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Background: To date, no specific vaccine or drug has been proven to be effective against 
SARS-CoV-2 infection. Therefore, we implemented an immunoinformatic approach to 
design an efficient multi-epitopes vaccine against SARS-CoV-2.
Results: The designed-vaccine construct consists of several immunodominant epitopes from 
structural proteins of spike, nucleocapsid, membrane, and envelope. These peptides promote 
cellular and humoral immunity and interferon-gamma responses. Also, these epitopes have 
a high antigenic capacity and are not likely to cause allergies. To enhance the vaccine 
immunogenicity, we used three potent adjuvants: Flagellin of Salmonella enterica subsp. 
enterica serovar Dublin, a driven peptide from high mobility group box 1 as HP-91, and 
human beta-defensin 3 protein. The physicochemical and immunological properties of the 
vaccine structure were evaluated. The tertiary structure of the vaccine protein was predicted 
and refined by Phyre2 and Galaxi refine and validated using RAMPAGE and ERRAT. 
Results of ElliPro showed 246 sresidues from vaccine might be conformational B-cell 
epitopes. Docking of the vaccine with toll-like receptors (TLR) 3, 5, 8, and angiotensin- 
converting enzyme 2 approved an appropriate interaction between the vaccine and receptors. 
Prediction of mRNA secondary structure and in silico cloning demonstrated that the vaccine 
can be efficiently expressed in Escherichia coli.
Conclusion: Our results demonstrated that the multi-epitope vaccine might be potentially 
antigenic and induce humoral and cellular immune responses against SARS-CoV-2. This 
vaccine can interact appropriately with the TLR3, 5, and 8. Also, it has a high-quality 
structure and suitable characteristics such as high stability and potential for expression in 
Escherichia coli .
Keywords: SARS-CoV-2, multi-epitope vaccine, structural proteins, humoral immunity, 
cellular immunity, adjuvant

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which the cause of 
COVID-19 disease was first reported as a pneumonia epidemic in the Chinese city 
of Wuhan (Hubei province) on December 31, 2019, belongs to the Beta coronavirus 
genus.1–3 Coronaviruses are positive-sense single-stranded RNA viruses. They 
belong to the order of Nidovirales and superfamily of Orthocoronaviridae. This 
superfamily has four genus including alpha, beta, gamma, and delta coronaviruses. 
Gamma and delta coronaviruses infect birds, while alpha and beta coronaviruses 
generally infect mammals such as humans. In immunocompetent individuals, they 
generally cause mild respiratory infections, such as common cold, while in some 
individuals, coronavirus infections cause serious diseases, such as SARS (Severe 
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Acute Respiratory Syndrome) and MERS (Middle East 
Respiratory Syndrome) epidemics.

SARS-CoV-2 has a large mRNA genome, 26 to 32 kb 
in length, meaning a 5ʹ cap cover structure and a 3ʹ poly-
adenylated. This encodes several structural and nonstruc-
tural proteins. Among structural proteins, spike (S), 
envelope (E), membrane (M), and nucleocapsid (N) pro-
teins are important in inducing immune responses.3–5 

Spike protein is the main tool for virus entry into the 
cells, which interacts with host cell receptor, angiotensin- 
converting enzyme 2 (ACE2). ACE2 is a metallopeptidase 
expressed in variant tissues, including alveolar epithelial 
cells, fibroblasts, endothelial cells, and enterocytes.6–10 

The N protein is an essential RNA-binding protein for 
transcription and replication of the viral RNA. It has sig-
nificant roles in forming of the helical ribonucleoproteins 
during packaging the RNA genome, regulating of viral 
RNA synthesis during replication, transcription, and mod-
ulating of metabolism in the infected cells.11–14 T cell 
responses against the S and N proteins of SARS-CoV 
virus are most dominant and long-lived than other struc-
tural proteins.15 E protein has an important role in the 
assembly of the viral genome.16,17 The M protein plays 
a pivotal role in virus assembly, budding, and replication 
of virus particles in the host cells.18

SARS-CoV-2 is transmitted quickly and causes 
a considerable fatality rate, so that World Health 
Organization (WHO) reported over 14,562 550 cases glob-
ally and at least 9898 deaths because of this disease until 
July 21, 2020.19 It can be controlled when medical 
resources are sufficient but, there is currently no vaccine 
or approved treatment for this disease. One of the major 
challenges for scientists in dealing with the new corona-
virus pandemic will be to get a useful and effective vac-
cine. For this reason, trying to develop an effective vaccine 
to control the virus has been the subject of research by 
many scientists around the world.4,20-24 Previous studies 
on vaccine production against infectious diseases proved 
that achieving such a vaccine with conventional methods 
is time consuming and very expensive. As such, in silico 
prediction of the vaccine targets is very important because 
the targets can be selected with an open eye in a limited 
time and resources. Bioinformatic approaches are very 
helpful to identify the effective epitopes and developing 
vaccines. Several vaccine candidates for viral diseases 
have been reported based on this approach that include 
effective vaccines in Human papilloma viridea (HPV),25 

