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Pancreatic adenocarcinoma (PAAD) is a pancreatic disease with considerable mortality

worldwide. Because of a lack of obvious symptoms at the early stage, most PAAD

patients are diagnosed at the terminal stage and prognosis is usually poor. In this

study, we firstly obtained RNA sequencing data of 181 patients with PAAD from The

Cancer Genome Atlas (TCGA) database to identify early diagnostic biomarkers for

PAAD. Survival-related mRNAs were identified using a weighted gene co-expression

network analysis (WGCNA), and then a linear prognostic model of seven long non-coding

RNAs (lncRNAs) was established using univariate and multivariate Cox proportional

hazards regression analyses, which is verified using a time-dependent receiver operating

characteristic (ROC) curve analysis. Finally, according to the survival analysis, we

constructed a survival-related competing endogenous RNA (ceRNA) network. Our results

showed that: (1) The upregulated genes related to cell cycle-related pathway (including

homologous recombination, DNA replication and mismatch repair) in PAAD can increase

the proliferation ability of cancer cells; (2) The 7-lncRNA signature can predict the overall

survival (OS) of PAAD patients; and (3) The key mRNAs and lncRNAs are involved in

mutual regulation in the ceRNA network.

Keywords: the cancer genome atlas, pancreatic adenocarcinoma, weighted gene co-expression network analysis,

prognostic signature, competing endogenous RNA network

INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is a serious pancreatic disease, pancreatic ductal
adenocarcinoma (PDAC) accounts for >90% of all pancreatic cancer (Kleeff et al., 2016).
Although the incidence of PAAD is very low, it is still the fourth leading cause of cancer-related
death in the United States, and it is expected to become the second leading cause by 2030. The
overall 5-year survival rate is about 5–7%, and the average survival time is about 6 months (Rahib
et al., 2014; Siegel et al., 2018; Orth et al., 2019). There is no reliable method for screening for
and early detection of PAAD, so most patients are diagnosed at an advanced stage of the disease
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(Tesfaye et al., 2018). PAAD has very few common genetic
mutations and no clearly clinically relevant biomarkers. In
this respect, the study on PAAD lags far behind other solid
tumors (Gallego et al., 2017; Gallmeier and Gress, 2018). The
most commonly mutated genes are KRAS (GTPase) and cyclin-
dependent kinase inhibitor 2A (CDKN2A) (Caldas and Kern,
1995; Dunne and Hezel, 2015) that related to PAAD. Because
of the genetic heterogeneity of pancreatic cancer, the intricate
stromal microenvironment, and the complex interplay with the
immune system, the disease is difficult to investigate (Krempley
and Yu, 2017). To reduce mortality and improve the detection
and risk classification of PAAD, early diagnostic biomarkers
(Le et al., 2016) and therapeutic targets urgently need to
be determined.

Long non-coding RNAs (lncRNAs) are generally defined
as RNA transcripts >200 nucleotides that do not encode a
polypeptide (Jathar et al., 2017), which are located in the
nucleus and cytoplasm of eukaryotic cells. A large number of
experimental studies have shown that some lncRNAs play an
important role in the occurrence and development of malignant
tumors (Yan et al., 2015; Fu et al., 2016; Li et al., 2016).
MicroRNAs (miRNAs) are a kind of small RNA that play a
role in gene silencing and translation inhibition by binding to
target mRNAs (Ambros, 2004). The regulatory network between
miRNAs and target genes is very complex, and the network can
regulate most physiological activities, including tumorigenesis,
metastasis and metabolism (Di Leva et al., 2014; Rupaimoole and
Slack, 2017; Alamoudi et al., 2018). In recent years, a competing
endogenous RNA (ceRNA) hypothesis has been proposed and
developed to explain the relationships between coding genes
(encoding mRNAs) and non-coding genes (encoding miRNAs,
lncRNAs, circRNAs, etc.) in cells and regulation of mRNA
expression. Some miRNAs can recognize and bind to microRNA
response elements (MREs) in mRNAs, lncRNAs and circRNAs.
Through MREs, lncRNAs act as miRNA “sponges,” leading to
changes in the levels of mRNAs regulated by miRNAs (Salmena
et al., 2011; Tay et al., 2014). Several studies have confirmed
that the lncRNA-miRNA-mRNA ceRNA network is related to
the development of many cancers (Karreth and Pandolfi, 2013;
Zhou et al., 2014; Qi et al., 2015; Fang et al., 2018; Gong et al.,
2019). There are similar studies in pancreatic cancer. AFAP1-
AS1 promotes the growth and invasion of pancreatic cancer by
upregulating the IGF1R oncogene through sequestration of miR-
133a (Chen et al., 2018a). And lnc-Sox2ot promotes EMT and
stemness by acting as a ceRNA in PDAC (Li et al., 2018b). These
lncRNAs can also be regarded as biomarker candidates. These
studies show that these lncRNAs can regulate the development
of pancreatic cancer by acting as a ceRNA. Through ceRNA,
we can find more biomarker candidates. However, the study on
PAAD are very limited, and there is still a lack of comprehensive
analysis of lncRNAs and miRNAs related to PAAD based on
high-throughput sequencing and large-scale samples.

