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Purpose: To develop a variational autoencoder (VAE) suitable for analysis of the latent
structure of anterior segment optical coherence tomography (AS-OCT) images and to
investigate possibilities of latent structure analysis of the AS-OCT images.

Methods:We retrospectively collected clinical data and AS-OCT images from 2111 eyes
of 1261 participants from the ongoing Asan Glaucoma Progression Study. A specifically
modified VAE was used to extract six symmetrical and one asymmetrical latent variable.
A total of 1692 eyes of 1007 patients were used for training the model. Conventional
measurements and latent variables were compared between 74 primary angle closure
(PAC) and 51 primary angle closure glaucoma (PACG) eyes from validation set (419 eyes
of 254 patients) that were not used for training.

Results: Among the symmetrical latent variables, the first three and the last demon-
strated easily recognized features, anterior chamber area in η1, curvature of the cornea
in η2, the pupil size in η3 and corneal thickness in η6, whereas η4 and η5 were more
complex aggregating complex interactions of multiple structures. Compared with PAC
eyes, there was no difference in any of the conventional measurements in PACG eyes.
However, values ofη4 were significantly different between the twogroups, being smaller
in the PACG group (P = 0.015).

Conclusions: VAE is a useful framework for analysis of the latent structure of AS-OCT.
Latent structure analysis could be useful in capturing features not readily evident with
conventional measures.

Translational Relevance: This study suggested that a deep learning-based latent space
model can be applied for the analysis of AS-OCT images to find latent characteristics of
the anterior segment of the eye.

Introduction

Although advances have been made in imaging
techniques of the anterior segment, such as anterior
segment optical coherence tomography (AS-OCT),
the appropriate analysis of acquired high-resolution
images has been limited by the lack of proper analyt-
ical tools. Conventional methods consist of manual
measurement of hand-crafted features by the physi-
cian. The commonly used parameters are as follows;

anterior chamber depth (ACD), width, and area
(ACA), lens vault, angle recess area, angle opening
distance, trabecular-iris-space area, and iris thick-
ness.1 Conventional analysis has been successfully
utilized in a variety of tasks, including subclassifi-
cation, monitoring intervention-induced changes, and
describing dynamic and long-term processes in the
anterior segment. Still, these parameters cannot inher-
ently comprehend the whole image and have vulner-
abilities when considering highly correlated parame-
ters.2–7
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Recent advances in deep learning technology
provide a new approach to image data analysis. Several
studies have proven that deep learning techniques are
not only suitable for the analysis of AS-OCT images
but can achieve accuracies comparable to human
measurements.8–12 However, because these studies
usually involve large-scale automatedmeasurements of
manually assigned labels, they are affected by all the
limitations of manual measurements.

Latent space modeling is one of the machine learn-
ing approaches that could be applied to analyze high-
dimensional data. An example of a latent space model
(or latent variable model) used in the conventional
context is factor analysis, such as the ones that have
long been used in psychology.13 In the field of computer
vision, a family of latent space models called deep
generative models has been intensively developed to
analyze various images.14 In our previous study, we
have shown that a convolutional β-variational autoen-
coder (VAE) can be applied to the AS-OCT images
to achieve a good disentangled latent space represen-
tation.15 Despite encouraging results, we also found
shortcomings of a convolutional VAE framework,
whichmotivated us to improve themodel. The previous
model had limited power in separating asymmetrical
variance from symmetrical variance, which hampered
the disentanglement of latent variables.

To overcome problems arising from asymmetricity,
we have developed a new method inspired by spatial
transformer networks.16 In this new model, we have
preserved the overall framework of VAE, but instead
of convolution, an image warping technique we have
named cumulative order-preserving image transform-
ing network (COPIT) is used to reconstruct images
from the latent space. COPIT was specifically devel-
oped and tailored for the current article’s latent space
representation of AS-OCT images. COPIT has been
designed to have several properties: (1) the order of
the x and y coordinates are preserved after transforma-
tion; (2) each latent variable defines a unique transfor-
mation; (3) multiple transformations can be combined
into a single new transformation; and (4) each layer can
be designed differently depending on the purposes. The
entire network is based on the convolutional β-VAE
with two modifications: (1) the convolutional decoder
part is replaced by COPIT, and (2) the loss function has
been modified to include a cosine similarity.