Ebola,26 Zika27 and MERS28,29 viruses. There are few 

reports of COVID-19 vaccine.30–32 They contained multi-
ple cytotoxic T lymphocytes (CTL) and B-cell epitopes 
against several proteins of SARS-CoV-2 virus. However, 
those vaccines did not cover most of the immunodominant 
viral proteins. Therefore, to overwhelm these limitations, 
we designed a multi-epitope peptide vaccine consisted of 
S, M, N, and E viral proteins. The vaccine has appropriate 
physicochemical properties such as stability at room tem-
perature, more antigenic capability, and no possibility of 
allergy. It consists of three epitopes from S protein and one 
epitope from each of M, N, and E proteins, respectively. 
Each of the epitopes has a high ability to stimulate 
humoral and cellular immune responses, especially the 
proper production of Interferon gamma (IFN-γ). The 
selected epitopes aligned between SARS-CoV-2 and 
SARS species. We used appropriate adjuvants in the vac-
cine structure to potentiate the immunogenicity of the 
antigens. Therefore, we also incorporated the potent adju-
vants of N and C terminus of Flagellin of Salmonella 
enterica subsp. enterica serovar Dublin as a toll-like recep-
tor (TLR) 5, a driven peptide from high mobility group 
box 1 (HMGB1) as HP-91, and human beta-defensin 3 
(HBD-3) in the construct of the vaccine. The vaccine 
segments were connected to each other by appropriate 
linkers. Physicochemical properties, structural stability, 
and immunological characterizations of the vaccine were 
evaluated. Modeling, refinement, and validation were per-
formed to access a high-quality three-dimensional (3D) 
structure of the vaccine protein. Docking evaluation 
showed an appropriate interaction between the vaccine 
and TLRs 3, 5, 8, and ACE-2. In silico cloning showed 
that the vaccine could be effectively expressed in E. coli. 
Totally, a potential vaccine candidate with proper immu-
nological and stable physicochemical properties against 
SARS-CoV-2 was designed. It is expected the vaccine 
could be capable to protect humans from COVID-19 
disease.

Methods
Protein Sequence Retrieval
The protein sequences of spike glycoprotein (accession 
number of QIC53213.1), nucleocapsid phosphoprotein 
(QHU79211.1), membrane glycoprotein (QIC53207.1) 
and envelope protein (QIC53215.1) were driven using 
NCBI (https://www.ncbi.nlm.nih.gov/) databases and 
saved in FASTA format for subsequent analysis.
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Screening of Potential Epitopes
Screening of Major Histocompatibility Complex 
Class I (MHC-I) Epitopes
MHC-I humans alleles with 9 mer length were selected using 
IEDB (www.iedb.org) database through IEDB recommended 
2.22 method and Net-MHC 4.0 online server (http://www. 
cbs.dtu.dk/services/NetMHC/). IEDB (Instructor/Evaluator 
Database) is a repository of web-based tools which predicts 
and analysis of immune epitopes. It uses a consensus method 
based on artificial neural network (ANN), stabilized matrix 
method (SMM), and Combinatorial Peptide Libraries 
(CombLib), if any corresponding predictor is available for 
the peptide sequence.33–51 NetMHC 4.0 software is a free 
server for the prediction of peptide-MHCI binding affinity by 
gapped sequence alignment. Prediction methods of this ser-
ver are based on alignments that include insertions and dele-
tions and have significantly higher performance than those 
based on peptides of single lengths methods.35

Screening of Cytotoxic T Lymphocytes (CTL) 
Epitopes
The prediction of CTL epitopes was done by an online 
server CTL Pred. This method is based on quantitative 
matrix (QM) and machine learning techniques, for exam-
ple, artificial neural network (ANN) and support vector 
machine (SVM). The server also uses the consensus and 
combined prediction approaches. The consensus and com-
bined prediction approaches are more specific and sensi-
tive, respectively, in comparison with individual 
approaches such as ANN and SVM.52

Screening of Human Leukocyte Antigen (HLA)-II 
Epitopes
IEDB database (IEDB recommended 2.22 method)4353–56 

