
INTRODUCTION

Prostate cancer is the second most frequent cancer 
among males and the cause of an estimated 385,000 
deaths worldwide in 2018 [1]. Prostate carcinogenesis 
and progression are correlated with loss of specific 
chromosome regions and candidate tumor suppressor 
genes, such as loss of 8p21 and NKX3.1, loss of 10q and 
PTEN, loss of 13q and RB1, and loss of 17p and TP53 
[2]. Recurrent gene fusions of TMPRSS2 and ETS tran-
scription factor genes are frequently detected in pros-

tate cancer, suggesting that the androgen-responsive 
promoter elements of TMPRSS2 mediate the overex-
pression of ETS family members [3]. Prostate cancer 
development and disease progression are driven by the 
androgen receptor (AR) signaling pathway, which has 
led to the use of androgen deprivation therapy (ADT) 
for patients with advanced prostate cancer. Sustained 
AR signaling is the primary driver of  castration-
resistant prostate cancer (CRPC), leading researchers 
to develop novel treatments targeting the AR pathway, 
such as abiraterone and enzalutamide [4]. Molecular 
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mechanisms behind AR reactivation in CRPC include 
AR gene amplification, AR mutations (e.g., T878A, 
F876L, L702H, L701H, and T877A), AR splice vari-
ants (AR-Vs), changes of androgen biosynthesis, and 
changes in AR cofactor [5]. Recently, novel mechanisms 
of AR activation have been reported, such as amplifi-
cation of an upstream enhancer of AR and AR gene 
rearrangements [6-8]. During disease progression, a 
subset of metastatic CRPC (mCRPC) tumors loses AR 
dependence and often have neuroendocrine features [9].

Recently, precision medicine has emerged to guide 
therapeutic approaches for patients with prostate can-
cer by understanding each altered gene or pathway in 
an individual, leading to the improvement of clinical 
outcomes [10]. A phase 3 clinical trial demonstrated 
that the alteration of BRCA1/2 or ATM  was associ-
ated with response to poly (adenosine diphosphate–
ribose) polymerase (PARP) inhibitor olaparib in pa-
tients with mCRPC [11]. An Akt inhibitor, ipatasertib, 
showed antitumor activity in patients with PTEN-loss 
tumors, in a phase 2 study [12]. Over the last decade, 
the integrative genomic profiling of human prostate 
tumors had provided the foundations for discoveries 
that can impact disease understanding and treatment 
[13-15]. Furthermore, minimally invasive liquid biopsy 
procedures have emerged to investigate cancer-related 
molecules with the advantage of detecting heterogene-
ity as well as acquired resistance in cancer [16,17]. Here, 
we review emerging evidence for genomic profiling of 

prostate cancer, especially focusing on association of 
genomic alteration and clinical outcome, liquid biopsy, 
and actionable molecular alterations (Fig. 1). In this re-
view, we identified the relevant studies using electron-
ic databases, including PubMed and Web of Science.

MAIN BODY

1. Genomic landscape of prostate cancer
Common genetic alterations in primary prostate 

cancer include losses of NKX3.1 and PTEN  [2] and 
fusion of ETS family transcription factor genes with 
androgen-responsive promoters [3]. In addition, a sig-
nificant proportion of primary prostate tumors harbor 
large-scale genomic rearrangements [18,19]. Recurrent 
somatic mutations were identified in multiple genes, 
including SPOP and FOXA1, in patients with primary 
prostate cancer [20]. In 2015, The Cancer Genome Atlas 
(TCGA) presented a comprehensive molecular analysis 
of 333 primary prostate cancers, in which the tumors 
fell into subtypes according to specific gene fusions or 
mutations (SPOP, FOXA1, and IDH1) [14]. AR activ-
ity varied widely in a subtype-specific manner, with 
SPOP and FOXA1 mutant tumors having the highest 
levels of AR-induced transcripts [14]. In 2015, Robinson 
et al [15] demonstrated that aberrations of AR, ETS 
genes, TP53, and PTEN were detected in 40% to 60% 
of cases in patients with mCRPC. The mCRPC tumors 
have a highly complex genomic landscape compared 
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Fig. 1. Overview of genomic profiling 
of prostate cancer. The specific gene/
pathway alterations are associated with 
clinical outcomes. Genomic profiling is 
useful to identify actionable molecular 
alterations. cfDNA: cell free DNA, ctDNA: 
circulating tumor DNA, CTC: circulat-
ing tumor cell, AR: androgen receptor, 
PARP: poly (adenosine diphosphate–
ribose) polymerase, MSI-H: microsatellite 
instability-high, dMMR: deficiency in 
mismatch repair genes.
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to primary prostate tumors (Fig. 2) [21,22]. Genomic al-
terations in AR, TP53, RB1, and PTEN are enriched 
during disease progression [23-25]. Approximately 90% 
of mCRPC harbor clinically actionable molecular al-
terations, including AR signaling, DNA damage repair 
and phosphoinositide 3-kinase (PI3K) signaling [15].

