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Abstract

Motivation: Proteins are intrinsically dynamic entities. Flexibility sampling methods, such as molecular dynamics or
those arising from integrative modeling strategies, are now commonplace and enable the study of molecular con-
formational landscapes in many contexts. Resulting structural ensembles increase in size as technological and algo-
rithmic advancements take place, making their analysis increasingly demanding. In this regard, cluster analysis
remains a go-to approach for their classification. However, many state-of-the-art algorithms are restricted to specific
cluster properties. Combined with tedious parameter fine-tuning, cluster analysis of protein structural ensembles
suffers from the lack of a generally applicable and easy to use clustering scheme.

Results: We present CLoNe, an original Python-based clustering scheme that builds on the Density Peaks algorithm
of Rodriguez and Laio. CLoNe relies on a probabilistic analysis of local density distributions derived from nearest
neighbors to find relevant clusters regardless of cluster shape, size, distribution and amount. We show its capabil-
ities on many toy datasets with properties otherwise dividing state-of-the-art approaches and improves on the ori-
ginal algorithm in key aspects. Applied to structural ensembles, CLoNe was able to extract meaningful conforma-
tions from membrane binding events and ligand-binding pocket opening as well as identify dominant dimerization
motifs or inter-domain organization. CLoNe additionally saves clusters as individual trajectories for further analysis
and provides scripts for automated use with molecular visualization software.

Availability and implementation: www.epfl.ch/labs/lbm/resources, github.com/LBM-EPFL/CLoNe.

Contact: matteo.dalperaro@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The perception of molecular structures, especially proteins, is grad-
ually shifting from the concept of one single and rigid structure to
the idea that biomolecules natively exhibit a continuum of states
(Frank, 2018). Protein folding, post-translational modifications
(Audagnotto and Dal Peraro, 2017), binding to other molecules or
their involvement in catalytic events result in vast and complex con-
formational landscapes. Molecular dynamics (MD), thanks to pro-
gress in both its technological and algorithmic aspects, allows for
the simulation of key biomolecular events. Their observability, how-
ever, tends to be limited by currently accessible timescales.
Researchers consistently come up with innovative protocols to push
this limit further (Barducci et al., 2011; Bussi, 2014; Chavent et al.,

2016; Doerr et al., 2016; Hamelberg et al., 2004; Noé et al., 2019;
Shirts and Pande, 2000; Sultan et al., 2018; Wassenaar et al., 2015)
granting us with the ability to capture protein folding as well as pro-
tein–protein, protein–membrane and protein–ligand interactions
(Audagnotto et al., 2016; De Vivo et al., 2016; McKiernan et al.,
2017; Oleinikovas et al., 2016). State-of-the-art protocols for small-
molecule docking (Amaro et al., 2018; Kokh et al., 2011; Vahl
Quevedo et al., 2014), protein–protein docking and integrative
modeling strategies, in general, have shifted toward the integration
of dynamics in some form as well (Abriata and Dal Peraro, 2020;
Malhotra et al., 2019; Tamò et al., 2015). All of the aforementioned
aspects advocate dynamics as a cornerstone of modern structural
biology and push the need for efficient tools to extract functional in-
sight from structural ensembles in general.
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However, these advances come at a price. The sheer size, the in-
trinsic complexity and redundancy of structural ensembles makes
their successful analysis and computational integration non-trivial.
Coarse-graining tools such as cluster analysis effectively reduce sim-
ulations of thousands of conformations to few key biological states
and hence constitute a go-to approach with countless applications to
date [(Cheng et al., 2008; De Paris et al., 2015; de Souza et al.,
2017), reviewed in (Peng et al., 2018; Shao et al., 2007)]. Such states
may serve as basis of Markov state models (Husic and Pande, 2018;
Wang et al., 2018). To our knowledge, however, an algorithm able
to cluster data efficiently irrespective of their properties is still miss-
ing. Indeed, different cluster shapes, sizes and densities usually dic-
tate which clustering approach is best suited for a given task. The
most known and widely used scheme is probably that of k-means
and its many variations (Jain, 2010). This center-based clustering
scheme, however, suffers from unequal results due to random initial-
izations, the a priori setting of the number of clusters and its limita-
tion to spherical clusters. Alternatively, hierarchical schemes such as
the Ward-linkage agglomerative algorithm (Ward, 1963) do not re-
quire pre-setting the number of clusters and are popular for building
Markov state models (Beauchamp et al., 2012; Husic and Pande,
2017; Paris et al., 2015). They are however sensitive to noise and
outliers and may suffer from non-spherical clusters (Peng et al.,
2018). Conversely, DBSCAN (Ester et al., 1996) is able to manage
clusters regardless of shape by utilizing density differences between
clusters and noise. However, setting its parameter is not trivial and
its optimal value may not be unique throughout the dataset when
clusters of largely different densities are present. This limitation is at
the core of OPTICS, which can be seen as an extension of DBSCAN
(Ankerst et al., 1999), although not strictly advertised as a clustering
algorithm.

