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Abstract: Networks are often used to model the contact processes that allow pathogens to
spread between hosts but it remains unclear which models best describe these networks.
One question is whether clustering in networks, roughly defined as the propensity for
triangles to form, affects the dynamics of disease spread. We perform a simulation
study to see if there is a signal in epidemic transmission trees of clustering. We
simulate susceptible-exposed-infectious-removed (SEIR) epidemics (with no re-infection)
over networks with fixed degree sequences but different levels of clustering and compare
trees from networks with the same degree sequence and different clustering levels. We find
that the variation of such trees simulated on networks with different levels of clustering is
barely greater than those simulated on networks with the same level of clustering, suggesting
that clustering can not be detected in transmission data when re-infection does not occur.
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1. Introduction

To understand the dynamics of infectious diseases it is crucial to understand the structure and
interactions within the host population. Conversely, it is possible to learn something about host
population structure by observing the pattern of pathogen spread within it. In either case, it is necessary
to have a good model of the host population structure and interactions within it. Networks, where nodes
of the network represent hosts and edges between nodes represent contacts across which pathogens may
be transmitted, are now regularly used to model host interactions [1–3]. While many models have been
proposed to describe the structure of these contact networks for different populations and different modes
of transmission, it is not yet understood how different features of networks affect the spread of pathogens.
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One promising development in this field is the use of statistical techniques which aim to model a
contact network based on data relating to the passage of a pathogen through a population. Such data
includes infection times [4–6] and genetic sequences that are collected from an epidemic present in the
population of interest [7–9]. These data have previously been shown to be useful for reconstructing
transmission histories (the distinction between a contact network and a transmission history is that
a contact network includes all edges between hosts across which disease may spread, whereas the
transmission history is just the subset of edges across which transmission actually occurred). Infection
times can be used to crudely reconstruct transmission histories by examining which individuals were
infectious at the time that any particular individual was infected [10]. Genetic sequences from viruses
are informative about who infected whom by comparing the similarity between sequences. Due to the
random accumulation of mutations in the sequences, we expect sequences from an infector/infectee pair
to be much closer to each other than sequences from a randomly selected pair in the population (see [11]
for a review of modern approaches to analysing viral genetic data). The work of [4–6] seeks to extend
the use of this data to reconstruct a model for the whole contact network rather than just the transmission
history. In theory, these statistical methods could settle arguments about which features of the network
are important in the transmission of the disease and which are simply artifacts of the physical system.

In this article, we focus on clustering in networks and ask whether or not networks which differ
only in their level of clustering could be distinguished if all we observed was transmission data from an
epidemic outbreak. The answer to this question will determine whether these new statistical techniques
can be extended to estimate the level of clustering in a network. Throughout, we consider a population
with N individuals that interact through some contact process. This population and its interactions are
fully described by a undirected random network, denoted Y , on N nodes. An simple example of a
network is shown in Figure 1 with illustrations of some of the terms we use in this article. Y can be
represented by the symmetric binary matrix [Yij] where Yij = Yji = 1 if an edge is present between
nodes i and j, otherwise Yij = 0. We stipulate that there no loops in the network, so Yii = 0 for all i.
The degree of the ith node, denoted di is the number of edges connected to i, so di =

∑
j:j>i Yij .

Clustering is one of the central features of observed social networks [12,13]. Intuitively, clustering
is the propensity for triangles or other small cycles to form, so that, for example, a friend of my friend
is also likely to be my friend. Where there is a positive clustering effect, the existence of edges (i, j)

and (i, k) increases the propensity for the edge (j, k) to exist, while a negative clustering effect implies
that (j, k) is less likely to exist given the presence of (i, j) and (i, k). When there is no clustering effect,
the presence or absence of (i, j) and (i, k) has no bearing on that of (j, k). Thus clustering is one of the
most basic of the true network effects—when it is present, the relationship between two nodes depends
not only on properties of the nodes themselves but the presence or absence of other relationships in
the network.

