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This paper proposes a segmentation-based global optimization method for depth estimation. Firstly, for obtaining accurate
matching cost, the original local stereo matching approach based on self-adapting matching window is integrated with two matching
cost optimization strategies aiming at handling both borders and occlusion regions. Secondly, we employ a comprehensive smooth
term to satisfy diverse smoothness request in real scene. Thirdly, a selective segmentation term is used for enforcing the plane
trend constraints selectively on the corresponding segments to further improve the accuracy of depth results from object level.
Experiments on the Middlebury image pairs show that the proposed global optimization approach is considerably competitive

with other state-of-the-art matching approaches.

1. Introduction

Depth estimation from a pair of rectified stereo images is
always a challenging research field in vision analysis [1, 2].
The local stereo matching methods often generate outliers in
weakly textured areas, discontinuous boundaries, and occlu-
sion areas. Consequently, the global optimization methods
[3-7] are designed for more accurate depth estimating in
comparison with local ones. Nevertheless, all of these above-
mentioned methods neglected the segmentation information
in the optimization framework.

The later global optimization methods only partially
incorporated the segmentation information into a pixel-
level MRF model [8-14]. The segmentation information was
merely integrated into unary terms or pairwise terms rather
than higher order terms. For instance, Wang and Lim [10]
proposed a new segment-based stereo matching approach,
which takes segments as graph nodes for constructing an
irregular segmentation-based graph. In spite of decreasing
the computation complexity immensely and showing object-
level feature information clearly, it neglected the depth detail

and structure detail within the segment and accordingly
resulted in the “Mosaic Effect”

For taking full advantage of segmentation information,
Kohli et al. [15] proposed a higher order term including
complete detail of each segment. The Robust P" Potts model
presented by Kohli was originally designed for segmentation
applications, which is based on an assumption that the pixels
inside the same segment should be label consistency. The
labels are used to identify different objects for image segmen-
tation, other than different disparities for depth estimation.
So, the energy function for depth estimation cannot penalize
the segment with a linear penalty which takes inconsistency
pixel ratio into account. Therefore, Kohli’s approach is unable
to be applied in depth estimation directly. Xie et al. [16]
improved the higher order term proposed by Kohli et al. and
applied it to the depth estimation successfully. The improved
higher order term enforces impliedly the assumption that
all the segments of the input image are regarded as vari-
ous planes. Nevertheless, this assumption is unreasonable
because the surfaces of objects are more likely to be irregular
surfaces rather than planes in real scene.
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FIGURE 1: Dense depth maps for the Art, Moebius, and Laundry test sets (from top to bottom). From left to right: the input left images, our
final depth maps, ground truth, and three-dimensional reconstructed results. Compared with the ground truth, our results obviously acquire

most details of the scene with relatively high accuracy.

This paper proposes a segmentation-based global opti-
mization method for the depth estimation. Our approach
composed of four energy terms makes the following contri-
butions: unlike those familiar data terms converted from local
stereo matching methods directly, our data term combines
a self-adapting stereo matching approach and two matching
cost optimization strategies aiming at occlusion regions and
border of image. Most smoothness terms only enforce a
simple smoothness strategy over the whole image, which is
obviously unable to satisfy the fact that different regions have
varying smoothness requirements in a disparity map. Hence,
our smoothness term employs a comprehensive smoothness
strategy. We incorporate segmentation information in the
form of higher order term and perform a selective planarity
operation by enforcing a plane trend or not when facing
diverse segments.

Experiment results on the stereo images in Middlebury
datasets (Figure 1) have shown that our global optimization
method obtains satisfactory depth results and is competitive
with the state-of-the-art algorithms.

2. Global Optimization Method for
Depth Estimation

2.1. Algorithm Overview. The input of our algorithm is a pair
of rectified stereo images, which are used in improved local

stereo matching method based on self-adapting matching
windows, color segmentation, and process of constructing
smooth term. With the handling of two proposed matching
cost optimization strategies, the final matching costs for the
pixels are used to not only construct data term but also com-
puter refine map. Both smooth term and segmentation term
require the segmentation information produced by [17]. The
proposed energy function composed of four energy terms
is optimized using a-expansion move algorithm [18]. The
whole procedure of our algorithm is illustrated in Figure 2.