Defining metastable states of proteins is non-trivial due to the
large and often redundant number of internal degrees of freedom,
yielding sampled conformational spaces with local minima often de-
void of biological significance. We can make the assumption that,
given enough sampling and a choice of relevant features, metastable
states would lie in regions or clusters of high density, which would
be separated by valleys of different density levels that would corres-
pond to transitional states. Furthermore, no assumption can be
made on the shape or relative densities of clusters, which would de-
pend on both conformational sampling and target system.
Rodriguez and Laio (2014) designed the Density Peaks (DP) algo-
rithm aimed at clustering regardless of shape and dimensionality.
Their algorithm generated significant interest thanks to their clever
definition of cluster centers, which states that a cluster center should
display a higher density (q) than its neighbors and a high distance to
another point of higher density (d). DP takes a single input param-
eter, which relates to a cutoff distance for the computation of q.
However, it requires the user to specify thresholds for both q and d
mid-computation in order to select the cluster centers, which pre-
vents a fully automated clustering process. DP has since been
improved by the inclusion of k nearest neighbors (kNN) (Du et al.,
2016; Xie et al., 2016; Zhang and Li, 2015) or heat diffusion
(Mehmood et al., 2016) for a more robust estimation of q, which
allows for a better handling of cases where clusters have significant-
ly different densities. These improvements still require user interven-
tion for selecting cluster centers. Conversely, Wang and Xu (2017)
built on DP to automatically select cluster centers based on maxi-
mizing an average silhouette index, although other input parameters
are required instead. Liang and Cheng coupled principles from
DBSCAN with a divide-and-conquer approach to recursively and
automatically select cluster centers (Liang and Chen, 2016).
Recently, d’Errico et al. coupled DP with a non-parametric density
estimator (Rodriguez et al., 2018), yielding Density Peaks Advanced
(DPA; d’Errico et al., 2018). While exhibiting impressive robustness
to a variety of cluster shapes, densities and to outliers, DPA still suf-
fers from a few issues. We found that it performed worse than the
original on some typical benchmark datasets, and requires a sensi-
tive albeit unique input parameter. Moreover, both DP and DPA ex-
hibit an inconsistent outlier removal procedure. These drawbacks
may prove crucial when targeting structural biological data, where

regions at lower effective density may have equal or even increased
significance than others at higher densities. The complexity of bio-
logical structures leads to numerous unique yet equally relevant
choices of features, each with their own topology. The analysis of
such datasets is greatly hindered by sensitivity to input parameters,
which implies that tedious fine-tuning steps have to be undertaken.

