed the Bonferroni threshold are
presented (0.05/839 = 5.95 × 10−5). p value is derived from paired t-test. ∗Asterisk indicates metabolites not officially confirmed (tier 2 identification).

When we examined the top 15 metabolites, we observed four
additional xenobiotics and an amino acid which were influential
in discriminating between the protein-rich dietary pattern and
the carbohydrate-rich dietary pattern: glucuronide of piperine
metabolite, hippurate, genistein sulfate, tryptophan betaine,

and 4-vinylphenol sulfate. Among the top 15 metabolites,
4-ethylphenyl sulfate, and 4-acetylphenyl sulfate were highly
correlated with each other (𝜌 = 0.74) (Figure S2, Supporting
Information). Similarly, all piperine metabolites were highly
correlated with each other (𝜌 > 0.7).
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Figure 1. Metabolite categories (n (%)) significantly associated with the protein-rich dietary pattern relative to the carbohydrate-rich dietary pattern
in the OmniHeart trial. “Known metabolites in the data set” indicates the distribution of all 839 plasma metabolites detected in the OmniHeart trial
participants. For example, out of 102metabolites which differed significantly between the protein-rich versus carbohydrate-rich dietary patterns, 24 (24%)
metabolites were xenobiotics. Out of 839 known metabolites in the data set, 107 (13%) metabolites were xenobiotics. Considering the distribution of
metabolite categories in the data set, xenobiotics (24% vs 13%) and amino acids (26% vs 23%) were overrepresented when we compared the protein-rich
versus carbohydrate-rich dietary patterns.

Out of 249 unknown metabolites, 48 metabolites were signifi-
cantly different between the protein-rich dietary pattern and the
carbohydrate-rich dietary pattern, 21 of which were higher after
the protein diet intervention and 27 of which were lower after the
protein diet intervention compared to the carbohydrate diet inter-
vention (Table S2, Supporting Information). Unknown metabo-
lites with the smallest p values were positively associated with the
protein-rich dietary pattern (e.g., p < 1 × 10−25 for X–11847, X–
11299, X–11483, and X–11858).

3. Discussion

An untargeted metabolomic platform identified 102 metabolites
that were significantly different between the protein-rich dietary
pattern relative to the carbohydrate-rich dietary pattern, the
majority of which were lipids, amino acids, and xenobiotics.
We found that compounds involved in the metabolism of hex-
osylceramides were strongly associated with the protein-rich
dietary pattern. Prior studies using data from trials have exam-
ined changes in metabolite levels associated with amount of
protein intake,[6,7] level of glycemic load,[8,9] hypocaloric diets
which differed in fat, glycemic index, or carbohydrate,[10] and
specific dietary patterns (e.g., Mediterranean diet, prudent diet,
Western-style diet, habitual diet).[11–13] To our knowledge, the
present study is the first to identify a set of plasma metabolites

which represent a protein-rich dietary pattern compared to a
carbohydrate-rich dietary pattern in the context of a healthy
diet.
Broadly, the top 10 metabolites associated with the protein-

rich dietary pattern represented 1) metabolites reflective of
plant protein intake which are produced or converted through
gut microbial activity, 2) metabolites directly derived from
foods and beverages (quinate, hippurate, and catechol sulfate),
and 3) metabolites which may reflect preparation methods or
consumption habit, e.g., use of spices (piperine and several
piperine metabolites). In the present study, 4-ethylphenyl sulfate
was highly predictive of the protein-rich dietary pattern, and 4-
acetylphenyl sulfate, 4-vinylphenol sulfate, and genistein sulfate
were among the top 15 metabolites which were representative
of the protein-rich dietary pattern compared to the carbohydrate-
rich dietary pattern. Levels of all of these metabolites were higher
in the protein-rich dietary pattern compared to the carbohydrate-
rich dietary pattern. 4-ethylpheyl sulfate is a gut flora metabolite,
which has previously been associated with consumption of soy
products (tofu, soy milk).[14–16] To a variable extent, isoflavoids in
soy products are converted into phytoestrogens such as genistein
by the gut microbiota.[17] 4-vinylphenol sulfate, which was previ-
ously associated with peanut or total nut intake,[14,15] is believed
to be a polyphenolic gut metabolite, although the origin of this
metabolite is less well-established than 4-ethylphenyl sulfate.
4-acetylphenyl sulfate is a novel metabolite that has not been
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Figure 2. Volcano plot of mean differences and p values for the association between individual plasma metabolites and protein-rich dietary pattern
versus carbohydrate-rich dietary pattern. The red horizontal dashed line represents the Bonferroni-adjusted threshold (0.05/839 = 5.95 × 10−5) and the
red vertical dashed line is set at mean difference of 0. Metabolites located to the right of the vertical dashed line indicate that the plasma levels of these
metabolites were higher after the protein-rich relative to the carbohydrate-rich dietary patterns. Metabolites located to the left of the vertical dashed line
indicate that the plasma levels of these metabolites were higher after the carbohydrate-rich relative to the protein-rich dietary patterns.