Methods

Participants

We selected participants from the ongoing Asan
Glaucoma Progression Study who have undergone an

AS-OCT examination (Visante OCT, ver. 3.0; Carl
Zeiss Meditec, Jena, Germany). From 2111 eyes of
1261 patients, we randomly assigned 80% of the
patients to the training set (1692 eyes of 1007 patients)
and the remaining 20% to the validation set (419 eyes
of 254 patients), ensuring both eyes of the patient
were assigned to the same group.Comparisons between
conventional measurements and latent variables were
made using patients from the validation set. A more
detailed description of the population, including the
clinical assessment, inclusion criteria, image acquisi-
tion, and demographics, has been included in our previ-
ous study.15

All procedures conformed to the Declaration of
Helsinki, and this study was approved by the insti-
tutional review board of the Asan Medical Center,
University of Ulsan, Seoul, Korea.

Image Preparation and Segmentation

Raw AS-OCT images of size 1200 × 1500 (H × W)
pixels were center cropped to create a grayscale 512 ×
1024 image, resized to 256 × 512 pixels. The segmen-
tation was done in four steps: (1) resized images were
manually segmented into three segments: the iris, the
corneoscleral shell, and the anterior chamber by an
experienced glaucoma specialist (KS); (2) 130manually
segmented images were used to train a modified U-
net; (3) a trained modified U-net was used to segment
remaining images; and (4) segmented images were
aligned with rotation and translation using a spatial-
transformer network.16 A modified U-net is struc-
turally identical to the original U-net but has been
reduced in depth and has been adjusted to a differ-
ent resolution.15,17 Segmented images were cropped to
a size of 192 × 448, and left eyes were horizontally
flipped.

Model Structure

Our model follows the general structure of VAE,
but unlike the typical convolutional autoencoder, a
decoder part was replaced with an image warping
technique that was inspired by a spatial transformer
network.16 Compared to the original spatial trans-
former network, our model has the following major
structural differences: (1) added a “reparameterization”
part; (2) replaced a “grid generator” with our new
COPIT; (3) replaced the sampling technique with a
linearized multi-sampling technique proposed by Jiang
et al.;18 and (4) have modified the loss function.16,18,19

The encoder (which corresponds to a “localiza-
tion net” in the spatial transformer network) is identi-
cal to the model described in our previous study but
was trained de novo.15 A reparameterization part and
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Figure1. Schematic diagramof convolutional VAE, spatial transformer andCOPITbasedVAE. In a convolutional VAE, convolutional encoder
is used to generate means and standard deviations , from which latent variables are sampled, and then output image is generated from
sampled latent variables through convolutional decoder (A). In a spatial transformer, convolutional localization net is used to generate latent
variables which are used as transformation coefficients for generating sampling grids, and then output image is calculated using a sampling
grid and the standard image (B). In our newmodel, latent variables are generated in the same way as in the convolutional VAE, but sampled
in similar way as in the spatial transformer but grid generator has been replaced with COPIT which two versions - six symmetrical and one
asymmetrical. Output image is calculated from final sampling grid and standard image using linearized multi-sampling (C).

addition of Kullback-Leibler divergence (KLD) to the
loss function were taken from makes our model a
VAE.19 The decoder part in our preceding work or
a “grid generator” in the spatial transformer network
has been replaced with a COPIT-based decoder specif-
ically developed for the current research. In the COPIT,
numbers are generated from reparametrized latent
variables using fully connected layers, which are then
fed into COPIT to generate a sampling grid. Then
a transformed image is calculated from the standard
image using a sampling grid (Fig. 1).

To separate symmetrical variability from asymmet-
rical variability, we used two versions of COPIT layers:
an asymmetrical layer and a symmetrical layer (the
left and right sides of the grid are mirror images
reflected over the y axis). All variationally inferred
latent variables have been matched to the symmetrical
layers, while one additional variable was matched with
an asymmetrical layer. Also, because generating grids
with a number of points equivalent to or larger than
the number of pixels, in our case 192× 448= 86,016, is
not only inefficient but might also cause instability, we
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have generated down-scaled grids from fully connected
layers that were upsampled using bicubic interpolation.
A detailed description of COPIT can be found in the
supplementary material.