In 2018, two studies, Quigley et al [6] and Viswa-
nathan et al [7], demonstrated the structural altera-
tions driving mCRPC using whole-genome sequencing. 
Tandem duplications affect an upstream enhancer of 
AR in 70% to 87% of cases, correlating with increased 
AR expression [6,7]. Progression on androgen pathway 
inhibitors, abiraterone and enzalutamide, was associ-
ated with gains in AR and AR enhancer [7]. Tandem 
duplication hotspots also occur near MYC, associated 
with post-translational MYC regulation [6]. Classes 
of structural variations were linked to distinct DNA 
repair deficiencies, including associations of CDK12 
mutation with tandem duplications, TP53 inactivation 
with inverted rearrangements and chromothripsis, and 
BRCA2 inactivation with deletions [6,7,26].

The ethnic and racial background can influence the 

incidence and mortality of prostate cancer, partly due 
to the interplay of socioeconomic factors and environ-
mental exposures [27]. To date, most prostate cancer 
genomics data have been derived from Western popu-
lations. Thus, precision oncologic studies have under-
represented patients from Asia and Africa, limiting 
comprehensive understanding of disparities in the 
diagnosis and prognosis of prostate cancer among these 
populations [28]. The incidence and mortality rates of 
prostate cancer for Asians are lower than Western 
populations [29]. In 2020, Li et al [30] reported on the 
genomic landscape of primary prostate cancer in Asian 
populations, in which 41% of tumors contained muta-
tions in FOXA1 and 18% had deletions in CHD1. Low-
er incidence of FOXA1/CHD1 alterations in Western 
populations and lower incidence of TMPRSS2:ERG 
fusion gene and PTEN loss in Asian populations com-
pared with counterparts were reported [30-33]. Thus, 
the genomic alteration signatures in Asian patients 
were markedly different from those of Western co-
horts.
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Fig. 2. Gene alterations in the different stages of prostate cancer. Localized PCa, TCGA (n=333) [14]; mCSPC, MSK (n=424) [38]; mCRPC, SU2C/PCF 
Dream Team (n=444) [36]. The frequency of each gene alteration was calculated based on clinical data provided by cBioPortal (https://www.cbio-
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castration-sensitive prostate cancer, MSK: memorial sloan kettering, mCRPC: metastatic castration-resistant prostate cancer, SU2C/PCF: stand up 
to cancer/prostate cancer foundation.
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2.  Association of genomic alteration and 
clinical outcome

Heterogeneity in the genomic landscape of prostate 
cancer has become apparent through several compre-
hensive profiling studies. Growing evidence suggests 
that the genomic alterations correlate with clinical out-
comes (Table 1). In 2014, Hieronymus et al [34] reported 
an association between biochemical recurrence and 
the pattern of DNA copy number alteration (CNA) in 
primary prostate cancer, raising the possibility of CNA 
as a prognostic biomarker. Since 2018, several studies 
have demonstrated the association of specific gene/
pathway alterations and clinical outcomes based on the 
genome-wide study of prostate cancer [25,35-39]. Wang 
et al [35] reported that the gene-based pathway of cell 
cycle progression was associated with shorter time to 
treatment change (TTTC) in patients with mCRPC 
who were treated with abiraterone (hazard ratio [HR], 
2.11; 95% confidence interval [CI], 1.17–3.80; p=0.01). 
Abida et al [36] demonstrated that RB1 alteration was 
associated with poor overall survival (OS), whereas al-
terations in RB1, AR, and TP53 were associated with 
shorter TTTC in patients with mCRPC treated with 
abiraterone or enzalutamide. Chen et al [37] reported 
that two DNA alterations in RB1 were predictive of 
poor OS (median 14.1 mo vs. 42.0 mo; p=0.007), and 
CTNNB1 mutations were exclusive to enzalutamide-
resistant patients (p=0.01), associating with poor OS 
(median 13.6 mo vs. 41.7 mo; p=0.025) in patients with 
mCRPC treated with enzalutamide. Stopsack et al [38] 
reported that rates of castration resistance (HR, 1.84; 
95% CI, 1.40–2.41) and death (HR, 3.71; 95% CI, 2.28–6.02) 
were higher in high-volume metastatic castration-
sensitive prostate cancer (mCSPC), associating with 
genomic alterations. Rates of  castration resistance 
differed 1.5-fold to 5-fold according to alterations in 
AR, cell cycle pathway, MYC pathway, TP53, WNT 
pathway (inverse), and SPOP (inverse), whereas OS 
rates differed 2-fold to 4-fold according to AR, cell cycle 
pathway, WNT pathway (inverse), and SPOP (inverse) 
[38]. Mateo et al [25] reported that patients with RB1 
loss in the primary prostate cancer had a worse prog-
nosis. Among men with matched hormone-naive and 
mCRPC biopsies, RB1/TP53/AR aberrations were en-
riched in later stages [25]. Deek et al [39] reported that 
the frequency of driver mutations in TP53 (p=0.01), 
WNT  (p=0.08), and cell cycle (p=0.04) genes increased 
across the mCSPC spectrum. Mutations in TP53 were 