In this study, the RNA sequencing data of 181 patients
with PAAD from the TCGA database were used to identify
survival-relatedmRNAs by weighted gene co-expression network
analysis (WGCNA) (Langfelder and Horvath, 2008), and a
7-lncRNAs linear prognostic signature was then established

using univariate and multivariate Cox proportional hazards
regression analyses and verified using a time-dependent receiver
operating characteristic (ROC) curve analysis. At last, according
to the survival analysis, we constructed a survival-related
ceRNA network.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
RNA expression data and clinical information of PAAD patients
were obtained from the TCGA database (https://portal.gdc.
cancer.gov/). The RNA data of the 181 samples involved
both Illumina HiSeq RNA-seq and miRNA-seq data. Among
them, 150 cases of ductal and lobular neoplasms and 27
cases of adenoma and adenocarcinomas were included, and
4 cases of paracancerous samples were used as controls, and
we deleted one sample without miRNA data. The clinical
data used in the analyses included gender, survival status,
cancer status, age (>60/≤60), grade, stage and tumor, node,
metastasis (TNM) stage. All data can be downloaded free
of charge. The mRNAs and lncRNAs were identified using
GENCODE (https://www.gencodegenes.org/), and the mRNAs
and lncRNAs not included in the database were removed.
Eventually, 19600 mRNAs and 15129 lncRNAs were obtained for
the subsequent analyses. The raw counts for differential analysis
and the GdcVoomNormalization function of GDCRNATools
(Li et al., 2018a) was used to normalize the data for WGCNA
and prognostic model analysis. The raw count data were
normalized using the trimmed mean of M-values (TMM)
method implemented in “edgeR” (Robinson et al., 2010) and
then transformed using voom in limma for subsequent analysis
(Law et al., 2014). GSE62452 is obtained from GEO database
(Yang et al., 2016). We downloaded the expression matrix that
the author has processed, and this data set contains 65 cases
with complete clinical information. We download PACA-AU
data set from ICGC database (https://icgc.org/), which include 91
samples with complete clinical information.

Analysis of Differentially Expressed
mRNAs, miRNAs, and lncRNAs (DEmRNAs,
DEmiRNAs and DElncRNAs)
R package “edgeR” was applied to analyze the difference between
177 cancer samples and 4 paracancerous samples. Because of
the limitation of paracancerous samples, we used “upSample”
and “SMOTE” in “caret” package to resample the samples and
get the intersection of all results. The differentially expressed
genes (DEGs) in the data set with |log2 (fold change)|≥1 and
adjusted P≤ 0.05 were selected for the subsequent analyses. 1152
DEmRNAs, 60 DEmiRNAs and 97 DElncRNAs were identified.

Construction of Weighted Gene
Co-expression Network of DEmRNAs
We conducted a weighted gene co-expression network analysis
(WGCNA) to analyze the interaction between genes, which
can describe the patterns of the gene expression profiles.
WGCNA was used to evaluate the correlations between the
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1152 DEmRNAs and patients’ clinical information. The pairwise
Pearson correlation was applied to evaluate the weighted co-
expression relationship among all the data set subjects in the
adjacency matrix. Average linkage hierarchical clustering was
used to check whether there are outliers in 177 samples.
We calculated the dissimilarity for samples dendrogram and
removed some outliers. Parameter β could emphasize strong
correlations between genes and penalize weak correlations. The
mean connectivity and scale independence of network modules
were analyzed using the gradient test under different power
values, which ranged from 1 to 20. According to the scale-free
topology criterion, select a soft threshold power (β) that can
make the correlation of nodes in the co-expression networks
get 0.9. The green module in the WGCNA analysis was related
to the PAAD OS. Using the STRING database (https://string-
db.org/) for a protein–protein interaction (PPI) analysis. After
the weighted correlations were determined, the characteristics of
the network were displayed using Cytoscape 3.7.1 (http://www.
cytoscape.org/). Using the DiseaseMeth2.0 (http://bio-bigdata.
hrbmu.edu.cn/diseasemeth/) for methylation analysis. T-test was
used to analyze the methylation level of gene promoter regions
(2kb upstream of TSS to 0.5 kb downstream) in cancer tissues
and paracancerous tissues. Absolute Methylation Difference >

0.2 was considered as differential expression. The function of the
green module genes was annotated using the “clusterProfiler”
package of Bioconductor (Yu et al., 2012). Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Set Enrichment Analysis (GSEA) enrichment. GSEA
is a statistical method to assess whether a priori defined set
of ordered genes shows statistically significant, concordant
differences between two different biological statuses (Damian
and Gorfine, 2004). For each marker gene, we divided the
TCGA data set into two groups according to the median of
expression level. According to the differential analysis of high
and low expression groups, we sorted the DEGs according to
logFC, then constructed the ordered gene set and enriched with
GSEA. The results were sequenced according to P-value. The
result was based on the threshold of P < 0.05 and enrichment
score >1.0.

