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Abstract: The demand for natural fungicides to replace synthetic ones has surged since toxic residues
persist in soils, causing environmental contamination and posing a serious threat to worldwide
public health. In the context of crop protection and enhancing the efficiency and safety of fungicides,
nanotechnology is an eco-friendly strategy in managing fungal pathogens. In the present study,
essential oils were isolated from the peels of four citrus fruits (Citrus lemon, Citrus aurantifolia, Citrus
maxima, and Citrus sinensis) and were investigated using gas chromatography-mass spectrometric
analysis. Monoterpene hydrocarbon was the most predominant group and limonene was the most
abundant in the four oils. The antifungal potential of the oils was investigated, and the most active oil
(Citrus lemon) was loaded into hexosomal dispersion, and its antifungal potential was retested against
the same fungi. The structurally unique nano-based formulation showed great potency for fungal
control. To the best of our knowledge, it is the first time the oil of Citrus lemon in nano-hexosomes
has been formulated and its fungicidal activity examined. The data collected suggest that citrus
essential oils (CEOs), especially when nano-formulated, could be successfully used in integrated
fungus management programs.

Keywords: fungicides; citrus; essential oil; nanotechnology; hexosomes; environmental contamination

1. Introduction

Fungal plant pathogens play a crucial role in plant production [1]. These pathogens
can significantly reduce the productivity and quality of field crops and this is becoming
a more pressing concern for human health and the global economy and costs billions of
dollars annually [1,2].

Agricultural crops are exposed to more than 10,000 pathogenic fungi that are known
to cause important plant diseases [3], resulting in a significant loss in agricultural crops
and reduction of world food production. Farmers generally rely on the use of synthetic
fungicides to control plant diseases caused by pathogenic fungi; however, misuse of these
fungicides can cause serious health and environmental problems [3].
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One of the most important fruit crops in the world is citrus [4]. Citrus is grown in
over 100 nations throughout the world, primarily in tropical and subtropical regions. As a
byproduct of citrus fruit processing, a vast quantity of residual peels is generated, which
add no value to the product even though they are discarded or dumped, presenting an en-
vironmental problem [5]. Citrus peels have received much attention for their potential use
as value-added products because they contain numerous biologically active compounds,
including natural antioxidants and essential oils [6,7].

Citrus essential oils (CEOs) have been utilized for therapeutic and health purposes in
numerous cultures since ancient times for antibacterial, antiviral, antifungal, anticarcino-
genic, antimutagenic, anti-inflammatory, and antioxidant properties [8]. The numerous
health benefits linked to the use of CEO have been well-documented. In addition to
medicinal and health applications, CEO is increasingly being used in the food sector, food
packaging, and agriculture. Synthetic chemical compounds that are more hazardous or
to which pests, bacteria, or fungi have proven resistance are being replaced with essential
oils [9]. Essential oils have been shown to be more effective than chemical preservatives
in reducing pathogen growth and delaying food spoiling in several studies. Citrus tri-
foliata L. essential oil’s insecticidal and fungicidal activities against Spodoptera littoralis,
Fusarium oxysporum, and Fusarium solani are examples of citrus essential oils’ potential
activity [10,11]. Furthermore, they are free of the negative health hazards connected with
synthetic pesticides and fungicides.

Despite their promising features, essential oil-based insecticides have significant
limitations linked to their chemical nature (e.g., volatility, poor water solubility, and envi-
ronmental degradation) [12], which can limit their application. Because of the small size of
the particles, encapsulating essential oils inside nanoparticles could alleviate these issues
by further enhancing efficacy [11,13]. Essential oils as well as the other botanical products
have become a prevalent option for searching new fungicidal agents to be incorporated into
the fungus management programs. Nanoencapsulation of fungicidal essential oils would
optimize the fungus control system through the effective protection of active ingredients,
reducing the need for high doses, the toxicity, and offering protection against environmen-
tal degradation and loss. Nanoencapsulation offers significant potential for increasing
agricultural productivity while reducing environmental and human health impacts [14,15].