independently associated with shorter radiographic 
progression free survival (PFS) (HR, 1.59; p=0.03) and 
the development of CRPC (HR, 1.71; p=0.01) [39]. Hamid 
et al [40] reported that deleterious tumor suppressor 
genes, TP53, PTEN, and RB1, were associated with 
an increased risk of relapse and death in patients with 
CSPC.

Prostate cancer with mutant SPOP shows a distinct 
pattern of genomic alterations, defining a new molecu-
lar subtype [20]. Boysen et al [41] reported that SPOP 
mutations were associated with a higher response rate 
to abiraterone (odds ratio, 14.50; 95% CI, 2.92–71.94; 
p=0.001) and a longer time on abiraterone (HR, 0.37; 
95% CI, 0.20–0.69; p=0.002) in patients with mCRPC. 
Swami et al [42] reported that SPOP mutations were 
significantly associated with better PFS (median 35 mo 
vs. 13 mo; HR, 0.47; 95% CI, 0.25–0.87; p=0.016) and OS 
(97 mo vs. 69 mo; HR, 0.32; 95% CI, 0.12–0.88; p=0.027) in 
patients with mCSPC treated with ADT. Although AR 
is a ubiquitination degradation substrate of SPOP E3 
ligase, prostate-cancer-associated SPOP mutants cannot 
bind to and promote AR degradation [43]. The SPOP 
mutant tumors have the highest AR transcriptional 
activity among prostate cancer subtypes [14]. Thus, the 
SPOP mutant tumors may primarily be driven by AR 
signaling and in turn will be responsive to AR targeted 
therapies [42].

Taken together, genomic alterations of TP53, RB1, 
AR, and cell cycle pathway are associated with poor 
clinical outcomes in patients with prostate cancer, 
whereas SPOP mutations are associated with better 
clinical outcomes (Table 1).

3. Liquid biopsy
A liquid biopsy is a minimally invasive procedure to 

investigate the cancer-related molecules in circulating 
tumor cells (CTCs) and cell-free tumor nucleic acids. 
There is a high consistency between metastatic tumor 
tissue and matched circulating tumor DNA (ctDNA) or 
CTCs [44-47]. Liquid biopsies have the advantage of de-
tecting acquired resistance in prostate cancer [17,48]. In 
2016, Ulz et al [16] performed whole-genome sequenc-
ing on plasma samples derived from patients with 
metastatic prostate cancer, and identified driver aber-
rations in cancer-related genes, including gene fusions 
(TMPRSS2:ERG), focal deletions (PTEN, RYBP, and 
SHQ1), and amplifications (AR and MYC). In serial 
plasma analyses, the focal amplifications were detected 
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in 40% of cases, suggesting a high plasticity of prostate 
cancer genomes with newly occurring focal amplifica-
tions as a driving force in progression [16]. Although 
ADT rapidly reduces ctDNA availability [49], the emer-
gence of AR amplification in ctDNA is detected during 
treatment with abiraterone and enzalutamide [50]. Tu-
mor fraction in cell free DNA (cfDNA) correlates with 
metastatic burden, and the decline of ctDNA can be a 
promising biomarker for therapeutic response in pa-
tients with CRPC [51]. Decreases in cfDNA concentra-
tion independently associated with outcome in patients 
with metastatic prostate cancer who were treated with 
PARP inhibitor olaparib (HR for OS at week 8, 0.19; 
95% CI, 0.06–0.56; p=0.003) [52].