Construction of lncRNA Prognostic
Signature for Predicting PAAD OS
The TCGA data set was divided into a training set (105) and a test
set (72). In the training set, univariate Cox proportional hazards
regression was carried out using the DElncRNAs, and those
with P < 0.05 were selected for further analysis. A model was
then selected step by step using the Akaike information criterion
(AIC) to avoid overfitting; multivariate Cox proportional hazards
regression analysis was performed to generate the lncRNA-based
prognostic signature and we consider genes with P < 0.05 as
independent prognostic indicators. After training and getting, the
model is evaluated by leave-one-out-bootstrap cross validation
(CV) in package “riskRegression” and “pec.” Then we use least
absolute shrinkage and selection operator (Lasso) regression in
R packages “glmnet” to verify the results (family=“cox”, maxit
= 1000, nfolds = 5). The model calculated the Risk Score (RS)

as follows:

RS=

n
∑

i=1

(

β · expr_leveli
)

Where expr_level is the lncRNA expression and β represents
the regression coefficients of lncRNAs in the multivariate Cox
proportional hazards regression analysis. Patients were divided
into high- and low-risk groups according to the median
prognostic score. A receiver operating characteristic (ROC)
curve analysis was then used to evaluate the performance of
the prognostic signature. To further examine the relationship
between lncRNAs and OS, we divided the TCGA data into a
training set (75%) and a test set (25%) We trained three machine
learningmodels (XGBoost [XGB], linear support-vectormachine
[SVM] and Random Forest [RF]) with 5-folds cross validation.
Then, we used a ROC curve analysis to assess the performance of
these classification methods.

Construction of ceRNA Network
GDCRNATools was used to construct the ceRNA network of
the three kinds of RNA. Based on the spongescan algorithm, the
correlations among the expression levels of mRNAs,miRNAs and
lncRNAs were explored further using five databases: TargetScan
(Fromm et al., 2015), miRcode (Jeggari et al., 2012), miRTarBase
(Chou et al., 2016), starBase (Li et al., 2014) and miRWalk (Sticht
et al., 2018). A mRNA was considered to be a true miRNA target
if the interaction was supported in TargetScan, miRTarBase,
starBase and miRWalk, and an lncRNA was considered to be a
true miRNA target if the interaction was supported in miRcode.

Survival Analysis of PAAD
The prognosis model was constructed by Cox regression in
package “survival,” and the result was verified by Lasso-Cox
regression in package “glmnet.” To further evaluate whether a
gene is related to the PAADOS, the patient samples were divided
into high-expression and low-expression groups based on the
median gene expression. We used the R package “survival” and
“pec” for survival analysis. Then we use “survminer” to generate
Kaplan–Meier curves. Several methods (log-rank, Wilcoxon,
Fleming-Harrington, Tharone-Ware and Peto-Peto) was used to
compare survival time between the two groups, and P < 0.05 was
considered to be statistically significant.

RESULTS

DEmRNAs, DEmiRNAs and DElncRNAs in
PAAD
The RNA data of 181 PAAD patients, involving 177 cancer
samples and 4 paracancerous samples, were obtained from
the TCGA database. In order to prevent the error caused by
limitation of paracancerous samples, we resample the data for
differential analysis between cancer tissues and paracancerous
tissues. Genes with |log (fold change)| ≥ 1 and P ≤ 0.05 were
defined as DEGs. According to this standard, we obtained 1152
DEmRNAs, comprising 611 (53.03%) upregulated genes and
541 (46.97%) downregulated genes; 60 DEmiRNAs, comprising
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FIGURE 1 | Description of DEmRNAs, DEmiRNAs, and DElncRNAs. (A) Volcano plot showing DEmRNAs (green), DEmiRNAs (yellow), and DElncRNAs (red), The X

axis represents logFC, the Y axis represents log10 (P value). Genes with |logFC| ≥ 1 and P ≤ 0.05 were defined as DEGs. Heatmap showing the normalized

expression of (B) DEmRNAs, (C) DEmiRNAs and (D) DElncRNAs. T indicates cancer tissue, N indicates paracancerous tissue.