2.2. Energy Function. In this paper, we presented a segmen-
tation-based global optimization approach composed of
integrated data term, comprehensive smoothness term, and
selective segmentation term. To make use of the pixel-level
information more adequately, the proposed data term is not
only decided by the matching costs from the local stereo
matching method based on the improved self-adapting win-
dow but also mended the replacement for occlusion regions
and evaluation for border of image according to two proposed
optimization strategies. Due to comprehensive smoothness
strategy, our smooth term is able to satisfy the smoothness
requirement more fully. By fusing object-level over-segment
information in our global optimization framework, we can
richly utilize homogeneous information in the same segment.
In addition, the selective planarity operation for segments
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FIGURE 2: Flow chart of the proposed algorithm.

makes our segmentation term more robust. The global energy
function for a unique configuration f is as follows:

E (f) = Edata (f) + Esmooth (f) + Eseg (f) . €]

2.3. Data Term Based on Self-Adapting Window. In most
local stereo matching methods, the fixed matching window is
employed for depth estimation. Nevertheless, it is difficult to
guarantee that all the pixels in a fixed window are of the same
depth. Therefore, there exist amounts of outliers in weak-
textured areas, discontinuous boundaries, and occlusion
regions shown in Figure 3. In order to improve the accuracy
of matching costs for the corresponding depths, the local
stereo matching approach based on the self-adapting match-
ing window is adopted for computing the matching costs.

The local stereo matching approaches with self-adapting
matching window are based on the assumption that when
pixels with similar intensity within a constrained window
have similar disparity, it is necessary to produce an appropri-
ate matching window for each pixel adaptively. In this paper,
we mainly refer to the local stereo matching method proposed
by Zhang et al. [22] based on self-adapting matching window.
Two aspects of improvement are made on the basis of original
approach: firstly, a dynamical argument mechanism of mini-
mum window is proposed for more robust correspondence
matching. Secondly, we enforce a replacement strategy for
occlusion regions and a suboptimum strategy for borders of
image.

Being inspired by five major approaches introduced by
Egnal and Wildes [23], we present a replacement strategy
to deal with the occlusion regions. Owing to the common
assumption that pixels with similar intensity within a neigh-
boring area have similar disparity, the matching costs for
occlusion pixels are capable of being replaced with ones for
“corresponding” pixels.

For instance, d(p) is the disparity for pixel p = (x,, y,)
in the left input image, and d’(p') is the disparity for pixel

p' = (xP —-d(p), yp) in the right image. If d(p), d'(p') and
d( p") satisfy simultaneously the condition that d(p) > d "( p')
and d'(p') < d(p”) where p" = (xp -d(p) + d'(p'),yp), we
would employ a displacement strategy that the matching costs
for the pixel p in left image are replaced with the one for the
pixel p’ in right image.

Neither estimating two disparity maps for left-right
consistency check [24, 25] nor applying a simple border
extrapolation step, we adopt a suboptimum strategy for the
border of image. The corresponding pixel p' will locate
outside the right image when (xp —d(p)) < 1, which means
that the matching cost C;(p) cannot be achieved by making
use of the corresponding pixels. In this paper, we need the
suboptimum label d”,

d" = arg min
A€oy g ] (xp~d)>0,d # d*

Ca(p), )

where d” is the optimal label computed as follows:

d* = Cq (P) . (3)

arg min
A€[d i) (=) >0

At last, we use Cyn(p) as the matching cost for pixel p
when (xp —d(p)) < 1. The improved local results are shown
in Figure 4.

2.4. Smooth Term Based on Comprehensive Management. All
kinds of smooth terms are presented for smoothing the coarse
local results. In this paper, a new comprehensive smooth term
is defined based on the similarity of color for dealing with
different smoothing requirements on neighborhoods. The
proposed smooth term combines the following two smooth
terms.

Assume that there is a neighborhood system N on the
pixelset P, N < {(p;, p2) | p1> p» € P}, Yuetal. [7] performed
the consistency of corresponding pixels and their neighbors
in their smooth term as follows:

Esmooth (f) = z min ((f (pl) - f (pZ)) ’k) > (4)

(p1:p2)EN

where k is a constant.

Kolmogorov and Zabih [3] presented a different smooth
term, which considers the color information of correspond-
ing pixels and their neighbors. The smooth term is formulated
as follows:

Esmooth (f) = Z

Voups * T(f(p1) #f(p))s (5)
(p1-p2)eN

where V,, , denotes a positive penalty function which
imposes disparate penalties according to color differences
between pixels. Suppose R(p), G(p), and B(p) are the respec-
tive color components of pixel p in RGB space,

VPI P2

3, if max(|R(p,) - R(p,)|,|G(p1) - G(p)l
= |B(p1) - B(p2)]) <&

A, otherwise,

(6)

where A is a penalty constant, e manages a least color diversity.
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FIGURE 3: Comparison of local stereo matching methods with fixed matching window and self-adapting matching window for the Teddy
(from left to right). Top row: the fixed matching window is marked by red, and the self-adapting matching window is marked by green (from
left to right). Bottom row (from left to right): the results by NCC with the fixed matching window, and the results by proposed local stereo
matching method with self-adapting matching window. In the NCC case, a mass of obvious outliers occurred in weak-textured regions,
discontinuous boundaries, and occlusion areas. The proposed local method has achieved much better results.