The Loss Function

A latent space z in the VAE is variationally inferred
such that a posterior pθ (z|x) is approximated to a prior
pθ (z), which is usually defined as a Gaussian distribu-
tion N(0, I).20 The distance between a posterior and a
prior ismeasuredwith aKLD.However,KLDdoes not
provide information regarding the similarity between
latent variables. Hence, we have decided to add cosine
similarities between all possible combinations of latent
variables:

Sim (z) =
n−1∑

i=1

n∑

j=i+1

‖ zi · z j ‖
‖ zi ‖‖ z j ‖ (1)

In a special case where the data is centered at zero,
cosine similarity is equivalent to Pearson’s correlation
coefficient.21

With additional hyperparameter γ and the similar-
ity function Sim, our modified loss function VAE is
given as:

L (θ, φ, β; x) = −Eqφ(z|x) [log pθ (x|z)]
+βDKL(qφ (z|x) ||p (z)) + γSim (z)

(2)

where x is an image in our case, qφ(z|x) is an estimated
distribution of the latent space, pθ (x|z) is the likelihood
of generating a true image, and DKL is a KLD.22

Adjusting Hyperparameters and Training

The number of symmetrical latent variables was set
to 6 based on our previous work with an additional
asymmetrical layer, whereas the values of β and γ were
both set at 52, which yielded a comparable KLD to
the convolutional VAE model presented in our previ-
ous work.15 The grids were scaled down by a factor of
16, 16, 16, 8, 4, 2 for symmetrical layers 1 to 6 and by a
factor of 8 for the asymmetrical layer. For the calcula-
tion of the reconstruction loss, mean squared error has
resulted in a shorter training time than binary cross-
entropy. The layers were trained in three steps: (1) six
symmetrical layers were trained sequentially (only one
layer was trained at a time while the other layers were
frozen) for 900 epochs, (2) the asymmetrical layer was
trained for 50 epochs, and (3) all layers were simultane-
ously trained for 50 epochs.

Making Conventional Measurements and
Calculating Latent Variables in Selected Eyes

Exclusively from patients in the validation set, we
collected complete clinical information of patients
diagnosed with primary angle closure (PAC) or
primary angle closure glaucoma (PACG). All patients
have undergone static and dynamic gonioscopy with
Sussman 4-mirror gonioscope (Ocular Instruments,
Bellevue, WA, USA) in a darkened room (0.5 cd/m2)
by an experienced glaucoma specialist (K.R.S). PAC
was diagnosed if the eyes had an occludable angle
(pigmented posterior trabecular meshwork was not
visible on nonindentation gonioscopy for at least 180°
in the primary position) with signs indicating trabec-
ular obstruction (elevated intraocular pressure, distor-
tion of the radially orientated iris fibers, “glaukom-
flecken” lens opacities, excessive pigment deposition
on the trabecular meshwork, or presence of periph-
eral anterior synechiae) but without any sign sugges-
tive of glaucoma on optic disc examination and visual
field tests. PAC eyes showing glaucomatous optic disc
changes (neuroretinal rim thinning, disc excavation, or
optic disc hemorrhage attributable to glaucoma) or
a glaucomatous visual field change were classified as
PACG. Eyes with a previous history suggesting acute
angle closure attack have been excluded: (1) presenting
with ocular or periocular pain, nausea or vomiting, or
intermittent blurred vision with haloes; (2) those with
a presenting intraocular pressure of more than 30 mm
Hg; and (3) those who had experienced at least three of
the following: conjunctival injections, corneal epithelial
edema, mid-dilated unreactive pupil. If both eyes were
eligible, we selected the right eye. As a result, 125 eyes
of 125 patients, including 74 PAC eyes and 51 PACG
eyes, were analyzed.

A single investigator (S.K), blinded to all informa-
tion, assigned the scleral spur—defined as the point
showing a change in the curvature of the inner
surface of the angled wall - and measured the ACD
using calipers built-in in the software provided by
the manufacturers.23 Then, the software provided by
the manufacturer automatically measured the scleral
spur angle, angle opening distance at 500 μm and 750
μm, angle recess area at 500 μm and 750 μm, and
the trabecular-iris space area at 500 μm and 750 μm.
Additionally, the iris thickness at 750 μm from the
scleral spur, iris curvature, ACD, anterior chamber
width, ACA, and lens vault were measured using Fiji
software, and pixel values were converted into real-
world units by comparing pupil diameter measured
with Fiji software and built-in and calipers.24 More
detailed descriptions of the measurement methods can
be found in our previous works.25–27
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Clinical information, including age, gender, axial
length, baseline intraocular pressure, manual measure-
ments, and values of latent variables derived from
the neural network trained in previous steps were
compared between the PAC and PACG eyes with
Student’s t test for continuous variables and the χ2 test
for frequency variables using SAS 9.4 software (SAS
Institute Inc., Cary, NC, USA). We have not collected
detailed information from the training dataset due
to the larger size of the dataset, but we assume the
proportion of PAC/PACG eyes in the training dataset
to be not statistically different because patients were
randomly assigned training and validation datasets and
demographics do not differ.15