(www.iedb.org) and RANKPEP online server (http://imed. 
med.ucm.es/Tools/rankpep.html) were employed for screen-
ing of HLA-II epitope. The database of IEDB was described 
previously. The RANKPEP server predicts MHC-II binding 
epitope by position-specific scoring matrices (PSSMs) that 
are structurally consistent with the binding mode of MHC-II 
ligands.57

Screening of Linear B-Cell Epitopes
Prediction of linear B-cell epitope was done by IEDB58 

(Emini surface accessibility method) and BepiPred soft-
ware. BepiPred 2.0 predicts the location of linear B-cell 
epitopes by a combination of a hidden Markov model and 
a propensity scale method. The epitope Threshold of this 
server was selected 0.5.59

Selection of the Epitope Segments
The results of all predictions were collected and compared 
together, and the regions with the highest overlaps were 
determined. These immunodominant regions were 
employed for future analyses to finally select the most 
appropriate epitope domains for vaccine construct.

Alignment of Selected Epitopes Between 
SARS-CoV-2 and SARS
The alignment of the selected epitopes in SARS-CoV-2 
and SARS was performed to understand the selected epi-
topes that are conserved in two viruses. The amino acid 
sequences of structural proteins of SARS were retrieved 
from the NCBI (https://www.ncbi.nlm.nih.gov/) database 
and their epitopes blasted using CLC sequence viewer 
8.0.60

In silico Analyzing of IFN-γ Inducing 
Epitopes
IFN epitope server (http://crdd.osdd.net/raghava/ifnepi 
tope) was employed to determine the ability of IFN-γ 
production in the selected epitopes. This web server clas-
sifies MHC binder epitopes into IFN-γ inducing (positive 
numbers) and non-inducing IFN-γ (negative numbers) 
using several methods such as; motifs-based search, 
machine learning technique, and a hybrid approach. 
Accuracy of Best prediction based on hybrid approach in 
this software is 82.10%.61

Evaluation of Antigenicity
Antigenic properties of the predicted-epitopes were 
assessed by ANTIGENpro (http://scratch.proteomics.ics. 
uci.edu/) and VaxiJen v2.0 (http://www.ddg-pharmfac.net/ 
vaxijen/VaxiJen/VaxiJen.html) servers. Web server of 
ANTIGENpro is the first sequence-based, alignment-free, 
and pathogen independent predictor, using protein antige-
nicity microarray data for predicting the protein 
antigenicity.62 VaxiJen is also the first server for the 
prediction of antigens. This server applies a new align-
ment-independent approach that is based on auto-cross 
covariance (ACC) transformation of protein sequences 
into uniform vectors of principal amino acid properties. 
Depending on the target organism (bacteria, virus, or 
tumor) accuracy of this server varies from 70% to 89%. 
The Threshold of this server was selected at 0.5.63,64
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Allergenicity Assessment of Predicted 
Epitopes
To accurately predict the possibility of allergenicity, the 
software of AllergenFP v.1.0 (http://ddg-pharmfac.net/ 
AllergenFP/) was used. This is an online server that iden-
tifies allergens based on amino acid principle properties 
such as hydrophobicity, helix, and β-strand forming with 
accuracy of about 88%.40

Vaccine Engineering, Evaluation of 
Physicochemical Properties, Antigenicity, 
and Allergenicity
According to the results of the previous steps, three epitopes 
from S protein and one epitope from each protein of N, E, and 
M were selected to be incorporated in the vaccine construction. 
The multi-epitope vaccine construct was joined to the carboxyl 
and amino terminals of the flagellin adjuvant. In addition, HP- 
91 and HBD-3 synthetic peptide adjuvants were respectively 
incorporated at the N- and C-terminal of the epitopes. The 
felagellin molecule was derived from Salmonella enterica 
subsp. enterica serovar Dublin. Various segments of the 
designed-vaccine connected by suitable linkers.

After designing the vaccine, several physicochemical 
parameters including molecular weight, theoretical isoelec-
tric point (pI), total number of positive and negative residues, 
extinction coefficient, Instability index, half-life, aliphatic 
index, and grand average hydropathy (GRAVY) were com-
puted using Expasy’s ProtParam at http://us.expasy.org/tools/ 
protparam.html.65 Antigenicity of the final vaccine construct 
was evaluated using vaxijen v2.0 and ANTIGENpro and 
allergenicity were assayed by AllergenFP v.1.0 server.