Herein, the fungicidal activity of the essential oil obtained from the peels of Citrus
lemon, Citrus aurantifolia, Citrus maxima, and Citrus sinensis were assessed against seven
pathogenic fungi that have been reported as pathogenic to humans too [16–19], namely
Rhizoctonia solani, Sclerotium rolfsii, Fusarium solani, Fusarium oxysporum, Fusarium semtectium,
Botrytis cinerea, and Alternaria alternata. In the presented study, a nano-based valorization
approach is reported to establish a novel hexosomal system containing the most active
essential oil, allowing for an enhancement of the efficiency of natural fungicides, reducing
costs and increasing competitiveness.

2. Results and Discussion
2.1. Chemical Composition of Different Citrus Peels’ Essential Oils

The results obtained by GC-MS analysis of C. lemon, C. aurantifolia, C. maxima, and C.
sinensis peel essential oils are presented in Table 1. Twenty-four compounds were identified,
constituting 97.66%, 94.93%, 99.99%, and 99.93% of the citrus peels essential oils under
investigation, respectively. Analysis of C. maxima and C. sinensis oil revealed that most of
the compounds were monoterpenes, where limonene represented the major one, with the
percentages (97.51% and 96.71%) in agreement with previously published data [11,20]. C.
lemon and C. aurantifolia essential oils’ composition showed that the percentage of monoter-
penes is 64.13% and 80.34%, respectively. The oxygenated hydrocarbon composition is
higher in C. lemon and C. aurantifolia, with percentages of 33.53% and 14.59%, respectively.
High concentrations of oxygenated hydrocarbons in C. lemon and C. aurantifolia could be
attributed to the strong antifungal activities of these oils [21]. They could synergistically
increase the effect of limonene and other monoterpene hydrocarbons [22].
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Table 1. Essential oil composition of C. lemon, C. aurantifolia, C. maxima, and C. sinensis.

No. RT RI Identified Compounds
Area Percentage

C. lemon C. aurantifolia C. maxima C. sinensis

1 7.344 948 α-Pinene 0.83 0.72 0.43 0.29
2 7.772 955 Camphene 0.23 – – –
3 8.643 982 β-Pinene 11.15 7.63 0.49 –
4 9.086 991 β-Myrcene 0.87 0.79 1.24 1.05
5 10.126 998 p-Cymene 1.14 0.88 – –
6 10.360 1018 D-Limonene 44.36 61.89 97.51 96.71
7 11.189 1063 γ-Terpinene 2.91 7.50 – –
8 12.098 1079 α-terpinolene 1.53 0.93 – –
9 12.471 1082 Linalool 1.69 2.14 0.09 1.53
10 12.615 1097 Nonanal 0.17 – – –
11 12.905 1098 Fenchol 0.39 0.14 – –
12 13.856 1121 Camphor – – – 0.24
13 14.579 1125 p-Mentha-1,5-dien-8-ol 1.02 0.33 – –
14 14.878 1137 Terpinen-4-ol 2.79 2.03 – –
15 15.307 1143 α-Terpineol 9.95 6.43 0.23 0.11
16 16.793 1174 β-Citral 13.51 2.52 – –
17 16.904 1190 Carvone 3.53 0.68 – –
18 17.198 1228 cis-Geraniol 0.48 – – –
19 17.815 1268 Perillaldehyde – 0.32 – –
20 20.895 1339 β-Bourbonene 0.13 – – –
21 21.845 1410 Caryophyllene 0.13 – – –
22 23.475 1515 Germacrene D 0.1 – – –
23 24.115 1518 cis-α-Bisabolene 0.64 – – –
24 25.439 1603 Germacrene B 0.11 – – –

Percentage of identified constituents 97.66 94.93 99.99 99.93
Percentage of identified hydrocarbons 64.13 80.34 99.67 98.05

Percentage of oxygenated hydrocarbons 33.53 14.59 0.324 1.88

2.2. Preparation and Characterization of Nano-Hexosomal Dispersions

The hexosomal system with its unique architecture is a promising nanoplatform that
is capable of being loaded with hydrophobic and hydrophilic active molecules. In the
current study, the hexosomal system was successfully prepared by the hot emulsification
method. The melted lipids (glyceryl monooleate (GMO)/oleic acid together with volatile
oil) were emulsified into an aqueous phase containing a stabilizer (Pluronic F127) at 70 ◦C.
The presence of oleic acids changes the GMO effective packing parameter that induces the
phase transition from the cubic phase (cubosomes) to the hexagonal phase (hexosomes).
The prepared volatile oil-loaded hexosomal system showed a particle size (PS) in the nano-
range (210.35 ± 3.18 nm) and acceptable polydispersity index (PDI) values (0.31 ± 0.0.6).
Moreover, the prepared system demonstrated a negative and zeta potential (ZP) value
(−16 ± 0.84 mV), as shown in Figure 1. This negative surface charge is probably attributed
to the presence of a carboxylic end group in the fatty acid, oleic acid [23]. A representative
transmission electron microscope (TEM) of the volatile oil-loaded hexosomal system is
illustrated in Figure 2, where nearly hexagonal nonaggregated particles were observed.