Recently, a number of studies demonstrated the as-
sociation between genomic alterations in liquid biopsy 
and clinical outcome in prostate cancer (Table 2). As 
sustained AR signaling pathway remains a key driver 
for CRPC progression [5], considerable efforts have 
been made to profile AR aberrations using circulating 
nucleic acids [53]. Resistance to AR pathway inhibitors, 
abiraterone and enzalutamide, has been observed in 
patients with CRPC harboring AR copy number gain/
amplification [54-59], somatic AR mutations [54-56], 
and constitutively active AR-Vs, such as AR-V3, AR-
V7, and AR-V9 [58,60]. AR copy number gain has also 
been associated with poor outcomes in patients receiv-
ing chemotherapy [58,61], likely reflecting aggressive 
intrinsic disease biology. Furthermore, genomic altera-
tions of RB1, TP53, MYC, cell cycle pathway, and 
DNA repair pathway are detected in liquid biopsy, and 
are reported to be associated with poor clinical out-
comes in patients with prostate cancer [55,62-66].

4. Actionable molecular alterations
DNA repair alterations are observed in about one 

fourth of prostate cancer, in which most commonly 
mutated genes include BRCA2, BRCA1, and ATM  [23]. 
These gene alterations can occur at either a somatic or 
a germline level [23]. Although the mutations in DNA-
repair genes occurred more often in Black men than in 
White men [28], the germline alterations in DNA-repair 
genes were identified in 31% of the patients in Asian 
populations, including mutations in BRCA2 (5.3%) 
[67]. The germline mutations in BRCA1/2 and ATM 
are associated with prostate cancer risk [68], as well as 
aggressive prostate cancer phenotype [69-74]. Family 
history of cancer remains a foundation of genetic risk 

assessment, especially inquiring about prostate cancer 
as well as non-prostate cancers, including breast, ovary, 
pancreas, and melanoma, with their known association 
with mutations in BRCA1/2. [75]. BRCA1/2 and ATM  
are involved in homologous recombination repair. Tu-
mors that lose the homologous recombination pathway 
are preferentially sensitive to PARP inhibition via the 
mechanism of synthetic lethality [76]. A randomized, 
phase 3 trial evaluated the PARP inhibitor olaparib in 
men with mCRPC who had disease progression while 
receiving a new hormonal agent (e.g., enzalutamide 
or abiraterone) [11]. Among patients who had at least 
one alteration in BRCA1, BRCA2, or ATM, radiologi-
cal PFS was significantly longer in the olaparib group 
than in the control group (median 7.4 mo vs. 3.6 mo; 
HR, 0.34; 95% CI, 0.25–0.47; p<0.001) [11].

The solid tumors which harbor deficiency in mis-
match repair genes (dMMR), such as MSH2, MSH6, 
PMS2, and MLH1, can be effectively treated by the 
anti–programmed cell death protein 1 (PD-1) antibody 
pembrolizumab, regardless of tissue of origin [77]. In 
2019, Abida et al [78] reported that 32 of 1,033 patients 
with prostate cancer (3.1%) had microsatellite instabil-
ity (MSI)–high or dMMR, of whom 7 (21.9%) carried a 
germline mutation in a Lynch syndrome–associated 
gene. The dMMR prostate cancers are associated with 
higher MSI scores, and enriched for higher T cell infil-
tration and PDL1 protein expression [79]. Screening for 
MSI-H/dMMR in advanced prostate cancer is beneficial 
for identifying patients who have potential for durable 
responses to anti–PD-1/PD-L1 therapy.