Table 3. Pathway overrepresentation analysis ofmetabolites significantly different between the protein-rich dietary pattern relative to the carbohydrate-rich
dietary pattern.

Superpathway Subpathways Significant
metabolites

Total
metabolites

Fisher’s exact
p-value

Lipid Hexosylceramides (HCER) 5 6 1.30 × 10−4

Xenobiotics Food component/Plant 14 49 0.001

Cofactors and vitamins Tocopherol metabolism 3 5 0.01

Lipid Androgenic steroids 6 19 0.02

Amino acid Tryptophan metabolism 6 20 0.03

Xenobiotics Benzoate metabolism 6 22 0.04

associated with dietary patterns or dietary composition in prior
studies. Given the high correlation between this metabolite and
4-ethylphenyl sulfate, and modest correlation with 4-vinylphenol
sulfate, the higher levels of 4-acetylphenyl sulfate may have been
due to the plant protein intake. These metabolites are consistent

with prior findings that higher protein intake influences the gut
microbiota.[18]

In our study, plasma levels of quinate, hippurate, and catechol
sulfate were lower after the protein diet intervention, which may
be due to lower intake of fruits and juices. It has been suggested
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Table 4. Top 10 metabolites influential in distinguishing protein-rich dietary pattern versus carbohydrate-rich dietary pattern in the OmniHeart trial (N
= 156).

Metabolite
a)

Superpathway Subpathway VIP C-statistics

Testing
sample
(N = 78)

Validation
sample
(N = 78)

4-ethylphenyl sulfate Xenobiotics Benzoate metabolism 3.74 0.867 0.894

Quinate Xenobiotics Food component/Plant 3.00 0.834 0.868

Piperine Xenobiotics Food component/Plant 2.57 0.826 0.829

Sulfate of piperine metabolite
C18H21NO3 (1)*

Xenobiotics Food component/Plant 2.32 0.877 0.876

Sulfate of piperine metabolite
C16H19NO3 (3)*

Xenobiotics Food component/Plant 2.23 0.862 0.784

Sulfate of piperine metabolite
C16H19NO3 (2)*

Xenobiotics Food component/Plant 2.16 0.863 0.805

4-acetylphenyl sulfate Xenobiotics Benzoate metabolism 1.96 0.849 0.741

Sulfate of piperine metabolite
C18H21NO3 (3)*

Xenobiotics Food component/Plant 1.90 0.872 0.861

Benzoylcarnitine* Xenobiotics Chemical 1.78 0.870 0.823

Glucuronide of piperine
metabolite C17H21NO3 (4)*

Xenobiotics Food component/Plant 1.78 0.776 0.754

All 10 metabolites 0.996 0.989

a)
Variable importance in projection (VIP) scores were calculated from partial least-squares discriminant analysis (PLS-DA). C-statistics were calculated using conditional

logistic regression with protein-rich dietary pattern as the response variable and each of the individual metabolites as the exposure variable. “All 10 metabolites” refers to the
panel of 10 metabolites in this table. ∗Asterisk indicates metabolites not officially confirmed (tier 2 identification).