36 (60%) upregulated genes and 24 (40%) downregulated
genes; and 97 DElncRNAs, comprising 59 (60.82%) upregulated
genes and 38 (39.18%) downregulated genes (Figure 1). The
complete differentially expressed RNA data are shown in
Supplementary Table S1.

Key Modules Related to PAAD OS
After obtaining the 1152 DEmRNAs, we used WGCNA to
analyze the correlation between gene and clinical information.
Hierarchical clustering was performed before analysis. We
found that some samples have abnormal clustering results. We
calculated the dissimilarity of samples, and found that the
samples were divided into two groups (160 vs. 18 samples)
near the cut-off value of 80. Some of them were far away

from other samples. We considered these 18 samples as outliers
and deleted them, and the remaining 160 PAAD samples were
used for the subsequent analyses. The soft threshold power
(β) of 5 was selected according to the scale-free topology
criterion. After choosing the appropriate β (β = 5) to classify
genes with similar expression profiles into gene modules, the
average linkage hierarchical clustering was conducted according
to the topological overlap matrix (TOM) based on dissimilarity
measurement, and divide each module into different colors
(Figure 2A). The heatmap showed the correlations of the
modules and the patients’ gender, survival status, cancer status,
age (>60/≤60), grade, stage and TNM stage (Figure 2B). The
highest correlation was between the green module and OS (r =
0.28, P = 3e-04) (Figure 2C). We selected the 85 genes in the
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FIGURE 2 | Weighted gene co-expression network analysis (WGCNA) network. (A) Cluster dendrogram of DEmRNAs. Each branch represents a single gene. Height

indicates the Euclidean distance. Each color indicates a single module. (B) Hierarchical clustering tree of the TCGA-PAAD samples. Dendrogram tips are labeled with

the TCGA-PAAD unique name. Height indicates the Euclidean distance. (C) Heatmap showing the Pearson correlation between modules and patients’ clinical

information. The numbers represent correlation coefficients and P-value. (D) Correlation analysis showed that genes in green module were significantly correlated with

OS (cor = 0.76) (E) KEGG enrichment analysis of genes in the green module, ranked by P-value. The size of each dot represents the number of genes enriched in the

pathway.

green module (Figure 2D) for Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses, and we found that the
cell cycle, the p53 pathway and other important pathways in
cancer were enriched (Figure 2E; Massague, 2004; Stracquadanio
et al., 2016; McFarlane andWakeman, 2017; Connor et al., 2019).

Next, we explored the protein–protein interaction (PPI)
network in the green module (Supplementary Figure S1), the
average connectivity (number of nodes interacting with other
node in the network) in the network was found to be 29.33.
Such a high degree of average connectivity suggests that these
genes are likely to have synergistic effects. We performed survival
analysis on the genes in the green module, and we found that
four genes: maternal embryonic leucine zipper kinase (MELK),
Aurora kinase A (AURKA), kinesin family 23 (KIF23) and
checkpoint kinase 1 (CHEK1) were significantly related to OS
(P < 0.05). These genes showed different expression levels in
different pathological stages of PAAD (Figures 3A,B). They were
at the center of the PPI network and they were also in the ceRNA

network.We then explored the methylation level of the promoter
regions of these genes in cancer tissues and paracancerous
tissues (Supplementary Figure S2). Significant difference of
methylation level in cancer tissues was found by T-test (P <

0.05). The higher the expression of these genes, the lower the
methylation level, and the higher the risk for patients in the
survival analysis. GSEA enrichment results showed that they are
mainly related to DNA replication, mismatch repair, homologous
recombination and other pathways (Supplementary Figure S3),
which shows that these genes play an important role in cell
division. Tumors have abnormal proliferation and abnormal
cyclin kinase expression leads to uncontrolled proliferation of
tumor cells, which often have germline mutations in homologous
recombination repair genes, so they depend on checkpoint
proteins related to DNA damage, such as CHEK1, to induce G2
block and integrate threonine kinase (ATM and ATR) signals
to repair damaged DNA. The co-expression and interactions
of these genes were associated with poor clinical outcomes
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FIGURE 3 | Four key genes in the green module. (A) Expression of four genes by grade in PAAD patients (due to the lack of expression data for G4, only the

expression for G1–G3 is shown). P-value, 95% CI, and other information are shown at the top of the figure. (B) Relationships between the four genes and the cancer

status among PAAD patients. (C) Survival analysis of the four genes. Patients were divided into high-expression and low-expression groups according to the median

gene expression.

(Figure 3C). In order to verify the prognostic value of these
four key genes, we used the expression profiles of 65 cases
in GSE62452 and 91 cases in ICGC with complete clinical
information. The results showed that these four genes have
important prognostic value (Supplementary Figure S4).