(a) (b)

FIGURE 4: Comparison between the local depth result without occlusion region and border of image (ORBI) handling and the one with ORBI
handling for the Teddy (from left to right). Left column: the local depth results without ORBI handling. Right column: the local depth results
with ORBI handling. The red frame demonstrates the comparison in occlusion region, while the green frames denote the comparison in
border of image. The results show that ORBI handling makes the matching costs for the corresponding depths more reliable.

Nevertheless, the smoothness on the boundaries between
two adjacent objects will influence the accuracy of the final
disparity map. So, we only need to perform the smooth
operation in the segments. Compositing the above two kinds
of smoothness terms, we propose a new hierarchical smooth-
ness strategy in the identical segment. The new smoothness
term is as follows:

E

smooth

=YV emin((F(p) - £(p)K),
(p1-p2)ENS(p1)=S(p,)

7)

where S(p) is the identification of segment to which the
pixel p belongs, V;l p, denotes a new penalty function which
enforces a different penalty on the basis of color differences:

!
VP1 P2

81 if max(|R (p) - R(p,)],|G (p1) - G (p2)]
|B(p1) - B(p2)| < &),

24 if max([R(py) = R(p2)], |G (p1) - G(pa)|,

=1 |B(p1) - B(p)| < &),

A if max([R(py) = R(p2)]5 |G (p1) - G(pa)l
|B(p1) - B(p2)| <),

|0 otherwise,
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FIGURE 5: Sketch map for deflected pixels.

where 0 is a penalty constant, ¢, €,, and ¢, are several color
diversities and &, < &, < &;.

The smooth terms perform different smoothness strate-
gies inside the segments according to the diverse color
differences of neighborhoods.

2.5. Segmentation Term of Selective Planarity. In this paper,
we use the segmentation information to construct the seg-
mentation term for further improving the accuracy of depth
estimation. Our segmentation term is different from the
higher order term presented by Kohli et al. The higher order
term in [15] was originally designed for image segmentation,
according to the assumption that the pixels in the same seg-
ment should share the same label. However, depth estimation
is more likely to satisfy the assumption that the pixels in
the same region follow the same distribution such as plane
distribution or surface distribution; in other words, the pixels
in the same segment could have multiple labels other than
only a single label. So, directly making use of Kohli’s higher
order term for depth estimation is unreasonable.

Obviously, the surface distribution is more representative
than the plane distribution because the objects in real scene
are more likely composed of irregular surfaces rather than
planes. Nevertheless, in this paper the plane distribution is
adopted with considering its lower computation complexity
and more commonly approximate representativeness. The
segments obtained by [17] are further divided into many
more subsegments using certain plane distribution. The plane
distribution is achieved by plane fitting for the local results.
And all the pixels in each subsegment are more likely to share
the same label.

Not all the segments are appropriate to enforce the plane
distributions. If the plane distribution is employed roughly in
those segments which are unable to be represented by plane,
the worse influences on resulting depth map would occur.

In this paper, before performing the plane distributions
in the segments, we employ a segment classify procedure
for every segment using a proposed plane-judge approach as
shown in Figure 5.

For instance, the pixel p is judged as deflected when it
meets the condition that | f(p) — d*(p)| > @, where d*(p) is
the disparity value for the pixel p after plane fitting using the
local depths, and ® is a constant that controls the planarity
quality of segments. pg is a pixel set for all pixels in the
segment S, N,;(f(ps)) denotes the number of deflected pixels
in the segment S, N(ps) denotes the number of pixels in the
segment S, and y € (0, 1) controls the planarity level of the
“planar” segment. If N;(f(ps)) > N(ps) * p, we would not
construct a homologous segmentation term for the segment
S. Otherwise, the segmentation term would be constructed
using the Robust P" Potts model.

The segmentation function E,,(f) using the Robust P"

seg

Potts model is defined as
1
Ni “~ /max if Ni <Q
b ()= MU Gre ENG RN
Ymax otherwise,

where N;(f(ps)) denotes the number of pixels in the segment
S not taking the dominant label, y,,., is the maximum value
of label inconsistency cost, and Q is the truncation parameter
controlling the rigidity of segmentation function. The Robust
P" Potts model proposed by Kohli et al. [15] is shown in
Figure 6.

Concrete constructing procedure of segmentation term
for each segment is shown in Algorithm 1.