that quinate, hippurate, and catechol sulfate are metabolites
of chlorogenic acid bacterial metabolism[16,19] or metabolites
that are directly derived from foods or beverages.[10,19] For
instance, chlorogenic acid is found in coffee beans and fruits
such as peaches, pears, apples, and prunes.[20] Piperine and
several piperine metabolites were among the top 10 metabolites
which represented the protein-rich dietary pattern relative to
the carbohydrate-rich dietary pattern. Piperine is found in black
pepper.[21] In our study, piperine and piperine metabolites were
all positively associated with the protein-rich dietary pattern.
Given that black pepper was allowed, this may primarily reflect
consumption habits of the participants (e.g., addition of black
pepper to foods whichmay have been used to enhance flavoring).
Our results were comparable to prior metabolomics studies of

protein intake. In our study, levels of creatinine, urea, and many
metabolites involved in the metabolism of essential amino acids
were different between the protein-rich and carbohydrate-rich
dietary patterns. Our findings for creatinine and urea overlapped
with results from a controlled feeding study of elderly men
who were randomly assigned to receive higher protein intake.[7]

Findings on creatinine, urea, and uridine also replicated in
another controlled feeding study which used nuclear magnetic
resonance spectroscopy to identify biomarkers of macronutrient
intake.[13] Further, we replicated other metabolites (creatinine,
urea, phenylacetate, hydantoin-5-propionate, 3-indoxyl sulfate,
isobutyrylcarnitine, tiglylcarnitine) which were reported as
candidate biomarkers of higher protein intake in a study of
individuals with chronic kidney disease.[6] Metabolites which
were involved in the metabolism of essential amino acids may
be biomarkers of protein intake, given that essential amino acids

can only be supplied from the diet. Importantly, tryptophan
betaine was positively associated with the protein-rich dietary
pattern in our study and was one of the top 15 metabolites which
were representative of the protein-rich dietary pattern compared
to the carbohydrate-rich dietary pattern. Tryptophan betaine has
been reported as a biomarker of plant proteins such as chickpeas
and lentils,[22] nuts,[23,24] and healthy dietary patterns, such as the
Dietary Approaches to Stop Hypertension (DASH) diet in prior
studies.[25–27] The consistency of some of our findings with other
protein metabolome studies is encouraging, but replication is
necessary to confirm our proposed panel of metabolites, which
are intended to represent healthy dietary patterns with higher
protein and lower carbohydrate composition.
In our study, levels of most lipids were lower on the protein-

rich dietary pattern relative to the carbohydrate-rich dietary pat-
tern. In pathway analysis, hexosylcermides (in the lipid su-
perpathway) were overrepresented. Plasma levels of lipids are
affected by dietary carbohydrate intake. Carbohydrate-rich di-
ets increase de novo lipogenesis and production of certain
phosphatidylcholines.[28] Thus, it is biologically plausible that
levels of lipids were lower after the protein-rich dietary pattern
compared to the carbohydrate-rich dietary pattern. For hexosylce-
ramides, only one study reported an association with macronu-
trient intake. In free living Chinese adults in Singapore, plasma
hexosylceramides were negatively associated with dietary pro-
tein intake, assessed using a food frequency questionnaire.[29]

In the same study, hexosylceramides were negatively associ-
ated with LDL, HDL, and total cholesterol.[30] Hexosylceramides
are formed by glycosylation of ceramides. Ceramides are bioac-
tive lipids which play important roles in cellular signaling, and
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accumulation of these lipids is associated with increased
atherosclerosis and cardiovascular disease risk.[31] Circulating
levels of ceramides are thought to be influenced by dietary intake
as well. In the Prevención con Dieta Mediterránea (PREDIMED)
trial, individuals with higher baseline ceramide concentrations
who were assigned to the two Mediterranean diet groups (either
supplemented with nuts or extra virgin olive oil) had a similar
risk of cardiovascular disease as those with lower baseline ce-
ramide concentrations.[32] In contrast, individuals with higher
baseline ceramide concentrations who were assigned to the con-
trol diet had elevated risk of incident cardiovascular disease.[32]