LncRNA Prognostic Signature
The data set was divided into training set (105) and test
set (72). In the training set, the univariate Cox regression
was applied and obtained 22 lncRNAs related to patients’ OS
(Table 1). Then these lncRNAs was used as covariates and the
multivariate Cox analysis was performed to screen independent
prognostic indicators, and the Akaike information criterion
(AIC) was used for model selection. Finally, 7 lncRNAs was
selected as PAAD independent prognostic indicators and a
7-lncRNAs prognostic model were generated. In the training
process, leave-one-out-bootstrap CV was used to verify the
model. After several times of verification, we acquired a
relatively stable result. According to this model, a risk score
was generated for each patient. The risk score was calculated as

follows: Risk Score = (−0.6798 × expr_MIR600HG)+(0.5330
× expr_LINC00941)+(−0.3057 × expr_CASC8)+(0.3093 ×

expr_UNC5B-AS1)+(−0.4540 × expr_AL365277.1)+(0.6676 ×
expr_AL049555.1)+(−0.2785 × expr_AC005056.1). Four of
these lncRNAs (MIR600HG, LINC00941, UNC5B-AS1, and
AL04955.1) were shown to be independent prognostic indicators
(Table 2), which is consistent with the Kaplan–Meier curve of the
7-lncRNA signature (Supplementary Figure S5). Three genes
were associated with high risk of PAAD (LINC00941, UNC5B-
AS1, and AL049555.1), while four genes were associated with
protection from PAAD (MIR600HG, CASC8, AL365277.1, and
AC005056.1). According to the median of risk score (1.226066),
the data set was divided into high-risk group and low-risk
group, and Kaplan-Meier curve is shown in Figure 4. The overall
survival time of high-risk group is significantly lower than that of
low-risk group [the median OS was 15.6 vs. 49.4 months, hazard
ratio [HR] = 3.98, 95% confidence interval [CI]: 2.22–7.13, P <

0.0001] (Figure 5A).
The prognostic scores (risk scores) of patients from the PAAD

data set were analyzed by the 7-lncRNA expression levels. A
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TABLE 1 | Results of univariate Cox proportional hazards regression.

Characteristic HR 95% CI for HR P-value

MIR600HG 0.41 0.28–0.61 6.50E-06

LINC00941 1.7 1.3–2.1 4.50E-05

LINC01133 1.4 1.1–1.7 0.0015

CASC8 1.4 1.1–1.7 0.0032

UNC5B-AS1 1.3 1.1–1.6 0.0033

AC087741.1 0.74 0.6–0.91 0.0052

AC027097.1 0.41 0.21–0.77 0.0056

AC130456.2 1.2 1.1–1.4 0.0074

AC009065.2 1.4 1.1–1.8 0.009

AL365277.1 0.58 0.39–0.87 0.0092

LINC00857 1.5 1.1–2 0.011

SH3BP5-AS1 0.61 0.42–0.9 0.013

LINC01091 0.73 0.58–0.94 0.013

AL049555.1 1.8 1.1–2.7 0.013

AC005674.2 0.71 0.54–0.94 0.015

AP004608.1 0.85 0.74–0.97 0.015

AL139246.3 1.3 1–1.5 0.02

AC012368.1 0.7 0.51–0.96 0.028

TABLE 2 | Results of multivariate Cox proportional hazards regression.

Characteristic HR 95% CI for HR P-value lasso

MIR600HG 0.51 0.31–0.84 0.008 −0.13

LINC00941 1.7 1.21–2.39 0.002 0.19

CASC8 0.74 0.49–1.10 0.139 0.06

UNC5B-AS1 1.36 1.09–1.70 0.006 0.02

AL365277.1 0.64 0.38–1.07 0.09 −0.12

AL04955.1 1.95 1.04–3.65 0.037 -

AC005056.1 0.76 0.51–1.11 0.157 -

similar result was found using Lasso regression (the model,
which involved five lncRNAs, and four of them included in
the 7-lncRNA signature (MIR600HG, AL365277.1, UNC5B-AS1,
and LINC00941) (Figure 5B). A time-dependent ROC curve
analysis was used to evaluate the prognostic value of the 7-
lncRNA signature. Based on the TCGA data set, the area
under the curve (AUC) for the 7-lncRNA signature was 0.785,
0.803 and 0.813 for 1-, 3-, and 5-year survival, respectively
(Figure 5C). The 7-lncRNA signature was used to build three
machine learning models (random forest, SVM, and XGBoost)
in training set to predict the PAAD OS. ROC curves was used
to evaluate the prediction performance of the three machine
learning models in test set. The results showed that the AUC
values for SVM, XGB and RF were 0.958, 0.907, and 0.932,
respectively (Figure 5D). The expression level of 7-lncRNA
signature in high-risk group and low-risk group was significantly
different (Figure 5E). After the prognostic performance in 177
patients with clinical information was evaluated by univariate
Cox proportional hazards regression we found the cancer status
(P < 0.001), grade (P = 0.013), stage (P = 0.01) and 7-lncRNA