The effect of clustering on the dynamics of stochastic epidemics that run over networks remains
largely unknown, though it has been studied in a few special cases. The difficulty with studying this effect
in isolation is in trying to construct a network model where clustering can change but other properties of
the network are held constant. In simulations we study here, we focus on holding the degree sequence of
a network constant—that is, each node maintains the same number of contacts—while varying the level
of clustering. Intuition suggests that clustering will have some effect on epidemic dynamics since, in a
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graph with no cycles, if an infection is introduced to a population at node i and there is a path leading
to j then k, k can only become infected if j does first. However, where cycles are present, there may be
multiple paths leading from i to k that do not include j, so giving a different probability that k becomes
infected and a different expected time to infection for k.

Figure 1. An example of a network on 7 nodes. The nodes are the red dots, labelled 1 to 7
and represent individuals in the population. The edges are shown as black lines connecting
the nodes and represent possible routes of transmission. The degree of each node is number
of edges adjacent to it, so that node 5 has degree 3 and node 7 has degree 1. The degree
sequence of the network is the count of nodes with a given degree and can be represented
by the vector (0, 2, 0, 3, 1, 1) showing that there are 0 nodes of degree 0, 2 of degree 1, 0 of
degree 2 and so on. A cycle in the network is a path starting at a node and following distinct
edges to end up back at the same node. For example, the path from node 6 to node 1 to
node 3 and back to node 6 is a cycle but there is no cycle that includes node 4. Clustering
is a measure of propensity of cycles of length 3 (triangles) to form. Here, the edges (2,1)
and (2,6) form a triangle with the edge (1,6), so work to increase clustering in the network.
However, the edges (2,1) and (2,5) do not comprise part of a triangle as (1,5) does not exist,
so work to decrease clustering.
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Previous work on the effect of clustering on epidemic dynamics has produced a variety of results
which are largely specific to particular types of networks. Newman [14] and Britton et al. [15] show
that for a class of networks known as random intersection graphs in which individuals belong to one
or more overlapping groups and groups form fully connected cliques, an increase in clustering reduces
the epidemic threshold, that is, major outbreaks may occur at lower levels of transmissibility in highly
clustered networks. Newman [14], using heuristic methods and simulations, suggests that for sufficiently
high levels of transmissibility the expected size of an outbreak is smaller in a highly clustered network
than it would be in a similar network with lower clustering. These articles show that graphs with
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different levels of clustering do, at least in some cases, have different outbreak probabilities and final
size distributions for epidemic outbreaks.

Kiss and Green [16] provide a succinct rebuttal to the suggestion that the effects found by [14]
and [15] are solely due to clustering. They show that, while the mean degree of the network is
preserved in the random intersection graph, the degree distribution varies greatly (in particular, there
are many zero-degree nodes) and variance of this distribution increases with clustering. An increase
in the variance of the degree distribution has previously been shown to lower the epidemic threshold.
They demonstrate that a rewiring of random intersection graphs that preserves the degree sequence but
decreases clustering produces networks with similarly lowered epidemic thresholds and even smaller
mean outbreak sizes. Our experiments, reported below, are similar in spirit to those of [16] but look at
networks with different degree distributions and study in detail how epidemic data from networks with
varying levels of clustering might vary.

Ball et al. [17] show, using analytical techniques, that clustering induced by household structure in
a population (where individuals have many contacts with individuals in the same household and fewer
global contacts with those outside of the household) has an effect on probability of an outbreak and
the expected size of any outbreak. The probability of an outbreak, in some special cases, is shown to
be monotonically decreasing with clustering coefficient and the expected outbreak size also decreases
with clustering. There is no suggestion that these results will apply to clustered networks outside of this
specific type of network or that they apply when degree distributions are held constant.