Results

Exploration of the Latent Space
A satisfactory latent space disentanglement was

achieved in our new method, such that the variables
were discernible and appreciable in the visual analysis.
Specifically, η1 seems to represent an overall ACD and
ACA, whereas η2 seems to mainly represent the curva-
ture of the cornea. The η3 was associated with pupil

size changes without any noticeable changes in the
corneoscleral or lens contour. The η4 was also related
to the pupil size, but in contrast to η3, the following
differences are worth mentioning: (1) the iris is thicker
and more curved with a small pupil size (negative z
value); (2) the iris became relatively flat when the pupil
got larger (positive z value); and (3) there was an overt
increase in the lens vault with a positive z value. Little
perceivable changes were seen for the η5 variable, but
by creating a subtraction image with extreme z values,
we can notice some interesting characteristics: (1) the
iris is flatter at negative z values and more curved
at positive z values; (2) at negative z values, the iris
becomes thinner, but the peripheral part remains thick;
(3) the anterior chamber gets narrower at negative z
values and wider at positive z values; (4) the periph-
ery of the anterior chamber becomes shallower at
negative z values and deeper at positive z values; and
(5) there is a subtle change in the corneal profile such
that at negative z values, the central portion of the
cornea is steeper whereas the peripheral portion of the
cornea is flatter and thicker. The η6 seems to be mainly
related to the corneal thickness, whereas ηA appears
to represent the asymmetricity as intended (Fig. 2 and
Fig. 3).

Figure 2. Visualization of the latent variables of the model. There are six symmetrical layers denoted η1 to η6 and one asymmetric layer
denoted ηA. For asymmetric layers, z values of −2.0, −1.0, 0, 1.0, and 2.0 were used while for the asymmetric layer, z values have been
reduced to −1.0, −0.5, 0, 0.5, and 1.0 for better interpretability.
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Figure 3. Subtraction image of η5 for z values−4 and 4. Areas that
correspond to z = 4 are color-coded in yellow tone while areas that
correspond are color-coded in blue tone. Gray color represents an
area of the corneawhich is common to both z values and green color
represents areas of iris common to both z values.

Conventional Measurements and Latent
Variables for PAC and PACG Eyes

There was no statistically significant difference
between PAC and PACG eyes for any of the conven-
tional measurements, with angle recess area having the
lowest P value (P = 0.116). Among the latent variables,
PACGeyes have a smaller value of η4 compared to PAC
eyes (P = 0.015; Table). Values of the latent variables
can be visualized with the network in several ways.
When using mean values of η1 to η6 for PAC and
PACG eyes, there is little difference in the cornea or
lens between the groups. The size of the pupil and
width of the anterior chamber was slightly smaller in
the PACG group compared to the PAC group, which is
consistent with the conventional measurements in the
Table (the top row of Fig. 4). To enhance the difference,
we upscaled the mean values of the latent variables

Table. Conventional Measurements and Latent Variables for PAC and PACG Eyes

PAC (n = 74) PACG (n = 51) P Value

Age, years 61.8 (±9.3) 63 (±8.5) 0.473
Sex, % of females 62 (83.8%) 42 (82.4%) 0.833
Laterality, right 68 (91.9%) 43 (88.2%) 0.495
Axial length, mm 22.7 (±0.7) 22.7 (±0.6) 0.916
Baseline IOP, mmHg
Pupil diameter, mm 4.27 (±0.87) 4.09 (±1.03) 0.278
ACD, mm 2.04 (±0.26) 2.03 (±0.26) 0.867
ACW, mm 11.82 (±0.54) 11.76 (±0.43) 0.543
ACA, mm2 13.61 (±2.03) 13.01 (±2.12) 0.116
LV, mm 1.14 (±0.32) 1.09 (±0.29) 0.378
AOD500, μm 148.3 (±86.7) 128.8 (±82.3) 0.210
AOD750, μm 213.2 (±113.1) 188 (±112.3) 0.223
ARA500, mm2 0.077 (±0.047) 0.070 (±0.039) 0.353
ARA750, mm2 0.121 (±0.067) 0.108 (±0.060) 0.283
TISA500, mm2 0.058 (±0.032) 0.053 (±0.028) 0.428
TISA750, mm2 0.104 (±0.057) 0.092 (±0.050) 0.223
SSA, degrees 16.0 (±8.4) 14.0 (±8.3) 0.206
IT750, μm 0.432 (±0.094) 0.433 (±0.079) 0.942
Iris curvature, μm 0.18 (±0.073) 0.186 (±0.076) 0.773
η1 0.499 (±0.548) 0.694 (±0.791) 0.105
η2 0.155 (±0.867) −0.089 (±0.965) 0.142
η3 0.034 (±0.947) 0.114 (±1.004) 0.650
η4 0.412 (±0.872) 0.012 (±0.922) 0.015*
η5 0.062 (±1.083) 0.035 (±0.856) 0.882
η6 0.013 (±0.845) −0.130 (±1.02) 0.397
ηA 0.204 (±0.115) 0.199 (±0.13) 0.806