Tertiary Structure Development
Three-dimensional (3D) structural modeling of the 
designed construct was predicted using Phyre2 server 
(http://www.sbg.bio.ic.ac.uk/phyre2). It is a suite of a free 
web server for prediction and analysis of protein structure, 
function, and mutations.66 The predicted model by Phyre2 
was refined using Galaxy Refine web services. It success-
fully tested in CASP10 (Critical assessment of techniques 
for protein structure prediction) experiments. This server 
refines the whole protein with gentle and aggressive relaxa-
tion methods. This first reconstructs all side-chain confor-
mations and repeatedly relaxes the structure with short 
molecular dynamics simulations after side-chain repacking 
perturbations.67 Finally, Galaxy Refine showed five struc-
tures as refined models of vaccine structure. The 

RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/ram 
page.php), and ERRAT (http://services.mbi.ucla.edu/ 
ERRAT/) servers were used to validate the refined 3D 
structures obtained from Galaxy Refine web service.68,69 

Finally, the refined and high-quality 3D structure of the 
vaccine was observed by PyMOL software v2.1.1.PyMOL 
is an open-source that widely used for bimolecular 
function.70

Prediction of Discontinuous B-Cell 
Epitope
Discontinuous B-cell epitopes were predicted from the 3D 
vaccine structure using ElliPro in IEDB database (http:// 
tools.immuneepitope.org/tools/ElliPro). ElliPro is a useful 
research tool for identifying immune epitopes in protein 
antigens which implements Thornton’s method and with 
a residue clustering algorithm. The MODELLER program 
and the Jmol viewer allow the prediction and visualization 
of immune epitopes in a given protein sequence or structure. 
In comparison with six other structure-based methods that 
are using for epitope prediction, ElliPro performs the best 
prediction and gave an AUC value of 0.732, when the most 
significant prediction is considered for each protein.71

Molecular Docking with TLR 3, 5, 8, and 
ACE-2
The first, tertiary structure of the human TLR 3, 5, 8 and 
ACE-2 were obtained from PDB database (www.rcsb.org) 
with codes of 3J0A, 5GS0, 3w3g, and 1R42, respectively. 
Next, protein–protein docking of the vaccine structure (as 
a ligand) and each receptor was performed by CLUSPRO 2.0 
online server (cluspro.bu.edu/login.php). CLUSPRO 2.0 is 
a fully automated and fast rigid-body protein–protein dock-
ing server. This server evaluates docking of two interacting 
proteins based on three techniques: first, the Fast Fourier 
Transform (FFT) correlation approach, second, clustering 
of the best energy conformations, third, refining the obtained 
model using short Monte Carlo simulations and the medium- 
range optimization method SDU.72–74 The interaction 
between molecules was observed using Discovery studio 4.5.

Codon Optimization, in silico Cloning 
and Prediction of the mRNA Secondary 
Structure
The reverse translation of the designed-vaccine gene sequence 
was performed by Sequence Manipulation Suite (https://www. 
bioinformatics.org/sms2/rev_trans.html) to prepare a suitable 
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vaccine sequence for cloning and expression in an appropriate 
expression system. The properties of sequence genes such as 
Codon Adaptation Index (CAI), GC content, and Codon 
Frequency and Distribution (CFD) have the key roles in 
attaining a high level of protein expression in the host were 
evaluated using GenScript online server (https://www.gen 
script.com/tools/rare-codon-analysis).24 Finally, the restriction 
sites of NcoI and XhoI were, respectively, added to the N- and 
C-terminus of the vaccine DNA sequence using CLC 
Sequence viewer v8.0 (http://www.cacbio.com) to facilitate 
the cloning in E. coli expression system.

To predict the mRNA folding and secondary struc-
ture of the vaccine, the optimized DNA sequence 
was converted to possible RNA sequence using 
DNA<->RNA<->Protein tool (http://biomodel.uah.es/ 
en/lab/cybertory/analysis/trans.htm). Then, the mRNA 
secondary structure was predicted using RNAfold 
(http://rna.tbi.univie.ac.at/RNAWebSuite/help.html) ser-
ver. This server predicts the mRNA secondary structure 
thermodynamically and provides minimum free energy 
(ΔG Kcal/mol) for structure.75

Results
Immunoinformatic Analysis
Protein S, M, N, and E were used to predict HLA-І 
binding epitopes (HLA-A, B, and C) using IEDB and 
NetMHC 4. CTL Pred server was used to predict CTL 
epitopes of SARS-CoV-2 structural proteins. HLA-II 
binding epitope (DP, DQ, and DR) from these proteins 
were predicted using RANKEP and IEDB servers. 
Prediction of linear B-cell epitopes was performed by 
BepiPred and IEDB. Finally, the obtained epitopes from 
the comparison of the above analyses were applied to 
future selection (Table 1).