Eames [18] also studies networks with two types of contacts: regular contacts (between people who
live or work together, for example) and random contacts (sharing a train ride, for example). Using
simulations of a stochastic epidemic model and deterministic approximations, it is shown that both
outbreak final size and probability of an outbreak are reduced with increased clustering, particularly
when regular contacts dominate. As the number of random contacts increases, the effect of clustering
reduces to almost zero. Strong effects on the expected outbreak size in networks with no random contacts
are observed for values of the clustering coefficient above about 0.4, however, no indication of the
magnitude of the variance of these effects is given.

Keeling [19] reports similar results, introducing clustering to a network using a spatial
technique—nodes live in a two-dimensional space and two nodes are connected by an edge with a
probability inversely proportional to their distance. The clustering comes about by randomly choosing
positions in space to which nodes are attracted before connections are made. The results suggest that
changes in clustering at lower levels has little effect on the probability of an outbreak, but as the clustering
coefficient reaches about 0.45, the chance of an outbreak reduces significantly. As in [14] and [15], while
the mean degree of network nodes is held constant here, nothing is said about the degree distribution as
clustering varies.

Serrano and Boguñá [20] look specifically at infinite power-law networks and shows that
the probability of an outbreak increases as clustering increases but the expected size of an
outbreak decreases.

Some more recent papers seek to distinguish the effects of clustering from confounding factors such
as assortativity and degree sequence. Miller [21] develops analytic approximations to study the interplay
of various effects such as clustering, heterogeneity in host infectiousness and susceptibility and the
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weighting of contacts on the spread of disease over a network. The impact of clustering on the probability
and size of an outbreak is found to be small on “reasonable” networks so long as the average degree of the
network is not too low. The rate at which the epidemic spreads, measured by the reproduction number,
R0, is found to reduce with increased clustering in such networks. In networks with low mean degree,
R0 may be reduced to point of affecting the probability and size of an outbreak.

Miller [22] points out that studies of the effects of clustering should take into account assortativity
in the network, that is, the correlations in node degree between connected nodes. Assortativity has
been shown to affect epidemic dynamics and changing the level of clustering in a network can change
the level of assortativity. To distinguish between the effects of assortativity and clustering, a method
of producing networks with arbitrary degree distributions and arbitrary levels of clustering with or
without correlated degrees is presented and studied using percolation methods. The effect of increasing
clustering in these models is to reduce the probability of outbreaks and reduce the expected size of an
epidemic. Badham and Stocker [23] use simulated networks and epidemics to study the relationship
between assortativity and clustering. Their results suggest that increased clustering diminished the
final size of the epidemic, while the effect of clustering on probability of outbreak was not very clear.
Like [23], Moslonka-Lefebvre et al. [24] use simulations to try to distinguish the effects of clustering
and assortativity but look at directed graphs. Here, they find that clustering has little effect on epidemic
behaviour.

Melnik et al. [25] propose that the theory developed for epidemics on unclustered (tree-like) networks
applies with a high degree of accuracy to networks with clustering so long as the network has a
small-world property [12]. That is, if the mean length of the shortest path between vertices of the
clustered network is sufficiently small, quantities such as the probability of an outbreak on the network
can be estimated using known results that require only the degree distribution and degree correlations.
The theory is tested using simulations on various empirical networks from a wide range of domains and
synthetic networks simulated from theoretical models.

Taken together, these studies show that clustering can have significant effects on crucial properties of
epidemics on networks such as the probability, size and speed of an outbreak. These results primarily
relate to the final outcome and mean behaviour of epidemics. However, if we can obtain a transmission
tree for an outbreak then we have information from the start to the finish of a particular epidemic
including times of infection and who infected whom. Since epidemics are stochastic processes, data
from a particular epidemic may differ considerably from the predicted mean. Whether or not such data
contains information about clustering in the underlying network is the question we seek to address here.

We simulate epidemics over networks with fixed degree distributions and varying levels of clustering
and inspect various summary statistics of the resulting epidemic data, comparing the summaries for
epidemics run over networks with the same degree distribution but different levels of clustering. The
precise details of the simulations are described in Section 2. The results of the simulations, presented in
Section 3, show that there is likely little to no signal of clustering in a contact network to be found in a
single realisation of an epidemic process over that network.