The mechanism through which dietary protein and carbohy-
drate affects plasma levels of ceramides and hexosylceramides
remains unclear and requires further investigation. However,
our study suggests that hexosylceramides may represent a path-
way through which higher protein, within the framework of a
healthy dietary pattern, is associated with cardiovascular risk fac-
tors. In the future, examining the associations between candi-
date diet biomarkers from our study and cardiovascular risk fac-
tors may provide useful insights on the underlying metabolic
pathway.
The present study has several strengths. We used data from

a controlled feeding study. Participants received foods and had
a high level of adherence, which increases confidence that the
differences in metabolite levels observed represents the true bio-
logical effect of differences in macronutrient intake. The Omni-
Heart trial was a cross-over study, in which participants served as
their own control. This design minimized confounding by age,
sex, and race/ethnicity. Further, the trial held other factors, most
notably weight, constant throughout the duration of the study.
Stabilizing weight removes the potentially confounding effect of
weight change onmetabolites. Additionally, the underlying study
population included women and minority groups, thus these re-
sults are likely generalizable to the general US population.
Limitations should be noted. The feeding period, while long

for a feeding study, was relatively short (6 weeks per diet period).
It is unclear if these metabolites are representative of longer-
term intake of a protein-rich healthy dietary pattern. However, we
replicated many metabolites from observational studies, which
assessed usual consumption of dietary patterns or food items.
There was a lower level of confidence (tier 2 identification) for
the identification of several of the top 10 and top 15 metabolites
representative of the protein diet. It would be worthwhile to con-
firm the identity of these metabolites with greater confidence as
well as the unknown metabolites that were statistically signifi-
cantly associated with the protein-rich dietary pattern and assess-
ing if these metabolites replicate as biomarkers of healthy dietary
patterns in future studies. Further, testing prediction in an inde-
pendent sample and studying the effect of diets on the gut mi-
crobiome would be informative. Biospecimens from the Omni-
Heart trial were in storage for more than 10 years. Degradation
of metabolites may have occurred, but it would be expected to
be non-differential across dietary patterns. Lastly, the OmniHeart
trial was not originally designed to test differences in biomark-
ers of macronutrient content, which may in part explain why we
found metabolites of specific foods and beverages to be signifi-
cantly different between two diet interventions.
In conclusion, using data from the OmniHeart trial, we iden-

tified many metabolites (most of which were lipids, amino acids,

and xenobiotics) that were significantly different between the
protein-rich dietary pattern and the carbohydrate-rich dietary pat-
tern. The top 10 metabolites which discriminated the two dietary
patterns represented plant protein intake, metabolites in foods
(e.g., fruits) and beverages (e.g., coffee, juices), and metabolites
in spices (e.g., black pepper). If replicated, these metabolites may
be used to assess adherence to a similar dietary pattern as the
OmniHeart protein-rich dietary pattern in observational studies
and clinical trials.

4. Experimental Section
Study Design and Study Population: The OmniHeart trial was

a randomized, three-period crossover, controlled feeding study
conducted in two clinical centers in the US (Baltimore, Mary-
land and Boston, Massachusetts) (Clinical Trial Registration:
https://clinicaltrials.gov/ct2/show/NCT00051350; Unique identifier:
registered as NCT00051350). The trial evaluated the effects of three
dietary patterns on blood pressure and serum lipids (registered as
NCT00051350 at clinicaltrails.gov).[5] These three dietary patterns were
different in macronutrient intake, varying in 1) carbohydrate, 2) protein
(about half from plant sources), and 3) unsaturated fat. Details on the
study design had been reported.[5,33] Briefly, healthy adults (≥30 years
of age) with SBP 120–159 mmHg and DBP 80–99 mmHg were eligible.
Individuals with chronic conditions such as diabetes or cardiovascular
disease, elevated LDL (>5.70 mmol L−1), elevated fasting triglycerides
(>8.48 mmol L−1), and elevated body weight (>159 kg), and those taking
blood pressure-lowering or lipid-lowering medication were excluded.
Institutional review boards at both clinical centers approved the study.
Procedures were followed in accordance with the ethical standards of the
institutional review boards. Participants provided written documentation
of informed consent. The present study was approved by the Johns
Hopkins IRB-X Committee (CR00037373/NA_00 069360).

For the present metabolomic study, plasma specimens stored in the
National Health, Lung, and Blood Institute Biologic Specimen and Data
Repository Information Coordinating Center (BioLINCC) was used.[34]

Blood specimens were collected at the end of each dietary intervention. For
the present study, the interest was to compare the plasma metabolome of
the protein-rich dietary pattern and the carbohydrate-rich dietary pattern.
Of the 164 participants of the OmniHeart trial, the study excluded three
participants with no stored specimens and five participants with incom-
plete metabolomics data (i.e., metabolomics data not available for both
the carbohydrate and protein intervention periods) (Figure S1, Support-
ing Information). The analytic sample of the present metabolomics study
was 156 participants.