Approximately 40% to 60% of mCRPC tumors have a 
functional loss of PTEN, a tumor suppressor phospha-
tase, which causes hyperactivation of the PI3K–Akt–
mTOR pathway [13,15]. Ipatasertib (GDC-0068) is a nov-
el selective ATP-competitive small-molecule inhibitor 
of all three isoforms of Akt. Sensitivity to ipatasertib is 
associated with high tumoral levels of phosphorylated 
Akt, PTEN protein loss or genetic mutations, and PIK-
3CA kinase domain mutations [80]. In a phase 2 study, 
combined treatment with abiraterone and ipatasertib 
showed superior antitumor activity to abiraterone 
alone in patients with mCRPC, especially in patients 
with PTEN-loss tumors [12]. A phase 3 trial is ongoing 
to test the efficiency of ipatasertib plus abiraterone in 
patients with mCRPC (IPATential150, NCT03072238).
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5. Neuroendocrine prostate cancer
Neuroendocrine prostate cancer is an aggressive 

variant of prostate cancer, which may arise de novo or 
in patients who were previously treated with hormonal 
therapies [81]. A subset of mCRPC tumors show small-
cell neuroendocrine features during disease progression 
on metastatic biopsy [82]. This phenomenon may reflect 
an epithelial plasticity that enables tumor adaptation 
in response to AR-targeted therapies [9]. Neuroendo-
crine prostate cancer is associated with worse OS, even 
when platinum-based chemotherapy is used [81,83]. In 
2016, Beltran et al [9] demonstrated that CRPC with 
neuroendocrine features (CRPC-NE) is associated 
with low AR signaling and a paucity of somatic AR 
gene alterations, concurrent loss of RB1 and TP53 (in 
53.3% of CRPC-NE vs 13.7% of CRPC-Adenocarcinoma; 
p<0.0004), changes in DNA methylation profile, and 
upregulation of mRNA encoding the histone meth-
yltransferase EZH2. There was high concordance be-
tween ctDNA and biopsy tissue genomic alterations in 
patients with CRPC-NE, supporting the use of ctDNA 
profile to recognize transformation to CRPC-NE during 
the course of CRPC treatment [84].

6. Clinical utility of genomic profiling
Tumor genomic profiling is a fundamental compo-

nent of precision medicine, enabling the identification 
of genomic alterations in genes and pathways that can 
be targeted therapeutically. In 2017, the U.S. Food and 
Drug Administration (FDA) approved two comprehen-
sive next generation sequencing panel assays, MSK-
IMPACT and FoundationOne CDx [85]. At Memorial 
Sloan Kettering Cancer Center, MSK-IMPACT was 
developed and implemented to detect protein-coding 
mutations, CNAs, and selected promoter mutations and 
structural rearrangements in 341 (and, more recently, 
468) cancer-associated genes [85,86]. FoundationOne 
CDx, a similar 324 gene assay, was developed to iden-
tify actionable genomic aberrations in cancer [85]. For 
the effective analysis of genomic tests, the quality of 
tumor tissue samples is crucial. Although formalin-
fixed paraffin-embedded blocks obtained from prostate 
tumor biopsies are widely used to identify clinically 
actionable molecular alterations, DNA degradation 
can occur during mid- to long-term storage of samples 
[87]. Genomic heterogeneity is commonly detected in 
primary prostate cancer [88-90]. Furthermore, genomic 
alterations can occur during CRPC progression [16,91]. 

Thus, a metastatic biopsy provides a reasonable assess-
ment for genomic profiling in patients with mCRPC 
[92]. In 2020, FoundationOne Liquid CDx, a novel 324-
Gene cfDNA-based comprehensive genomic profiling 
assay, was approved by the FDA [93]. This laboratory 
test can be used as a companion diagnostic tool that 
can identify if patients with mCRPC harbor BRCA1/2 
alterations which may benefit from treatment with 
PARP inhibitors [93]. After eliminating clonal hema-
topoiesis variants, ctDNA was detected in 87.9% of 
patients with prostate cancer showing its high detect-
ability [94]. Thus, cfDNA-based genomic tests provide a 
noninvasive approach to elucidate a patient’s genomic 
landscape and actionable information.

CONCLUSIONS

The integrative genomic profiling of prostate tumors 
has provided comprehensive information and novel 
discoveries which improve our understanding of the 
disease. A number of mCRPC harbor clinically action-
able molecular alterations, including changes to DNA 
damage repair pathway and PTEN/PI3K signaling. 
The genomic alterations of TP53, RB1, AR, and cell 
cycle pathway are associated with poor clinical out-
comes, whereas SPOP mutation is associated with bet-
ter clinical outcomes. Several genomic profiling tests 
are emerging to identify patients who could benefit 
from targeted therapy. Thus, the genomic profiling of 
prostate cancer provides useful information for diagno-
sis and treatment in this new era of precision medicine.
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