(P < 0.001) signature could be used as independent prognostic
indicators of PAAD (Table 3, Supplementary Figure S6). We
further used these clinical information as covariates to conduct
a multivariate Cox proportional hazards regression analysis. The
results showed that the 7-lncRNA signature (HR 2.68, P= 0.001)
and cancer status (HR = 1.76, P = 0.012) were independent
prognostic factors for PAAD OS.

ceRNA Network Related to PAAD OS
DEmRNAs, DEmiRNAs and DElncRNAs was used to construct
a global ceRNA network. Unfortunately, we found that UNC5B-
AS1 and AC005056.1 were not in the global ceRNA network. To
simplify the network results, we used the 4 key mRNAs (AURKA,
MELK, KIF23, and CHEK1) and 5 key lncRNAs (MIR600HG,
LINC00941, CASC8, AL049555.1, and AC005056.1) as the center
to prune the global ceRNA network, and then we obtained the
key-nodes ceRNA network. We performed survival analysis on
these nodes, and removed the nodes that were not significantly
related to OS (Figure 6A), and we finally obtained seven
mRNAs, six miRNAs, eight lncRNAs and 32 edges in the
survival-related ceRNA network, including the 4 key mRNAs
and 5 key lncRNAs mentioned above (Figure 6B). The survival
analysis showed that upregulation of 6 mRNAs (ANLN, TOB1,
AURKA, MELK, KIF23, and CHEK1), 3 miRNAs (miR-135b-
5p, miR-424-5p, and miR-203a-3p) and 4 lncRNAs (AL049555.1,
LINC00941, LINC01588, and CASC8) was associated with
poor PAAD OS, while down regulation of the remaining
6 genes (GOLAG8B, miR-129-5p, MIR600HG, AL365277.1,
AC005674.2, and AP004608.1) in PAAD indicated a longer
survival time.

DISCUSSION

PAAD, the most common form of pancreatic cancer, is still one
of the most aggressive and fatal cancers in the world (Kleeff
et al., 2016). In the past, great efforts have been made to
elucidate the molecular mechanism underlying the pathogenesis
of PAAD at the level of coding and non-coding genes, and to find
molecular targets related to PAAD. For predicting the prognosis
of PAAD, molecular signatures are likely to be better than single
biomarkers. Research based on a single-omics level limits deep
exploration of the molecular mechanisms underlying PAAD, and
each gene in the cells does not play an independent role. The
concept of the ceRNA network was proposed in recent years.
LncRNAs act as miRNA “sponges” to prevent miRNAs from
binding tomRNAs (Salmena et al., 2011). A system analysis based
on the hypothesis of themRNA-miRNA-lncRNA ceRNAnetwork
may lead to a molecular signature with better prognostic value in
PAAD than a single gene.

The multi-omics or meta-analysis has been applied to identify
the biomarkers of pancreatic adenocarcinoma especially for
PDAC (Chen et al., 2018a; Klett et al., 2018; Mishra et al., 2019).
Mishra et al. Identified survival associated genes using multi-
omics data from PDAC patients (Mishra et al., 2019). And Klett
et al. identified 17 genes that were previously recognized as
PDAC biomarkers (Klett et al., 2018) and several genes (B3GNT3,
DMBT1, DEPDC1B) and lncRNAs (PVT1 and GATA6-AS) have
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FIGURE 4 | Kaplan–Meier survival curves of the training set, test set and total set. Survival curves of (A) training set (B), test set and (C) total set. Patients were

divided into high- and low-risk groups according to the median prognostic score. log-rank, Wilcoxon, Fleming-Harrington, Tharone-Ware, and Peto-Peto was used to

compare the differences of survival curves between two groups and get consistent results (P < 0.0001). The P-value of plots based on log-rank test.