We conclude that it is unlikely that clustering parameters can be inferred solely from epidemiological
data that relates to the transmission tree and suggest that further work in parameter estimation for contact
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networks would be best focused on other properties of contact networks such as degree distribution or
broader notions of population structure.

2. Methods

2.1. Simulating Networks and Measuring Clustering

We simulate multiple networks from two network models: a Bernoulli model [26] and a power-law
model [27]. Under the Bernoulli model (also called the Erdős-Rényi or binomial model), an edge
between nodes i and j is present with some fixed probability 0 ≤ p ≤ 1 and absent with probability
1 − p, independently of all other edges. Due to their simplicity, Bernoulli networks are well-studied
and commonly used in disease modeling but are not generally thought to be accurate models of social
systems. A Bernoulli network is trivial to construct by sampling first the total number of edges in
a the graph |Y | =

∑
i>j Yij ∼ Binomial(N(N − 1)/2, p), where N is the number of nodes in the

network, and then sampling |Y | edges uniformly at random without replacement. We set N = 500 and
p = 7/N = 0.014 in the simulations reported below.

A power-law network is defined as having a power-law degree distribution, that is, for nodes
i = 1, . . . , N , P (di = k) ∝ k−α for some α > 0. Power-law networks are commonly used to model
social interactions and various estimates of α in the range 1.5–2.5 have been claimed for observed social
networks. In the model used here, we set α = 1.8. We simulate power-law using a Reed-Molloy type
algorithm [28]. That is, the degree of each node, di, i = 1, . . . , N , is sampled from the appropriate
distribution. Node i is then assigned di “edge stubs” and pairs of stubs are sampled uniformly without
replacement to be joined and become edges. When all stubs have been paired, loops are removed and
multiple edges between the same nodes are collapsed to single edges. This last step of removing loops
and multiple edges causes the resulting graph to be only an approximation of a power law graph but
the approximation is good for even moderately large N . We set N = 600 and consider only the largest
connected component of the network in the simulation reported below.

The size of the networks considered here is smaller than some considered in simulation studies though
on a par with others (see, for example, [25] who looks a a wide range of network sizes). We choose these
network sizes partly for convenience and partly because the current computational methods for statistical
fitting of epidemic data to network models would struggle with networks much larger than a few hundred
nodes [6] so our interest is in networks around this size.

From each sampled network, Y , we generate two further networks, Y hi and Y lo that preserve the
degrees of all nodes in Y but have, respectively, high and low levels of clustering. We achieve this using
a Monte Carlo algorithm implemented in the ERGM package [29] in R [30] that randomly rewires
the input network while preserving the degree distribution. A similar algorithm is implemented in
Bansal et al. [31]. For details of the ERGM model and implementation of this algorithm, we refer
the reader the package manual [32] and note that the two commands used to simulate our networks are

y_hi = simulate(y ˜ gwesp(0.2,fixed=T), theta0 = 5,...

constraints = ˜ degreedist, burnin=5e+5)

and
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y_lo = simulate(y ˜ gwesp(0.2,fixed=T), theta0 = -5,...

constraints = ˜ degreedist, burnin=5e+5)

We measure clustering in the resulting networks using the clustering coefficient [12], defined as
follows. Let Ni = {j|Yij = 1} be the neighbourhood of vertex i and di = |Ni| be the degree of i.
Let ni =

∑
j<k∈Ni

Yjk be the number of edges between neighbours of i. Then, if di > 1, the local
clustering coefficient is Ci = 2ni/di(di − 1), which is the ratio of extant edges between neighbours of i
to possible edges. For di ∈ {0, 1}, let Ci = 0. The (global) clustering coefficient is the mean of the local
coefficients, C =

∑N
i=1Ci/N . The choice of Ci = 0 for di ∈ {0, 1} is somewhat arbitrary, though other

possible choices, such as Ci = 1 or excluding those statistics from the mean, give similar qualitative
results in our experiments.