Antigenic Ability Screening and Avoid 
Allergenicity
All selected peptides were submitted to the IFN epitope 
server for evaluation of their ability to induce IFN-γ. 
Allergenicity probability of epitopes evaluated by 
AllergenFPE valuation of epitope antigenicity was per-
formed by ANTIGEN pro and VaxiJen v2.0.The six 
epitopes (three from S and one from each of E, M, 

Figure 1 Schematic representation of the designed multi-epitope peptide based-vaccine. The vaccine consist of ten parts: Epitopes from structural proteins S, E, N, and M, 
adjuvants: Flagellin (in N-and C-terminus), HP-91 and HBD-3 that join to each other by linkers of repeat sequence of LE (A). Tertiary structure of the modeled multi-epitope 
vaccine construct (B). The 3D structure of the designed vaccine was predicted via homology modeling by Phyre2, then the best-predicted model was refined by Galaxy 
Refine and visualized using Discovery studio 4.5 software. N-and C-terminus of Flagellin is shown in green, HP-91 in gray, S epitopes in blue, E epitopes in red, N epitope in 
purple, M epitope in orange, HBD-3 in green, and linkers are shown in light pink.
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N proteins) that had the highest ability in IFN-γ induc-
tion, low allergenicity, and potent antigenic ability 
were chosen to be used in the vaccine structure 
(Table 1).

Alignment of the Selected Epitopes 
Between SARS-CoV-2 and SARS Viruses
The alignment of the selected epitopes between SARS- 
CoV-2 and SARS viruses showed the selected epitopes 
were conserved between two species (Table S1).

Designing a Multi-Epitopes Vaccine 
Construct
Six epitopes with high scores which selected to be incorpo-
rated in the final vaccine construct were the sequences of 
20–49, 418–446, and 505–534 from S, 51–71 from E, 
360–388 from N and 169–198 from M protein. Two epitopes, 
sequences 418–446 and 505–534, of S protein were located in 
RBD portion. Besides, three immunopotent adjuvants 
Flagellin of Salmonella enterica subsp. enterica serovar 
Dublin, HP-91, and HBD-3 were also added to the vaccine 
structure. The vaccine pieces were linked to each other using 
a short linker sequence of LE dipeptide repeats. The final 
multi-epitope peptide vaccine was 485 amino acid residues 
(Figure 1). Figure S1 .

Table 2 Analysis of the Physicochemical and Immunological 
Properties of the SARS-CoV-2 Vaccine

Physicochemical Properties Value

Molecular weight (Da) 53102.91

Instability index 36.41

Gravy -0.409

Aliphatic index 86.93

Theoretical pI 7.92

No. amino acids 485

Total no. of negatively charged 

residues (Asp+Glu)

53

Total no. of positively charged 

residues (Arg+Lys)

55

No. of atoms 7479

Antigenicity

Antigenicity/ANTIGENpro 0.927820

Antigenicity/vaxijen 0.5585 (Probable antigen)

Allergenicity/AllergenFP v.1.0 Probable non-allergen

Table 3 Conformational B-Cell Epitopes Identified in the Refined Tertiary Structure of the Multi-Epitope Vaccine Using ElliPro

Residues Number of 
Residues

Score

1 A:M1, A:A2, A:Q3, A:V4, A:I5, A:N6, A:T7, A:N8, A:S9, A:L10, A:S11, A:L12, A:L13, A:T14, A:Q15, A:N16, A: 

N17, A:L18, A:N19, A:K20, A:S21, A:Q22, A:S23, A:S24, A:L25, A:S26, A:S27, A:A28, A:I29, A:E30, A:R31, A:L32, 
A:S33, A:S34, A:G35, A:L36, A:D435, A:A436, A:D437, A:Y438, A:A439, A:T440, A:E441, A:V442, A:S443, A: 

N444, A:M445, A:S446, A:K447, A:A448, A:Q449, A:I450, A:L451, A:Q452, A:Q453, A:A454, A:G455, A:T456, 

A:S457, A:V458, A:L459, A:A460, A:Q461, A:A462, A:N463, A:Q464, A:V465, A:P466, A:Q467, A:N468, A: 
V469, A:L470, A:S471, A:L472, A:L473