Here, we introduce an approach to remedy these drawbacks,
enabling a facilitated analysis of complex real-world datasets from
structural biology. Our approach builds on the original DP algo-
rithm by introducing a fragmenting of the data into specific density
distributions. In essence, the local densities of each point are com-
puted using nearest neighbors and a Gaussian kernel and points
associated with local density maxima are identified as putative clus-
ter centers. To increase robustness to non-spherical cluster shapes,
clusters are merged using the Bhattacaryaa coefficient
(Bhattacharyya, 1943) by comparing density distributions derived
from putative cluster cores and boundaries. Finally, outliers from
impromptu noise fluctuations are removed by means of a Bayes clas-
sifier. This, to the best of our knowledge, constitute an original con-
tribution to the density peaks algorithm. Termed Clustering based
on Local density Neighborhoods (CLoNe), our approach relies on a
single input parameter that is both robust and intuitive to set. We
test it on many typical benchmark datasets and against state-of-the-
art clustering schemes. The local focus of CLoNe allows for the de-
tection of biological states of smaller frequency while its ease of use
allows the researcher to focus on choosing relevant biological fea-
tures for pre-processing or analyzing their structural ensemble with-
out being hindered by algorithmic limitations. Furthermore, CLoNe
outputs useful molecular visualization scripts for the validation of
cluster relevance in the target biological context (Supplementary Fig.
S1). We apply CLoNe on a range of structural datasets from MD
simulations or integrative modeling studies, each time detailing the
feature selection process and which information can be extracted
from the results. Our examples cover previously published studies
on protein–membrane interactions, internal structural rearrange-
ments of disordered proteins, cryptic allosteric pocket formation and
transmembrane dimerization motifs, and highlight the broad advan-
tages of CLoNe for the analysis of molecular structural ensembles.

2 Materials and methods

An overview and basic usage of CLoNe is available in
Supplementary Figure S1, on GitHub and the webpage of our la-
boratory (see Abstract section). We created a synthetic dataset con-
taining clusters of significantly different densities and various shapes
in order to showcase the procedure behind our approach. CLoNe
starts by finding the k nearest neighbors of each point in a dataset X
of N points using k-nearest neighbors (kNN) (Pedregosa et al.,
2011), yielding a neighbor matrix M where each row i contains all
the neighbors j of point i in increasing order of Euclidean distance.
To account for significant density differences between clusters, we
initially assume that all points are cluster centers. In a first step, we
estimate the local density q of each point i using a Gaussian kernel:

qi ¼
X

j�kNNi

e
�

Mi;j
dc

� �2

¼
X

j�kNNi

qij (1)

where kNNi is the set of nearest neighbors of i in increasing order of
distance and dc is a cutoff distance defined as to be superior to a
user-defined percentage pdc (the single input parameter of CLoNe)
of all distances within M, similar to the original DP algorithm
(Rodriguez and Laio, 2014). We define the core of putative cluster i
as the set of neighbors that contribute to qi at least as much of the
j�1 previous neighbors on average:

corei ¼ j � kNNijqij �
1

pdcN

Xj�1

k¼0
qik

� �
(2)

We show in Figure 1a the cardinality (number of elements) of
the core of each point in our synthetic dataset. As expected, this
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number is higher for points closer to real cluster centers and lower
for points laying on the outskirt of clusters. The visualization of core
cardinalities is an efficient way to observe the underlying topology
of the dataset. In order to identify if i is a genuine candidate for clus-
ter center, we identify its first neighbor j of higher density. If neigh-
bor j belongs to corei, then neighbor j is a better candidate for
cluster center in this region than i. Conversely, i is a genuine candi-
date for cluster center if j is not in the core of i. Cluster assignation
is done in a single step by assigning a point to the same cluster as its
nearest point of higher density, in order of decreasing local density,
similar to the original DP approach. The results at this stage of
CLoNe are shown in Figure 1a.