2.2. Simulating Epidemics

Over each simulated network, we simulate a stochastic susceptible-exposed-infectious-removed
(SEIR) epidemic. All nodes are initially susceptible to the infection. The outbreak starts when a single
node is chosen uniformly at random and exposed to a disease. After a gamma-distributed waiting period
with mean kEθE and variance kEθ2E , the node becomes infectious. The infection may spread across the
edges of the network, from infectious nodes to susceptible nodes according to a Poisson process with rate
β. Infected nodes recover after an infectious period with a gamma distributed waiting time with mean
kIθI and variance kIθ2I . Once a node is recovered, it plays no further part in the spread of the infection.
The process stops when there are no longer any exposed or infectious nodes. For each pair, Y hi and Y lo,
we start the infection from the same node. We condition on the outbreak infecting at least 20 nodes. The
parameter values are set at β = 0.1, kE = kI = 1 and θE = θI = 3 in the simulations reported below.

2.3. Summarising Epidemic Data

A transmission tree encodes all information about the epidemic outbreak it describes. As such, it is
a very complicated object. To compare sets of transmission trees and decide whether there are some
systematic differences between them, we rely on various summary statistics derived from the trees and
compare the distribution of the summaries over the ensembles in question. The summaries we use can be
divided into two groups, those relating solely to the number of infected through time and those relating
to topology of the tree.

The first group of summaries can all be derived from the epidemic curves, that is, the number infected
as a function of time. From this, we derive scalar summaries being the total number of individuals
infected, the length of the epidemic (measured from the time of the first infection to the last recovery),
the maximum of the epidemic curve and the time of that maximum.

We label each individual in the population (equivalently, each node in the contact network) with labels
1, . . . , N . A transmission tree, a distinct graph from the contact network, has a time component and can
be defined as follows; an example of a transmission tree and the notation is given in Figure 2. There are
three types of nodes in a transmission tree (not to be confused with nodes in the contact network): the root
node corresponding to the initial infection, transmission or internal nodes corresponding to transmission
events, and leaf or external nodes corresponding to recovery events. Leaf nodes are defined by the time
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and label pair (ti, ui) where t ≥ 0 is the time of the recovery event and ui is the label of individual that
recovered. The internal nodes are associated with the triple (ti, ui, vi) being the time of the event, ti,
the label ui of the exposed individual and vi that is the transmitter or “parent” of the infection. The root
node is like an internal node but the infection parent is given as 0, so is denoted (t0, u0, 0). The branches
of the tree are times between infection, transmission and recovery events for a particular vertex. For
example, if the individual labelled u is infected at event (t1, u, v1), is involved in transmission events
(tk, vk, u), k = 2, . . . ,m − 1, and recovers at (tm, u) where ti < tj for i < j and {v1, . . . , um−1} are
other individuals in the population, there are m− 1 branches of the transmission tree at u defined by the
intervals (ti, ti+1], for i = 1, . . . ,m− 1.

Figure 2. An example of transmission tree showing the labelling scheme. Five individuals
are involved in the epidemic and are labelled 1, . . . , 5. The root node is labelled (0, 1, 0) to
signify that, at time t = 0, individual 1 was (spontaneously) infected. The internal nodes
represent transmission events via a triplet such as (1.3, 2, 1) showing that, at time t = 1.3,
individual 2 was infected by individual 1. The leaf nodes represent recovery times, for
example (3.1, 1) means that, at time t = 3.1, individual 1 recovered. Note that this tree has
one “cherry”, formed by the leaves labelled (5.2, 4) and (6.2, 5), out of a possible maximum
of two cherries.
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We summarise the transmission tree using the following statistics: the mean branch length between
internal nodes (corresponding to the mean time between secondary infections for each individual); the
mean branch length of those branches adjacent to a leaf node (which corresponds to the mean time
from the last secondary infection to removal for each individual); the number of secondary infections
caused by each infected individual (that is, for each infected individual v we count the number of internal
nodes that have the form (ti, ui, v), for some i); and, the distribution of infective descendants for each
individual, v, which is defined recursively as the sum of secondary infections caused by v and the
secondary infections caused by the secondary infections of v and so on. An equivalent definition is
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to say that number of infective descendants of v is the number of leaves that have a node of the form
(t, ui, v) as an ancestor. Finally, we consider the number of cherries in the tree [33] which is the number
of pairs of leaves that are adjacent to a common internal node. This simple statistic is chosen as it is easy
to compute and contains information about the topology or shape of the tree. To compare the number of
cherries in outbreaks of different size, we look at the ratio of extant cherries to the maximum possible
number of cherries for the given outbreak.