2.3. Antifungal Activity of Different Citrus Oil and Nano-Hexosomal Formula of the Most
Active One

Different citrus peel essential oils (C. lemon, C. aurantifolia, C. maxima, and C. sinensis)
were assessed against different phytopathogenic fungi (Rhizoctonia solani, Sclerotium rolfsii,
Fusarium solani, Fusarium oxysporum, Fusarium semtectium, Botrytis cinerea, and Alternaria
alternata). All tested CEOs exerted strong antifungal activity in a dose-dependent manner
where percentage inhibition increased with higher doses, as illustrated in Figure 3. C. lemon
and C. aurantifolia essential oils with a concentration of 100 µL/mL showed complete
inhibition of S. rolfsii, F. solani, and F. oxysporum mycelium growth, as shown in Figure 3.
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The lowest IC50 was recorded with F. oxysporum (36.92, 41.72), S. rolfsii (37.59, 45.60),
and F. solani (42.17, 50.79 µL/mL) in case of C. lemon and C. aurantifolia, respectively. On
the other hand, B. cinerea was more tolerant to C. lemon with a high IC50 (78.60 µL/mL)
compared to the other fungi. From the above results, it is evident that C. lemon and
C. aurantifolia exert potent fungi toxic effects.
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The results in Table 2 and Figure 3 indicate that the treatment with C. maxima and
C. sinensis reduced the linear growth of all tested phytopathogenic fungi at concentrations
of 100, 200, 300, and 400 µL/mL. They exerted complete inhibition of mycelium growth
for S. rolfsii, R. solani, and F. oxysporum with a concentration of 400 µL/mL, as represented
in Figure 3. R. solani was more resistant to C. maxima and C. sinensis, the IC50 of which
was the lowest concentrations (191.1 and 180 µL/mL), respectively, compared to the other
fungi. On the other hand, F. solani was more tolerant to C. maxima and C. sinensis, the IC50
of which was highest concentrations (395.9 and 457.9 µL/mL), respectively, compared to
the other fungi. Their potent antifungal activity could be related to the high concentration
of monoterpenes, especially limonene [20,24]. CEOs showed a strong fungi toxic effect
through damage and loss of integrity, the rigidity of the cell wall and retraction of cytoplasm
in the hyphae, and finally, death of the mycelium as reported in previous studies [25,26].
C. lemon essential oil is the only one that inhibited the mycelial growth of Alternaria
alternata, with IC50 of 229.1 µL/mL. C. lemon essential oil is the most active oil with a
high concentration of oxygenated compounds that could synergize the antifungal effect
of monoterpene hydrocarbons [27]. The nano-hexosomal formula was prepared from
the most active one (C. lemon essential oil), to boost its antifungal activity and allow the
production of a natural potent pesticide drug against dangerous phytopathogenic fungi
that affect many commercial crops and plants.
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Table 2. IC50 of Citrus essential oils and hexosomal dispersion of C. lemon against different phytopathogenic fungi.

Plant Oil
IC50 (µL/mL)

Rhizoctonia
solani

Sclerotium
rolfsii

Fusarium
solani

Fusarium
oxysporum

Fusarium
semtectium

Botrytis
cinerea

Alternarai
alternata

Citrus lemon 45.29 37.59 42.17 36.92 55.92 78.60 229.10
Citrus aurantifolia 66.52 45.60 50.79 41.72 70.03 53.56 0