One of the drawbacks of the DP algorithm is its limited ability to
deal with clusters with more than one peak or those with an elon-
gated region of similar density, such as the noisy circles benchmark

dataset (Supplementary Fig. S2). This is true at this stage of CLoNe
as well, as the Gaussian kernel in (1) is biased toward determining
cores with spherical shapes (Fig. 1b). We can make the assumptions
that if two existing clusters A and B should be merged, then the
density from one core to the other should be relatively constant.
This can be estimated by looking at the core cardinality distribution
of the points belonging to the core of both clusters as well as that of
the points from the boundary between them (Fig. 1b, left), which
can be defined as:

boundaryAB ¼ i 2 A; j 2 Bjd i; jð Þ < dcg
�

(3)

Then, we define the following probability density function for
the ensemble of points belonging to either cluster cores or the
boundary from (3):

Ps ¼ KDE corei; i 2 Sf gð Þ (4)
where S denotes one of the aforementioned ensembles and #corei the
core cardinality of point i and KDE refers to the probability density
function estimated by unimodal Gaussian kernel density estimation.
Similarity between probability distributions can be measured using
the Bhattacharyya coefficient (BC) (Bhattacharyya, 1943), which is
bound between 0 and 1. Thus, the formula to compute the BC be-
tween the core of cluster A with the boundary from (3) becomes:

BCA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PboundPcoreA

p
(5)

We take the decision of merging Clusters A and B if the mean of
their respective BC with their boundary is above a threshold sBC:

B A; Bð Þ ¼ 1

2
BCA þ BCBð Þ > sBC (6)

where PcoreB
is obtained as for cluster A in (5) and sBC was chosen to

be the 65th percentile to limit uncertainty and based on benchmarks
(Fig. 1 and Supplementary Fig. S2). Taking the mean of both coeffi-
cients prevents the merging of a cluster whose probability density is
similar to that of its boundary with a cluster of significantly higher
density. This enabled us to identify clusters that can hardly be
defined with a single density peak, such as uniform density over
non-spherical shapes (Figs 1b and 2a). The point with highest q is
chosen as the new cluster center. If pdc is chosen too small, clusters
may be split into sub-clusters. Within our approach, these sub-
clusters are likely to be merged into clusters matching the original
topology, expanding the range of acceptable values for pdc and mak-
ing it an input parameter less sensitive than the one of DPA
(Supplementary Fig. S3).

The second drawback of using the Gaussian kernel in (1) is that
it may falsely identify impromptu local noise fluctuations as cluster
centers (Fig. 1b). To remedy this, we define two probability density
functions. Mcores is the probability density of the local density of all
points belonging to any cluster core as per (2):

Mcores ¼ KDEð qx;x 2 corei 8i 2 Cf gÞ (7)

where C is the set of cluster centers remaining after the previous
merging step. Moutliers is the equivalent function for all points identi-
fied as outliers:

Moutliers ¼ KDEð qx; x 2 X if qx < f � qcenterx

� �
Þ (8)

where qcenterx
is the local density of the center of the cluster x

belongs to and f an arbitrary fraction chosen to be 0.1 by default
and used throughout this article. To determine if an identified clus-
ter is more probable to be derived from noise than to be a genuine
cluster, we use a Bayesian classifier. For each cluster core ci, we de-
rive the following posterior probabilities using Bayes’ theorem:

p Yjcið Þ ¼ p Yð Þ pðcijYÞ
pðciÞ

; Y 2 outliers; coresf g (9)

where the prior probabilities are defined as follows:

Fig. 1. Clustering based on local density neighborhoods. We created a synthetic

dataset that contains four croissant-shaped clusters of 500 elements each with differ-

ent scaling as well as a cluster in the shape of a cross with 4000 elements and added

Gaussian noise. (a) On the left, the cardinality of the core of each point in the data-

set. On the right, the clusters obtained after the first stage of clustering. (b) The aver-

age Bhattacaryya coefficient B(A,B) between two Clusters A and B is shown. The

upper left plots show an example of two clusters being merged corresponding to the

upper square in panel (a). The lower left plots show an example of two clusters that

will not be merged corresponding to the lower square in panel (a). Points belonging

to the core of each cluster are shown in black, regular points in shades of gray and

points belonging to the boundary in red. The plot on the right shows the clustering

after merging clusters. (c) CLoNe uses a Bayesian classifier to decide if a cluster is

genuine or arises from noise fluctuations. On the left, the corresponding probability

density functions of points belonging to any cluster cores (black), noise (blue), or to

individual cluster cores (light blue). The range of local density of clusters classified

as noise fluctuations are shown on the secondary y-axis (dark blue). The final clus-

tering result is shown on the right, with identified outliers shown as black crosses
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p Yð Þ ¼ jYj
N