Dietary Exposures: After a 6-day run-in period, participants were ran-
domly assigned to one of six sequences of the three dietary patterns. Each
feeding period lasted 6 weeks with a wash-out period of 2–4 weeks be-
tween each diet intervention (Figure S1, Supporting Information). Details
on study diets had been reported in prior publications.[5,33] Briefly, the di-
etary pattern rich in carbohydrates was similar to the DASH diet, with 58%
carbohydrate, 15% protein, and 27% fat (6% saturated fat; 13% monoun-
saturated fat; 8% polyunsaturated fat) from total energy intake. Carbohy-
drate intake in the OmniHeart carbohydrate diet was slightly higher (58%)
than the DASH diet (55%). The protein-rich dietary pattern had 48% car-
bohydrate, 25% protein, and 27% fat from total energy intake, with the
same composition of total, saturated, monounsaturated, and polyunsat-
urated fat as the carbohydrate-rich dietary pattern. In the protein-rich di-
etary pattern, plant proteins (legumes, grains, nuts, and seeds) comprised
about half of the total protein intake. Other protein sources, such as meat
(beef, pork, ham), poultry, fish, low-fat dairy product, and egg product sub-
stitute were higher for the protein-rich dietary pattern compared to the
carbohydrate-rich dietary pattern. The protein-rich dietary pattern was also
higher in soy products (7.3 g day−1 in the protein diet vs 0.5 g day−1 in the
carbohydrate diet at 2100 kcal day−1), but lower in full-fat dairy products
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(0.2 serving per day in the protein diet vs 0.7 serving per day in the car-
bohydrate diet). The protein-rich dietary pattern was lower in fruits and
juices (3.8 serving per day in the protein-rich vs 6.6 serving per day in the
carbohydrate-rich dietary patterns), but higher in vegetables (5.4 serving
per day in the protein-rich vs 4.4 serving per day in the carbohydrate-rich
dietary patterns). Fiber, potassium, magnesium, and calcium intake was
similar in all diets, and sodium level was set to the intermediate level in
the DASH-Sodium diet (2300 mg day−1 at 2100 kcal day−1) for both diets.

All foods were prepared in the research kitchens using standardized
recipes and consistent food brands. Participants received all meals, and
ate one meal at the respective clinical center on weekdays and received
other foods to take home. Throughout the study period, participants were
instructed to consume only the foods they received from the study. Ad-
herence to the diet was measured by observing how participants ate their
foods onsite and checking participants’ daily food diaries. In daily diaries,
participants recorded if they missed any foods or ate any foods that were
not on the diet. Based on this information, the trial found that adherence
to the diets was high.[5] Participants reported consuming all study foods
and not eating non-study foods on >95% of person-days on all diet peri-
ods. Participants’ weight was measured every weekday and was kept con-
stant by adjusting total energy intake. Participants were asked to drink no
more than three caffeinated beverages per day and to maintain their ha-
bitual level of physical activity and alcohol consumption throughout the
trial. The instructions for having coffee, tea, or alcohol did not vary by di-
ets. Participants were allowed to add certain spices (e.g., black pepper,
cayenne pepper, lemon pepper seasoning, dried Italian seasoning, curry
powder, onion powder, garlic powder, an all-purpose seasoning packet) to
their foods.