The segmentation terms enforce the plane trends into the
segments which can be represented by plane approximately.

2.6. Energy Minimization Process Based on Graph Cuts. In
order to minimize the global energy function by graph cut,
all energy terms of this energy function must be submodular
according to [26]. In the light of additive principle, if every
term in energy function is submodular, the whole global
energy function will be submodular. The unary term, such as
data term, is always submodular. The pairwise term, namely,
smooth term, also is submodular since it satisfies the inequal-
ity E*/(0,0) + E"/(1,1) < E"(0,1) + E*/(1,0). And from the
definition of Robust p" Potts model, the segmentation term
does satisfy the definition of the submodularity on F~ (N >
3) [27], if and only if all its projections on two variables are
submodular.

According to [26], the segmentation terms can be trans-
formed into sum of pairwise terms:

Eqeg = min,, ,, <r0 (1 —my) +64mg Z w; (1= 1;) +rymy

i€y

+6, (1 —ml)Zwiti —8).

i€c

(10)

Finally, the global energy function is minimized by
utilizing the minimum cut on the graph as shown in Figure 7.
The minimum cut can be calculated very efficiently using the
a-expansion move algorithm [18].

The detailed minimization process is as shown in
Algorithm 2.
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Input: segment S, constant @, ratio y
Initialize c— ¢=0
Do

IE(|f(p) —d" (p)] > D)

c—>c=c+l

end If
While p € S
Na(f(ps)) = Na(f(ps)) = ¢
If (N, (f(ps)) > N(S)" )

Reject Constructing Segmentation Term
Else

Constructing Segmentation Term using the Robust P" Potts Model.

ALGORITHM 1: Constructing procedure of segmentation term.

Input: Labeling f, label sets L
Initialize finish — finish =1
Repeat

For (e € L)

If (E(f") < E(f))
f-f=f
finish — finish =0
end If
end For
Until finish =1
Return f

Using one a-expansion of f,find f* = argmin E(f') among f'

ALGORITHM 2: Energy minimization process by graph cut.

Ymax —

Eyy(f)

0 1 Q
N;(f(ps)

FIGURE 6: Behavior of the Robust P" Potts function. The figure shows
how the higher order cost of the Robust p" Potts function changes

with the number of pixels in the segment not taking the dominant
label.

3. Experiment

Our program is tested by a personal computer with a
2.20 GHz AMD Dual-Core CPU. All data sets are from [28-
31].

FIGURE 7: The graph for segmentation terms. S is source, T is the
sink, and ¢ represents clique; only two auxiliary nodes, namely, m,
and m, are needed for each clique.

For the Middlebury stereo datasets with four stereo test
pairs, that is, Tsukuba, Venus, Teddy, and Cones, Table 1
summarizes the quantitative performance of our method and
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FIGURE 8: The comparison of final depth maps for the Art, Dolls, and Moebius stereo datasets (from top to bottom). First row: the input left
images. Second row: the color segmentation results. Third row: the depth results of regular graph cut. Fourth row: the final depth map of our
global optimization method. Fifth row: ground truth. Sixth row: “bad pixel” map of matching results.



TABLE 1: Quantitative evaluation results (bad pixels percentage) of
different stereo matching methods for the Tsukuba, Venus, Teddy,
and Cones stereo test pairs.

Algorithm Tsukuba Venus Teddy Cones Average pf:rcent
of bad pixels

DCBGrid [19] 5.16 123 10.8 9.48 6.67

Our method 2.04 158 12.60 12.70 723

BioPsyASW [20] 4.91 341 1410 11.30 8.43

CSBP [21] 3.84 252 1730 14.20 9.47

Regular GC 443  6.56 39.80 59.00 2745

those of other stereo matching methods, roughly in descend-
ing order of overall performance. The comparisons with other
approaches show that our global optimization method is
fairly competitive with those state-of-the-art approaches.
For sake of declaring the generality of our global
optimization method, abundant other stereo image pairs
from Middlebury datasets are adopted for depth estimation.
Figure 8 illustrates that our global optimization method still
achieves satisfactory performance on other stereo images.

4. Conclusion and Discussion

Obviously, the local stereo matching methods based on self-
adapting matching window have obtained more outstanding
results than fixed matching window based ones. After apply-
ing the two proposed matching cost optimization strategies,
the local depth results are more accurate in occlusion areas
and borders of image. The smooth term makes the surface
of segments more close to the real objects. The higher
order term, namely, the proposed selective segmentation
term, which introduces the plane trend constraint selectively,
further enhances the accuracy at object level. In a word, our
global optimization method has achieved good performance
on Middlebury stereo datasets.
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