IOP= intraocular pressure; ACD= anterior chamber depth; ACW= anterior chamber width; ACA= anterior chamber area;
LV= lens vault; AOD500= angle opening distance at 500 μm from the scleral spur; AOD750= angle opening distance at 750
μm from the scleral spur; ARA500 = angle recess area at 500 μm from the scleral spur; ARA750 = angle recess area at 750 μm
from the scleral spur; TISA500= trabecular-iris space area at 500 μm from the scleral spur; TISA750= trabecular-iris space area
at 750 μm from the scleral spur; SSA = scleral spur angle; IT750 = iris thickness at 750 μm from the scleral spur.

*Statistically significant at P = 0.05.
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Figure 4. Reconstructed images representing PAC and PACG eyes from selected mean values of latent variables of each group. Top row:
mean values of η1 ∼ η6, middle row: tripled mean values of η1 ∼ η6, bottom row: tripled mean values of η4. Left column: plain segmented
images,middle column: differencemap, right column:magnifieddifferencemapof the anglewith approximateAOD500markedwith arrows.
We can see that PACG eyes seem to have a narrower angle (top row, right column) which is more pronounced if wemultiply latent variables
by 3 (middle row, right column). However, there was no noticeable difference in the width of the angle regarding only η4 (bottom row, right
column). It implies that despite significant statistical difference between two disease groups in η4, narrower angle in PACG is not a direct
result of η4 but rather a result of combination all latent variables.

for each group by a factor of three. The angle differ-
ence was more noticeable with the narrower angle in
the PACG group compared to that of the PAC group
(middle row of Fig. 4), although there was little differ-
ence for the cornea or lens. Because we can select
certain latent variables, we have created a subtraction
image using the mean values of η4 for the PAC and
PACG eyes multiplied by 3, whereas all other latent
variables are kept constant at zero. Still, there is little
difference in the angle, corneal contour, or anterior
chamber width, although the lens vault is slightly larger
in the PAC group (bottom row of Fig. 4).

Discussion

Our model has successfully disentangled latent
space with readily distinguishable main features for the
first three latent variables: anterior chamber area for
η1, the curvature of the cornea for η2, and pupil size
for η3. η4 and η5 are more complex, with η4 associated
with at least three features: (1) pupil size, (2) curvature
and thickness of the iris, and (3) the lens vault. The η5
is the most complex, with combined changes of the iris
profile, corneal profile, width of the anterior chamber,
and depth of the peripheral anterior chamber. η6 seems

to be associated with corneal thickness (Figs. 2 and
3). Given that our model is unsupervised, good inter-
pretability of certain latent variables (η1, η2, η3, and
η6) is encouraging. However, some latent variables (η4,
η5) are difficult to interpret, which implies complex
interactions between AS-OCT features but also leaves
room for further improvement of the model.