The experimental pipeline can thus be summarised as:

1. Repeat for i = 1, . . . , 500:

(a) Sample a graph Yi according to given degree distribution.

(b) Simulate two further graphs Y hi
i and Y lo

i with high clustering and low clustering, respectively,
using a Monte Carlo sampler that rewires Yi to alter the clustering level while preserving the
degree of each node.

(c) Simulate SEIR epidemics over Y hi
i and Y lo

i , conditioning on a major outbreak occurring
in each.

(d) Extract resulting transmission trees from Y hi
i and Y lo

i and calculate the respective summaries,
Shii and Sloi .

2. Compare sets of summaries, Shi and Slo.

3. Results

We report results here for SEIR epidemics run over Bernoulli and power-law networks. A number of
smaller trials that we do not report were run: with different values chosen for the network and epidemic
parameters; on networks with the same degree distributions as a random intersection graph; and, using
an SIR epidemic rather than an SEIR. The results for those smaller trials were qualitatively similar to the
results reported here.

The distributions of the measured clustering coefficients is shown in Figure 3 and show that the
simulated networks with high and low clustering for a given degree distribution are easily distinguished
from one another. The Bernoulli networks with low clustering contain no triangles, so the clustering
coefficient for each of these networks is zero, while for highly-clustered Bernoulli networks, clustering
coefficients are in the range (0.28,0.33). For the power-law networks, the low clustered networks have
clustering in the range (0.00,0.09) while the highly clustered networks have clustering in the range
(0.24,0.38).

Figures 4 and 5 show comparisons of summary statistics for networks with differing levels of
clustering and Bernoulli degree distributions. The summaries show some differences between the
outbreaks on the differently clustered networks. In particular, the outbreaks in the highly-clustered
networks spread more slowly, on average, leading to marginally longer epidemics with fewer individuals
infected at the peak of the outbreak, that occurs slightly later, than we see in outbreaks on the networks
with low clustering. These mean effects are in line with the predictions of [22]. The variances of the
measured statistics, however, are sufficiently large due to stochastic effects in the model that the ranges
of the distributions overlap almost completely in most cases. Statistics derived from the transmission
tree appear to add little information, with only the number of cherries differing in the mean.
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Figures 6 and 7 show the corresponding distributions for networks with power-law degree
distributions. Again, differences in the means between the two sets of statistics are apparent with
the mean length of epidemic, total number infected and number infected at peak all lower in the
epidemics on networks with high-clustering. The largest difference is found in the total number
infected, where in the low-clustered networks, the range of the statistic is (231, 445) while it is just
(211, 361) in the high-clustered networks. The primary cause here is due to the change in size of the
largest connected component of the network. If we adjust for this by looking instead at the proportion
of the giant component infected, the distributions again overlap almost completely with the range
for the proportion infected in the low-clustered networks being (0.39, 0.74) and (0.42, 0.74) for the
high-clustered networks.