Citrus maxima 191.10 159.00 395.90 232.70 290.70 294.80 0
Citrus sinensis 180.50 217.40 457.90 216.20 236.70 351.40 0
Citrus lemon

nano-hexoosome 416.00 324.90 193.70 124.30 534.00 549.40 95.54

The treatment potato dextrose agar (PDA) medium with nano-hexosomes of C. lemon
essential oil at different concentrations showed a potent antifungal effect against different
phytopathogenic fungi under investigation, as illustrated in Figure 4. It was the most
effective in inhibiting the mycelial growth of F. solani, which reached 100% inhibition at
600 µL/mL, while at 800 µL/mL, it completely inhibited the mycelial growth in the case
of S. rolfsii, F. oxysporum, and A. alternata. Nano-hexosomes have a moderate effect on R.
solani, B. cinerea, and F. semitectium, with IC50 of 416, 549.4, and 534 µL/mL, respectively.
Nano-hexosomes of C. lemon essential oil showed potent activity against A. alternata, with
IC50 of 95.54 µL/mL. Although CEOs did not inhibit A. alternata growth, only C. lemon
weakly inhibited it, as shown in Figure 5. The current study proved that nano-hexosomes
are among the most cost-effective drug-loaded lipid-based system that delivers essential
oils in their bioactive form. CEO represent only 10% of the nano-hexosomes formula, so a
low amount of oil is needed; thus, it is commercially useful to use this formula instead of
chemical pesticides that show toxicity and harm to humans. Essential oils are composed
of volatile constituents and undergo enzymatic reactions that decrease their activity and
limit essential oil use [28]. Encapsulation of essential oil in a drug delivery system via
nanotechnology overcomes the previously mentioned problems and improve its stability,
bioavailability, and biological activities [11,28]. So, the CEOs nanohexosomes in our study
potentiate the antifungal activity of the oil.
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3. Materials and Methods
3.1. Materials

Fruits of Citrus lemon, Citrus aurantifolia, Citrus maxima, and Citrus sinensis were
collected from Horticulture Research Institute, Giza, Egypt. The plant’s authenticity was
generously validated by Mrs. Therese Labib, Botanical Specialist and consultant at Orman
and Qubba Botanical Gardens, Giza, Egypt. Glyceryl monooleate (GMO), oleic acid, and
Pluronic F127 (MW: 12,600 Da) were purchased from Sigma- Aldrich.

3.2. Methods

Preparation of the essential oil from fruits.
Peels of the fruits were washed, dried, and powdered mechanically. Their essential

oils were extracted by hydro-distillation in a Clevenger’s apparatus for 5 h according to
the procedure described in the Egyptian Pharmacopeia [29]. The essential oils were dried
with anhydrous sodium sulphate and stored in amber glass vials at 4 ◦C for use in further
chemical and biological studies.

3.2.1. GC-MS Analysis and Quantification

Mass spectra were recorded using Shimadzu GCMS-QP2010 (Tokyo, Japan) equipped
with a Rtx-5MS fused bonded column (30 m × 0.25 mm i.d. × 0.25 µm film thickness)
(Restek, Bellefonte, PA, USA) equipped with a split–splitless injector. The capillary column
was coupled to a quadrupole mass spectrometer (SSQ 7000; Thermo-Finnigan, Bremen,
Germany). The initial column temperature was held at 45 ◦C for 2 min (isothermal)
and programmed to 300 ◦C at a rate of 5 ◦C/min and kept constant at 300 ◦C for 5 min
(isothermal). The injector temperature was 250 ◦C. The helium carrier gas flow rate was
1.41 mL/min. All the mass spectra were recorded applying the following conditions:
(equipment current) filament emission current, 60 mA; ionization voltage, 70 eV; ion source,
200 ◦C. Diluted samples (1% v/v) were injected with split mode (split ratio 1: 15). The
sample (1 µL) was injected automatically into the chromatograph using an AOC-20i auto-
sampler. Volatile components were deconvoluted using AMDIS software (www.amdis.net)
and identified by its mass spectrum matching to the database and with authentic standards
(when available) [30].

3.2.2. Preparation of Hexosomal Dispersion

Hexosomal dispersions loaded with volatile oils were prepared using a hot emulsifica-
tion method as described by Abdel-Bar et al. [31], with slight modifications. In brief, GMO
(1 g), oleic acid (0.5 g), and volatile oil (1 g) were weighed accurately in a glass vial and
allowed to melt at 70 ◦C. Pluronic F127 (0.5 g) was dissolved in deionized water (7 g) at the
same temperature. The molten lipid phase was slowly added into the aqueous phase and
homogenized for 5 min at 70 ◦C. The final milky dispersion was allowed to cool gradually

www.amdis.net
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to room temperature. It was kept in glass vials at 2–8 ◦C for further studies. The final
concentrations of the hexosomes’ components (GMO, oleic acid, volatile oil and Pluronic
F127, and deionized water) were 10, 5, 10, 5, and 70% w/w, respectively.