75 0.801

2 A:N207, A:L208, A:D209, A:S210, A:K211, A:V212, A:G213, A:L214, A:E215, A:L216, A:E217, A:Y218, A:Q219, 
A:P220, A:Y221, A:R222, A:V223, A:V224, A:V225, A:L226, A:S227, A:F228, A:E229, A:L230, A:L231, A:H232, A: 

A233, A:P234, A:A235, A:T236, A:V237, A:C238, A:G239, A:P240, A:K241, A:K242, A:S243, A:T244, A:N245, A: 

L246, A:V247, A:L248, A:E249, A:L250, A:E251, A:L252, A:V253, A:K254, A:P255, A:S256, A:F257, A:Y258, A: 
V259, A:Y260, A:S261, A:R262, A:V263, A:K264, A:N265, A:L266, A:N267, A:S268, A:S269, A:R270, A:V271, A: 

P272, A:L273, A:E274, A:L275, A:E276, A:Y277, A:K278, A:T279, A:F280, A:P281, A:P282, A:T283, A:E284, A: 

P285, A:K286, A:K287, A:D288, A:K289, A:K291, A:K292, A:A293, A:D294, A:E295, A:T296, A:Q297

90 0.767

3 A:Q90, A:V92, A:R93, A:E94, A:L95, A:S96, A:V97, A:Q98, A:A99, A:T100, A:N101, A:G102, A:T103, A:N104, 

A:S105, A:D106, A:S107, A:D108, A:L109, A:K110, A:S111, A:I112, A:E115, A:E181, A:L182, A:K184, A:A186, A: 
D187, A:Y188, A:N189, A:Y190, A:K191, A:L192, A:P193, A:D194, A:D195, A:F196, A:T197, A:L318, A:N319, A: 

T320, A:D321, A:H322, A:S323, A:S324, A:S325, A:S326, A:G333, A:D334, A:P335, A:A379, A:A380, A:K381, A: 

K382, A:S383, A:T384, A:A385, A:N386, A:P387, A:L388, A:A389, A:S390, A:I391, A:D392, A:S393, A:A394, A: 
L395, A:S396, A:K397, A:D399, A:A400, A:S4

72 0.619

4 A:R37, A:I38, A:N39, A:S40, A:A41, A:K42, A:D43, A:D44, A:A45, A:A46 10 0.575
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Immunological and Physicochemical 
Properties of the Vaccine Structure
To evaluate the antigenicity of the whole protein vaccine, 
the “virus” option was chosen as a target organism. The 
antigenicity of 0.5585 (probable antigen) was estimated at 
0.5% threshold for the virus model. Assessment of anti-
genicity by Antigen pro showed this vaccine is high anti-
genic with antigenicity of 0.927820. AllergenFP showed 
that the T-cell epitopes in the vaccine protein are non- 
allergen. The molecular weight (MW) and theoretical iso-
electric point (pI) of the vaccine protein were computed as 

53.102 kDa and 7.92, respectively. The predicted half- 
lives were calculated as 30 hours (h) (mammalian reticu-
locytes, in vitro), 20 h (yeast, in vivo), and 10 h (E. coli, 
in vivo). The instability index was 36.41, indicating that 
the protein vaccine was stable enough (Table 2)

Tertiary Structure Modeling, Refinement, 
and Validation
The primary 3D model of the protein vaccine construct 
was predicted using Phyre2. Then, the selected Phyre2 
model was refined by GalaxyRefine software. The quality 

Figure 2 Docking model (cartoon representation) of human TLR3 in complex with the vaccine obtained using Cluspro server. TLR3 protein is shown in chocolate and 
vaccine was colored from N-to C-terminals (N-flagellin is shown in blue and C-flagellin is shown in red). As it shows some parts of two S, M, N, and E epitopes, HBD-3, and 
HP-91 interacted with TLR3. To more visualized interaction points, some of the interacting residues of the vaccine and TLR3 are magnified in 20 Angstrom. Docked model 
was visualized via Discovery studio 4.5 software.
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of the designed-vaccine was evaluated using the 
Ramachandran plot in the RAMPAGE server and charac-
teristic atomic interaction in the ERRAT server. The 
RAMPAGE results of the final model showed that the 
majority of residues (95.9%) are located in the favored 
region and 2.1% are allowed, and only 2.1% of residues 
are the outlier. The ERRAT result showed that the refined 

model has the ERRAT score 89.362 (Figure S2). The out-
puts of the Ramachandran plot and ERRAT indicated that 
the refined 3D structure is good and therefore, can be 
utilized as a reliable model for further evaluations.