not been reported in PDAC before, which is important for
developing early detection and effective treatment regimens for
PDAC (Mishra et al., 2019). At present, the focus of multi-omics
study based on PAAD is to associate gene expression profile with
other omics data (DNA methylation, Copy Number Variation
[CNV]) (Raman et al., 2018; Mishra et al., 2019). However,
the relationship between the mRNA-miRNA-lncRNA expression
patterns is not discussed. Studies have reported the important
role of ceRNA network in the tumor progression of PAAD. Chen
et al. confirmed that lncRNA AFAP1-AS1 promotes the growth
and invasion of PDAC by upregulating the IGF1R oncogene
through sequestration of miR-133a (Chen et al., 2018a). Li et al.
was also observed that tumor-derived exosomal lncRNA Sox2ot
enhances EMT and stemness in PDAC by acting as ceRNA (Li
et al., 2018b). These studies limited to a few specific genes, which
does not take the advantage of high-throughput sequencing and
large-scale samples. At the same time, each gene in ceRNA
network will be subject to the interaction of other genes. It is not
good to describe its regulation by focusing on a fewmarker genes.
In this study, we report the results of multi-omics analysis based
on ceRNA network. Our purpose is to explore the relationship
between the mRNA-miRNA-lncRNA expression patterns. In
order to identify the hub genes, we screened the hub genes from
DEmRNAs andDElncRNAs byWGCNA andCox regression.We
constructed a ceRNA network based on the prognosis of patients
by using keymRNAs and lncRNAs. To the best of our knowledge,
this is the first study to investigate the specific ceRNA network
in pancreatic cancer by two-way selection, instead of “lncRNA-
miRNA-mRNA” or “mRNA-miRNA-lncRNA” order pattern. We
also considered the interaction of other common target genes.
Inspiringly, a novel mRNA-miRNA-lncRNA triple regulatory
network was constructed and each genes in this network

possessed a significant prognostic value in pancreatic cancer. And
our results are still valid for other types of adenocarcinoma.

In our study, WGCNA was used to identify the green
module (involving 85 genes) that was related to PAAD OS,
and 4 genes (AURKA, MELK, KIF23, and CHEK1) were found
specifically expressed in PAAD and played an important role in
the development of PAAD, which may become the prognostic
markers. AURKA belongs to the aurora kinases family, and
its up-regulation in pancreatic cancer is related to the poor
overall survival (Xie et al., 2017). And AURKA binds to cyclin-
dependent kinases (CDKs) and a variety of other proteins, such
as polo-like kinase 1 (PLK1) and Aurora kinase B (AURKB),
controls the progression from S (mitosis) stage and G2 stage to
M (mitosis) stage (Otto and Sicinski, 2017). KIF23 is a member
of the kinesin family (KIF), which is mainly responsible for
cytokinin regulation. Abnormal expression of KIF23 can cause
tumorigenesis and cancer development (Li et al., 2019). AURKA
and KIF23 are also downstream targets of YAP/TEAD. YAP
pathway has been identified as an important prognostic marker
of PDAC (Rozengurt et al., 2018). Their abnormal expression
in PDAC may be related to the regulatory mechanism of YAP
pathway. Zhou et al. found that MELK and KIF23 may be
eigengenes related to the progression of pancreatic cancer (Zhou
et al., 2018). MELK is a cell cycle-dependent protein kinase
belonging to the KIN1/PAR-1/MARK family (Tassan and Le
Goff, 2004), which regulates intracellular signal transduction, and
thereby influences various biological processes in combination
with a variety of proteins, including cell cycle, carcinogenesis,
cell proliferation, and apoptosis (Jiang and Zhang, 2013). MELK
is up-regulated in pancreatic cancer and other types of solid
tumors and plays an important role in the formation and
maintenance of tumor stem cells (Lu et al., 2019). Previous study
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FIGURE 5 | LncRNA prognostic signature model and least absolute shrinkage and selection operator (Lasso) regression results. (A) Patients were divided into high-

and low-risk groups according to the median prognostic score. The prognostic score, OS and expression levels of 7 lncRNAs in the two groups are shown. (B)

Regression coefficient diagram using Lasso regression. (C) ROC curves of the 7-lncRNA prognostic signature for predicting 1-, 3-, and 5-year survival. (D) Diagnostic

efficiency, based on the AUC, of 7-lncRNA signature models constructed using different machine learning models (random forest, support-vector machine [SVM] and

XGBoost). (E) Boxplot showing the expression levels of 7 lncRNAs in the high- and low-risk groups. **p < 0.01, ****p < 0.0001.
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suggested that MELK could control the migration of normal and
transformed pancreatic duct cells (Chung et al., 2014). Moreover,
OTSSP167, the MELK-targeting compound, inhibits the growth
of various human cancers, including breast, lung, prostate and
pancreatic cancers (Chung et al., 2012). Pan et al. found that
CHEK1 was activated in stage IV in PDAC, which was related to
tumor invasion (Pan et al., 2018). CHEK1 and cell cycle-related
proteins (AURKA, etc.) have synergistic effects. It is reported
that simultaneous inhibition of CHEK1 and AURKA leads to
cell cycle arrest and apoptosis of cancer cells (Alcaraz-Sanabria

TABLE 3 | Predictive values of related clinical features and risk score.