Comparing conventional measurements and latent
variables of PAC and PACG eyes led to interesting
results: there was no statistically significant difference
in any of the conventional measurements, but the
PACG eyes had smaller values of η4 compared to PAC
eyes (P = 0.015; Table). On the visualization of latent
variables of the two groups, we noticed that PACG
eyes seemed to have a narrower angle, which was more
pronounced if the latent variables were multiplied by a
factor of 3. However, despite the statistically significant
difference of η4 between disease groups, there was no
noticeable difference in the width of the angle between
groups if only η4 was visualized (Fig. 4). Hence, if there
is a difference in the angle between PAC and PACG
eyes, it is not a direct result of η4 but rather due to
the combined action of all latent variables. Although
current research is not sufficient to draw any conclu-
sion regarding morphological differences between PAC
and PACG eyes, such results are encouraging in that
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Figure 5. Latent variables of convolutional VAE presented in our previous paper at more extreme z values.

current research did not apply any disease labels during
the training. Although we cannot derive any conclu-
sion regarding the association between latent variables
and disease mechanisms, we can postulate that there
could be some complex interactions between conven-
tional measurements that are not evident with conven-
tional measurements but could be captured with deep
learning techniques.

Compared to the convolutional VAEmodel we have
presented in a previous study, our new COPIT-based
model has shown similar but less blurred reconstructed
images but vastly improved latent space disentangle-
ment such that (1) every latent variable represents a
unique feature, (2) features are easier to comprehend,
and (3) other components of corneosclera, iris, and
the lens remain relatively stable whereas the feature
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of the focus changes dramatically (Figs. 2 and 3).
Such encouraging results could be achieved by imple-
menting a design specifically tailored for the appli-
cation. First, we have implemented sequential train-
ing, which provides some characteristics: (1) the latent
variables are ordered such that the variance explained
can be expected to be the largest for the first latent
variable and decrease afterward, (2) the addition of
cosine similarity to the loss function encourages latent
factors are dissimilar, and (3) resulting latent space
is easier to interpret to human eyes. Second, in our
new model, every layer could be configured to have a
different design. For example, we have separated the
asymmetrical layer from the symmetrical layers, which
can offer a clear advantage given that physiologically,
no eye is symmetrical. Hence, we expect that separat-
ing the asymmetricity will help reduce confounding
and enhance the extraction of clinically meaningful
features in the symmetrical layers. Besides horizontal
symmetricity, other restrictions and transformations
such as affine transformation or thin-plate spline trans-
formation are relatively easy to incorporate and can be
applied on a per-layer basis if required.

Another useful characteristic of our new model
compared to the convolutional VAE is better stability
at extreme z values. This can be useful because scaling
up the values of the latent variables can enhance the
subtle changes to improve interpretability. However,
after a certain point, the generated image becomes
unnatural, limiting the range of usable z values. For
example, at z values of −4 and 4, which have been used
in Figure 3, latent variables in the convolutional VAE
generate somewhat broken images (Fig. 5).

We believe that in the near future, deep learning
techniques will be more commonly applied in the field
of glaucoma, including AS-OCT image analysis. Many
deep learning techniques involve the dimension reduc-
tion stage, which is related to the latent space. For
example, deep clustering or longitudinal analyses can
use latent space. For such strategies to be more effec-
tive, an understanding of latent structure is essential.
We hope our study could promote understanding of
the latent structure of AS-OCT images and provide a
basis for future deep learning studies.

AS-OCT poses an important limitation to our
analysis. Inadequate tissue resolution makes it diffi-
cult to delineate the exact border between the cornea
and the iris and the location of the scleral spur in
certain eyes with a closed angle. AS-OCT has limited
penetration, limiting visualization of the posterior
surface of the iris and the ciliary body, whereas in
some eyes without cataracts, the lens is so transpar-
ent that some parts of the anterior capsule are not
visualized. We expect those limitations to be overcome

with newer technologies. The model also has limita-
tions inherent in generativemodels, including a require-
ment for manual tailoring of the hyperparameters.
In the process of tailoring, knowledge of develop-
ers about the subject, AS-OCT images, in our case,
get involved. Because there is no universally accepted
feature to qualitatively assess the degree of disentangle-
ment for AS-OCT images, the process is highly subjec-
tive. The same limitation applies when interpreting the
results, especially latent variables that capture complex
interactions of various features that are difficult to
interpret.

Both training and validation data were derived from
the same dataset, which does not include various ethnic
groups, and for a machine learning study, the sample
size is small. Hence, we expect the generalizability of
our analysis to be limited, and the results should be
assumed to be dependent on a specific dataset we have
used. Comparisons between PAC and PACG eyes have
all the limitations inherent in the retrospective design
of the study.

Nonetheless, we have shown that an unsupervised
neural network can achieve good results for the analy-
sis of the latent structure of the AS-OCT. Also, our
results suggest that latent space analysis can be useful
for capturing a combination of features not readily
represented with conventional measurements due to
their complex interactions.
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