Conformational B-Cell Epitope 
Identification
The tertiary structure of the designed vaccine was used as 
an input for conformational (discontinuous) B-cell epitope 
prediction via ElliPro in IEDB. From 485 amino acid 
residues, 246 were defined as discontinued B-cell epitope 
(Table 3).

Identifying Binding Sites and Protein– 
Protein Docking
ClusPro server has been used to perform the docking of the 
vaccine with TLR3, 5, 8, and ACE-2 molecules. Cluspro 
generated 30 models for each interaction. The docked 
model was selected based on most atoms interacted in the 
vaccine and each of the receptors (Figures 2–5).

Figure 3 Docking model (cartoon representation) of human TLR5 in complex with 
the vaccine obtained using Cluspro server. TLR5 is shown in chocolate and vaccine 
was colored from N-to C-terminals (N-flagellin is shown in blue and C-flagellin is 
shown in red). As the figure shows some parts of Flagellin, S-epitope and HP-91 
interacted with TLR5. In order to more visualized interaction points, some of the 
interacting residues of the vaccine and TLR5 are magnified in 20 Angstrom. Docked 
model was visualized by Discovery studio 4.5.

Figure 4 Docking model (cartoon representation) of human TLR8 in complex with the vaccine obtained using Cluspro server. TLR8 protein is shown in chocolate and 
vaccine was colored from N-to C-terminals (N-flagellin is shown in blue and C-flagellin is shown in red. As the figure shows some parts of S, M, N, and E epitopes, HBD-3 
and HP-91 interacted with TLR8). In order to more visualized interaction points, some of the interacting residues of the vaccine and TLR8 are magnified in 20 Angstrom. 
Docked model was visualized using Discovery studio 4.5.
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In silico Codon Optimization of the 
Vaccine Construct and Prediction of the 
mRNA Secondary Structure
The reverse translation of the protein vaccine into 
a nucleotide sequence was performed simultaneously using 
the Sequence Manipulation Suite server to express high-level 
protein in E. coli. Codon Adaptation Index (CAI), GC con-
tent, and Codon Frequency and Distribution (CFD) were 
evaluated using GenScript online server. A CAI of the vac-
cine optimized nucleotide sequence was 1. The GC content 
of the structure was in the ideal range of 58.73% (30–70%), 
and CFD 100 indicating the effective expression of the 
protein in the host. To clone the gene into E. coli vectors, 
NcoI and XhoI restriction sites were added into the N- and 
C-terminals of the sequence using CLC Sequence viewer v.8. 
Finally, the vaccine gene was inserted into the PET-28 vector 

(Figure 6). Minimum free energy of the vaccine was deter-
mined using RNA fold server, the optimized mRNA con-
struct showed ΔG value of −520 kcal/mol. Figure S2 
illustrates the predicted secondary structure of the vaccine.

Discussion
Today, there is an urgent need to design effective vaccines 
to stop the indescribable spread of COVID-19. In light of 
recent advances in bioinformatic approaches, we can iden-
tify immunodominant T- and B-cell epitopes and design 
a potential vaccine to prevent the disease. We used an in 
silico analysis to design a potent multi-epitope peptide 
vaccine against SARS-CoV-2. The vaccine contains 485 
amino acids which constructed from three specific epi-
topes from S (two epitopes from RBD section (and one 
epitope from each of the structural proteins of E, M, and 

Figure 5 Docking model (cartoon representation) of human ACE-2 in complex with the vaccine obtained using Cluspro server. ACE-2 protein is shown in chocolate and 
vaccine was shown in purple. As the figure shows RBD epitopes of vaccine interacted with ACE-2. In order to more visualized interaction points, some of the interacting 
residues of the vaccine and ACE-2 are magnified in 20 Angstrom. Docked model was visualized using Discovery studio 4.5.
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N)). These proteins have essential roles in the infection of 
host cells and host immune modulation. Therefore, it is 
expected that the vaccine will have a high ability to induce 
the production of neutralizing antibodies by 
B lymphocytes and the production of IFN-γ by (T helper) 
Th and CTL cells.