3.2.3. Measurement of Particle Size, Polydispersity Index, and Zeta Potential

The average particle size (PS) and size distribution expressed as the polydispersity in-
dex (PDI) were estimated by dynamic light scattering (DLS) at 25 ◦C using a Zetasizer Nano
ZS (Malvern Instruments, Malvern, UK) [32,33]. The zeta potential (ZP) was determined
by the same instrument [34,35]. Prior to performing the determinations, all dispersions
were appropriately diluted (100 times) using distilled water. Triplicate measurements were
always obtained for each determined response [36,37].

3.2.4. Transmission Electron Microscopy (TEM)

The morphology of the volatile oil-loaded hexosomal system was envisioned via TEM
(Joel JEM 1230, Tokyo, Japan). A copper grid was loaded with the diluted dispersion, which
was subjected to negative staining with aqueous solution of phosphotungstic acid (2% w/v)
for a duration of 5 min. Drying of the grid at ambient temperature for 10 min was then
followed prior to visualization under a transmission electron microscope [35].

3.2.5. Fungal Strains

Cultures of plant pathogenic fungi (Rhizoctonia solani, Sclerotium rolfsii, Fusarium solani,
Fusarium oxysporum, Fusarium semtectium, Botrytis cinerea, and Alternaria alternata) were
provided by fungicide, Bactericide and Nematicide Department, Central Agricultural
Pesticide Laboratory (CAPL). Each fungus was maintained on potato dextrose agar (PDA)
and stored at 5 ◦C for further studies.

3.2.6. Antifungal Assay

The antifungal activity of CEOs and hexosomal dispersion of C. lemon was determined
by the food poisoned technique [38,39]. Different concentrations of CEOs (µL/mL) were
mixed with 50 mL of sterilized PDA medium and transferred equally into three petri dishes.
The media was allowed to solidify. Then, a seven-day-old fungal culture disk with a 6
mm diameter was taken and inoculated to the center of the petri dishes containing plant
extracts. PDA medium without plant extract served as a control. All dishes were incubated
at 27 ± 2 ◦C and the radial growth of colonies was measured when the mycelia of the
control had almost filled the petri dishes. Each test was performed in triplicate.

The fungal growth inhibition was calculated according to the treatment against the
control using the following formula [40]:

% inhibition = C − T/C × 100 (1)

where C is the average of three replicates of hyphal extension (mm) of the control and T is
the average of three replicates of hyphal extension (mm) of plates treated with the tested
material.

IC50 was calculated as the concentration of the tested compound that decreases the
mycelial growth by half between the base and the maximum.

3.2.7. Statistical Data Interpretation

Data analysis and graphs were made using the GraphPad Prism Version 9 program.
The data are expressed as an arithmetic mean, standard deviation, and 95% confidence
interval for the IC50 parameter. P values less than or equal to 0.05 were considered
statistically significant.

4. Conclusions

Results of the antifungal screening in this study support the recommendation of
authors to use CEOs obtained from the peels of C. lemon, C. aurantifolia, C. maxima, and
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C. sinensis as a first defense line against a wide spectrum of phytopathogenic fungi. The
antifungal potential of C. lemon and C. aurantifolia could be attributed to the synergetic
effect of their oxygenated hydrocarbons together with the limonene content. CEOs as
natural fungicides are considered valuable sources for fungal control without the toxicity
and the health hazards connected with synthetic fungicides. Besides, their use in crop
management protocols aids in managing the residual peels generated during citrus fruit
processing, which solves an environmental problem and compensates for economic losses.
The introduction of the most active essential oil (C. lemon) into a hexosomal dispersion was
performed to create a potential nano-fungicide against plant fungal pathogens. The nano-
hexosomes of C. lemon essential oil exhibited powerful fungicidal activity that exceeded
the oil itself specially against A. alternata. The presented results indicate that the nano-
hexosomal dispersion helped to boost the antifungal properties of the oil and can be used
as a natural nano-fungicide in plant pathogen control. Concisely, it is considered a potential
carrier for enhancing the fungicidal activity of CEOs and can be used in integrated fungus
management programs.
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