Metabolomic Profiling: Untargeted metabolomic profiling was con-
ducted by Metabolon (Durham, North Carolina) using plasma specimens
collected after fasting for 8–12 h. Samples were divided into five frac-
tions. Two fractions were analyzed using two reverse phase ultra-high
performance liquid chromatography-mass spectrometry (UPLC-MS/MS)
with a positive ion mode electrospray ionization (ESI), one analyzed us-
ing UPLC-MS/MS with a negative ion mode ESI, another one analyzed
using hydrophilic interaction UPLC-MS/MS with a negative ion mode
ESI, and the remaining fraction was reserved for back-up. A Waters AC-
QUITY liquid chromatographer and a ThermoFisher Scientific Q-Exactive
high resolution spectrometer with a heated ESI source and ThermoFisher
Scientific Orbitrap mass analyzer was used for liquid chromatography-
mass spectrometry. After data were processed, peaks were identified us-
ing Metabolon’s in-house software, and matched to an extensive chem-
ical library which had information on purified standard compounds.
All detected metabolites were either a “tier 1” or “tier 2” identifica-
tions. To be considered a “tier 1” identification, at least two orthogo-
nal measurements (e.g., accurate mass, retention time, fragmentation
pattern) matched to an authentic reference.[35,36] We indicated metabo-
lites with a lower level of identification confidence (e.g., “tier 2”) in a
footnote.

All biospecimens were de-identified, and laboratory technicians were
blinded to assigned diet and any other characteristics of the participants.
Samples were analyzed in a single batch and in random order. Twelve blind
duplicates (six pairs) were included for quality control. In blind duplicates,
77% of metabolites had correlations ≥0.8 and 93% metabolites had co-
efficients of variation <20%, indicating high validity of the metabolomic
profiling.

A total of 1243 metabolites were identified. The study excluded 109
metabolites with >80% missing values across samples. For the remain-
ing 1134 metabolites, missing values were imputed with the minimum
detectable level for the specific metabolite. These metabolites were then
rescaled to a median of 1 by dividing by the batch-specific median and
log-transformed (loge). The study further excluded 46 metabolites with
variance on log scale <0.01 or missing variance. Outliers were capped at
five standard deviations (SDs). After this data cleaning processing, 1088
metabolites remained, of which 839metabolites were known (named) and
249 metabolites were unknown (unnamed).

Statistical Analysis: The baseline characteristics of the trial partici-
pants (n = 164) and the analytic sample (n = 156) using means (stan-

dard deviations) for continuous variables and proportions for categorical
variables were examined.

In this study, paired t-tests on log-transformed known metabolites was
used to assess differences inmetabolite levels, comparing the protein-rich
dietary pattern to the carbohydrate-rich dietary pattern (reference). To ac-
count for multiple testing, the Bonferroni approach (0.05/839 metabolites
= 5.95 × 10−5) was used. The study considered the analyses of known
metabolites as the primary analyses.

Next, for known metabolites, a pathway analysis using subpathway in-
formation provided byMetabolon was conducted. To evaluate whether the
observed number of metabolites significant at the Bonferroni threshold
was different than the expected number of metabolites, Fisher’s exact test
was used.

Then, PLS-DA) to identify the top 10 plasma metabolites which were
influential in discriminating between the protein-rich and carbohydrate-
rich dietary patterns was used. This method was used to narrow down
the significant metabolites to a reasonable number so that they may be
more feasible to be assessed as biomarkers of the protein-rich dietary pat-
tern. The top 10 metabolites were selected using the metabolites with the
highest variable importance in projection (VIP) scores. This PLS-DAmodel
was validated using random permutation testing with 2000 iterations and
found that the risk of overfitting was low (p < 0.05). C-statistics was calcu-
lated to assess whether these metabolites predict the protein-rich dietary
pattern relative to carbohydrate-rich dietary pattern. For the analyses on
C-statistics, conditional logistic regression models with the protein-rich
dietary pattern as the outcome and added each of the top 10 metabolites
one at a time, then all of the 10 metabolites simultaneously was used.
C-statistics was calculated first in a randomly selected sample of half of
the study participants (testing sample, n = 78) and then in the remaining
sample (validation sample, n = 78).

As a secondary analysis, the top 15 influential metabolites to expand
on potential plasma biomarkers of the protein-rich dietary pattern and to
confirm previously proposed biomarkers of protein intake, and assessed
correlations between these metabolites was examined. The correlation co-
efficients between the top 15 metabolites was calculated. Lastly, changes
in levels of unknown metabolites using paired t-tests was examined and
used the Bonferroni approach (0.05/249 unknown metabolites = 2.01 ×
10−4) to account for multiple testing. All analyses were conducted using
Stata version 15 (StataCorp, College Station, TX, USA) and R version 4.1.0
(R Foundation for Statistical Computing, Vienna, Austria).
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