Figure 3. Clustering coefficient for (left) Bernoulli networks and (right) power-law
networks.
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4. Discussion and conclusions

The results presented above suggest that the behaviour of an epidemic on a random network with a
given degree sequence is relatively unaffected by the level of clustering in the network. Some effect is
seen, but it is small relative to the random variation we see between epidemics on similarly clustered
networks. The results also suggest that the complete transmission tree from an epidemic provides little
information about clustering that is not present in the epidemic curve. These results do not imply that
clustering has little effect, rather they suggest as noted in [16], the apparently strong effect of clustering
observed by some is more likely to due to a change in the degree distribution—an effect we have nullified
by holding the degree sequence constant. These broader effects are probably best analysed on a grosser
level such as the household or subgroup level rather than at the individual level at which clustering
is measured.
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Figure 4. Empirical distributions of summary statistics for epidemics on Bernoulli networks.
(top left) Number of infected individuals through time with daily mean shown in black; (top
right) Length of epidemic; (centre left) Maximum number infected at peak of outbreak; and,
(bottom) Time of outbreak peak.
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Figure 5. Empirical distributions of summary statistics of transmission trees from epidemics
on Bernoulli networks. (top left) Mean internal branch length; (top right) Mean external
branch length; (middle left) Number of secondary infections by node; (middle right) Number
of total infections by node, vertical axis on log-scale; and, (bottom) Number of cherries in
tree as a proportion of possible cherries.
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Figure 6. Empirical distributions of summary statistics of epidemics on power-law networks.
(top left) Number of infected individuals through time with daily mean shown in black; (top
right) Length of epidemic; (centre left) Maximum number infected at peak of outbreak; and,
(bottom) Time of outbreak peak
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Figure 7. Empirical distributions of summary statistics of transmission trees from epidemics
on power-law networks. (top left) Mean internal branch length; (top right) Mean external
branch length; (middle left) Number of secondary infections by node; (middle right) Number
of total infections by node, vertical axis on log-scale; and, (bottom) Number of cherries in
tree as a proportion of possible cherries.
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Our simulation method, in which the degree sequence for each network is held constant while
clustering levels are adjusted, places significant restrictions on the space of possible graphs and therefore
clustering coefficients. The levels of clustering achieved in the simulations reported here (for example,
having a clustering coefficient in the low-clustered Bernoulli case of 0 versus a mean of 0.30 for the
high-clustered case) are not so high as those considered in the some of the simulations and theoretical
work described in Section 1, and this may partly account for the limited effect on epidemic outcomes
that we find here. There is little known about the levels of clustering found in real contact networks [31]
(though one recent detailed study [34] find values for clustering in a social contact network in the region
0.15–0.5) and no evidence to suggest that very extreme values of clustering are achieved for a given
degree sequence. It is plausible, however, that the degree sequence of a social network of interest could
be found—for example, via ego-centric or full-network sampling [34–36]—and therefore reasonable to
explore the achievable levels of clustering conditional on the degree sequence. In doing so, we separate
the effects on epidemic dynamics of change in the degree sequence of the contact network from those
of clustering.

From a statistical point of view, these results indicate that even with full data from a particular
epidemic outbreak, such as complete knowledge of the transmission tree, it is unlikely that the level
of clustering in the underlying contact network could be accurately inferred independently of the degree
distribution. This is primarily due to the large stochastic variation found from one epidemic to the next
that masks the relatively modest effects of clustering on an outbreak. With this much stochastic noise,
we suggest that it would require data from many outbreaks over the same network (that is, pathogens
with a similar mode of transmission spreading in the same population) to infer the clustering level of that
network with any accuracy. The results also suggest that attempting to estimate a clustering parameter
without either estimating or fixing the degree sequence, as in Goudie [37], may see the estimated
clustering parameter acting chiefly a proxy for the degree sequence.

It cannot be ruled out that a statistical method, which takes into account the complete data rather
than the summaries we use here, or which takes data from parts of the parameter space that we have not
touched on here, could find some signal of clustering from such data. In practise, however, it would be
highly unusual to have access to anything approaching complete data. A more realistic data set might
include times of onset and recovery from disease symptoms for some individuals in the population and
sequences taken from viral genetic material. The noise that characterises such data sets already makes
it difficult to accurately reconstruct the transmission tree; this extra uncertainty would likely make any
inference of a clustering parameter, in the absence of other information, very difficult.
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