Adjuvants are essential components of multi-epitope 
vaccines because they increase the immunologic properties 
of the vaccine structures. We used Flagellin of Salmonella 
enterica subsp. enterica serovar Dublin, a TLR5 agonist, 
in two N and C terminus of the vaccine construct. 
Flagellin induces innate immune effectors such as cyto-
kines and nitric oxide,76,77 activates TLR5-positive den-
dritic cells (DCs), neutrophils, and epithelial cells78–81 and 
stimulates the activation of adaptive immune responses 
mainly Th2-type and IgA production.78,79,82–85 Intranasal 
administration of Flagellin stimulates the signaling of 
TLR5 in lung epithelial cells and pneumonocytes.86 It 
was used broadly as an adjuvant in vaccine structure 
designed against viral infections such as influenza85,87,88 

and HPV.25,89 In addition, we incorporated HP-91 and 
HBD-3 in the final vaccine construct. The peptide of HP- 
91 derived from B-box domain amino acids of 89–108 
from HMGB1 protein. This peptide induces high levels 
of IL-2 and IL-15, increases secretion of IL-12 and IFN-α 
in human DCs and augmented T cell activation.90 Also, it 
activates DCs independent of TLR2, 4, and 9, and MyD88 

pathways.91 This is a potent immune adjuvant for inducing 
cellular and humoral immune responses and has been used 
in vaccines against viral infections such as HIV and 
HPV.90–93 HBD-3 is the third adjuvant in our vaccine, 
used as adjuvant to viruses such as influenza and MERS- 
CoV.28,94 This peptide blocks viral fusion using creating 
a protective barricade of immobilized surface proteins.94 It 
activates APCs via TLR1 and TLR295 and induces IL- 
22,96 TGF-α97,98 and IFN-γ.99,100 It has been implicated 
in the chemotaxis of immature DCs and T cells via its 
interaction with chemokine receptor 6 (CCR6) and the 
chemotaxis of monocytes via interaction with CCR2,101 

As well as this peptide activates natural killer (NK), pro-
motes and activates myeloid DCs directly and dependent 
NK cells activity.95,100 To link different pieces of the 
vaccine, a repeated of a dipeptide linker of LE was used. 
This linker improves the expression of vaccine protein via 
the decreasing of a pI.102,103

An efficient vaccine should not only have stimulating 
ability immune response but also possess good physico-
chemical properties during production, formulation, sto-
rage, and consumption. According to the results of 
bioinformatic predictions, the designed vaccine was stable 
with a stability index of 36.41 and had a pI of 7.92. 
Conformational B-cell epitopes have a central role in 
induction humoral responses. The accessibility of 
a significant number of B-cell epitopes in the vaccine 

Figure 6 Evaluation of the three important parameters of the codon-optimized gene to express high-level protein in E. coli. (A) CAI of the gene sequence was 1. It is noted 
that a CAI of > 0.8 will be considered as good for expression in the selected host. (B) Average GC content of the sequence was 58.73%. (C) Codon frequency distribution 
(CFD) value of the gene sequence is 100. A CFD equal to100 supports maximum protein expression in the desired host. (D) Insertion of the vaccine gene in the PET28 
vector by restriction enzymes of NcoI and XhoI.
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molecule indicates the high ability of this structure to 
stimulate B lymphocytes`. The binding affinity of the 
vaccine with the immune receptors (TLR3, 5, and 8) is 
necessary to effectively transport vaccine protein into anti-
gen-presenting cells.

Moreover, it has been reported that TLR3 induces 
a strong type I IFN-dependent antiviral response in murine 
Coronavirus Infection104 and TLR8 has the inhibitory 
roles against viruses.105,106 These three TLRs were used 
in designing in previous bioinformatic-based vaccines 
against SARS-CoV-2.30,107,108 The results of docking ana-
lysis showed the vaccine protein properly interacts with 
TLR3, 5, and 8. In addition, docking results of the vaccine 
and ACE-2 reveal the RBD epitopes of the vaccine can 
efficiently interact with ACE-2. This interaction indicates 
the vaccine will be attached to ACE-2 and therefore, 
induces humoral and cellular responses against SARS- 
CoV-2.

The codon optimization and in silico cloning illustrated 
the vaccine can efficiently transcript and translate in 
E. coli. Alignment of the selected epitopes of structural 
proteins showed these epitopes are conserved between 
SARS-CoV-2 and SARS, so it is also possible that the 
vaccine may induce neutralizing antibodies against SARS 
coronavirus.

Conclusion
In this study, using a variety of bioinformatic methods, we 
developed a multi-epitope subunit vaccine against the 
SARS-Cov-2 virus. The results of this study showed that 
it could be possible to predict vaccine candidates against 
new emerging viral diseases such as COVID-19 with the 
help of reverse vaccinology. The present study, with its 
effective vaccine design against SARS-CoV-2, showed 
that bioinformatic approaches could help to develop effec-
tive treatments for other emerging infectious diseases in 
a short time and at low cost. However, the in silico results 
of this study need to be verified using laboratory and 
animal models.
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