Univariate analysis Multivariate analysis

Characteristics Hazard.

ratio

CI95 P-value Hazard.

ratio

CI95 P-value

Gender 1.23 0.73–2.09 0.436 - - -

cancer_status 2.47 1.57–3.89 <0.0001 1.76 1.13–2.75 0.012

age 1.44 0.81–2.57 0.211 - - -

Grade 1.43 1.08–1.89 0.013 1.36 0.92–2.02 0.124

Stage 1.72 1.14–2.59 0.01 1.11 0.62–2.01 0.721

T_Stage 1.43 0.97–2.11 0.069 - - -

N_Stage 1.53 0.95–2.46 0.081 - - -

M_Stage 0.85 0.65–1.11 0.236 - - -

Risk score 3.98 2.22–7.13 <0.0001 2.68 1.47–4.89 0.001

et al., 2017). We found that abnormal expression of these 4
genes may lead to abnormal proliferation of cancer cells. We
speculate these genes may have synergistic effects in cancer cells
that enable them to jointly regulate the cell cycle of PAAD, which
agree with the statement of the cell cycle played a vital role in
PAAD (Zhou et al., 2018). We used the TCGA training data set
to conduct a Cox proportional hazards regression analysis, and
finally obtained a 7-lncRNA signature related to the prognosis
of patients with PAAD. The 7-lncRNA signature, cancer status,
grade and stage were associated with the PAAD OS by univariate
Cox regression. According to multivariate Cox regression, the 7-
lncRNA signature and cancer status were independent prognostic
factors for OS. To further assess the prediction ability of the
7-lncRNA signature, three kinds of machine learning models
(SVM, random forest, XGBoost) were constructed based, and
used to predict the overall risk of patients in the TCGA data
set. Although research on the roles of these lncRNAs in PAAD
is very limited, some lncRNAs have been identified in the
literature as biomarkers. For example, MIR600HG is a potential
therapeutic target and molecular biomarker in PAAD (Song
et al., 2018); LINC00941is thought to be associated with tumor
cell proliferation and metastasis in gastric cancer (Liu et al.,
2019), which affects genes and proteoglycans in cancer, the
Hippo signaling pathway, cancer pathways, the cell cycle and
leukocyte transendothelial migration (Luo et al., 2018); Hu et al.
Showed that CASC8 could reduce the glycolysis of bladder cancer
cells and inhibit the growth of bladder cancer cells (Hu et al.,
2017). In papillary thyroid carcinoma, UNC5B-AS1 regulates the

FIGURE 6 | CeRNA network related to PAAD overall survival (OS). (A) Kaplan–Meier curves of 3 mRNAs (TOB1, GOLGA8B and ANLN),3 miRNAs (203a-3p, 424-5p,

and 135b-5p) and 3 lncRNAs (AP004608.1, AC005674.2, and AL365277.1) were selected for display. (B) CeRNA network related to PAAD OS.
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proliferation, invasion and migration of cancer cells (Guo et al.,
2019). In our study, these lncRNAs were found exhibiting the
abnormal expression patterns in PAAD, and the Cox regression
results show that they can be used as independent prognostic
indicators of PAAD. The abnormal expression of key-lncRNAs
led to poor OS, which further confirmed its role as a biomarker.

In the process of constructing the ceRNA network, we
performed a survival analysis of nodes in the network. The results
showed that 7 mRNAs, 6 miRNAs, and 8 lncRNAs were related to
the PAAD OS, among which the upregulation of 13 of them was
related to poor OS and the downregulation of the other six was
associated with a longer survival period among PAAD patients.
We connected these potential prognostic markers through the
ceRNA network. They have special expression patterns in PAAD
and may play an important role in the development of PAAD.
Studies have shown that the abnormal expression of miR-203a-
3p, miR-129-5p, miR-424-5p, and miR-135b-5p is related to
tumor development (Wu et al., 2013; Chaudhary et al., 2017;
Zhang et al., 2017; Chen et al., 2018b; Qiu et al., 2019). The
abnormal expression of these miRNAs in PAAD may affect
the expression of the key mRNAs and effects of the key
lncRNAs, which may lead to poor OS. These miRNAs may
also be biomarker candidates for PAAD OS. According to the
ceRNA network hypothesis, miRNAs can bind to MREs and
thereby interact with mRNAs and lncRNAs and thus affect the
interactions between them (Salmena et al., 2011; Tay et al.,
2014), which indicates that miRNA plays a pivotal role in the
ceRNA network.

In conclusion, we identified a central mRNA-miRNA-lncRNA
ceRNA network consisting of 7 mRNAs, 6 miRNAs and 8
lncRNAs, and described the regulatory pattern of mRNAs and

lncRNAs in PAAD through ceRNA network, we found that the
abnormal expression of each hub gene in ceRNA network will
lead to poor OS. At the same time, we propose a new perspective
to describe the regulatory mechanism of prognostic markers in
PAAD through ceRNA network, which is a good way to identify
genes related to OS of PAAD. Our findings may provide clues
for the development of a promising tool for predicting the OS
of PAAD.
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