; Y 2 outliers; coresf g (10)

where jYj denotes the cardinality of the corresponding class. The
likelihoods pðcijYÞ can be computed by evaluating the previously
defined probability distributions (7) and (8) at ci. Disregarding the
evidence pðciÞ common for both outliers and cores classes, we thus
obtain the following Bayesian classifier:

ŷi ¼ argmax
Y2 outliers; coresf g

p Yð Þ
Y

x2ci
MYðqxÞ (11)

This classifier enabled us to remove all cluster centers arising
from noise fluctuations. Combined with the previous merging step,
the clustering is now complete (Fig. 1c).

The software has been written using Python3.7. When used on
structural biological data, CLoNe outputs cluster centers as separate
PDB files, individual clusters as XTC trajectories and Tcl scripts for
automated loading within the visualization software VMD (Visual
Molecular Dynamics, (Humphrey et al., 1996)). The loading of MD
trajectories as well as the saving of cluster centers and cluster sub-
trajectories is done through the MDTraj package (McGibbon et al.,
2015). We use the scipy (Jones et al., 2001), scikit-learn (Pedregosa
et al., 2011) and Statsmodels (Seabold and Perktold, 2010) packages
for many operations described in the previous subsection and to
compare CLoNe to other clustering algorithms.

3 Results

3.1 Automatic cluster center determination from local

density neighborhood analysis
We applied CLoNe to a large set of common benchmark datasets
from various sources (Chang and Yeung, 2008; d’Errico et al., 2018;
Fränti and Sieranoja, 2018; Fu and Medico, 2007; Gionis et al.,
2007; Pedregosa et al., 2011), covering different key properties of
clusters, such as non-spherical shapes, anisotropy, as well as signifi-
cant size and density differences, all of which can be expected from
real-world datasets from structural biology. In the previous section,
we detailed how CLoNe automatically detects cluster centers, accur-
ately merges clusters and removes outliers, succeeding in cases where
previous iterations of DP did not (Fig. 2a and Supplementary Fig.
S2). Similarly to the original DP algorithm (Rodriguez and Laio,
2014), CLoNe requires a single input parameter pdc, which relates
to a cutoff distance used in the estimation of local densities (see
Section 2). In general, pdc takes a value in a small range and is

intuitive to set. For instance, with pdc values of 1 or 2 local densities
will be estimated considering neighborhoods small enough to iden-
tify individual spiral branches as clusters (Fig. 2b). For higher values
of pdc, the scale of the Gaussian kernel in Equation (1) will increase
and merge individual branches into whole spirals, allowing the study
of multiple hierarchies intuitively (Fig. 2c). Other than clusters with
non-spherical shapes, CLoNe identifies successfully the numerous
Gaussian clusters of the A3 dataset (Fig. 2d). Some degree of over-
lapping in real-world datasets is to be expected. The S4 dataset con-
tains 15 highly overlapping Gaussian clusters of varying densities
and shapes but equal size. As with the A3 dataset, CLoNe does not
perform unnecessary merging with nearby clusters (Fig. 2e) and is
robust to large amounts of outliers on top of clusters with signifi-
cantly different densities (Fig. 2f). This general applicability of
CLoNe coupled with a single, robust and easy to set input parameter
(Supplementary Fig. S3) is unique among the commonly used clus-
tering algorithms found in the Scikit-learn package (Pedregosa et al.,
2011). In fact, CLoNe is among the fastest algorithms from that
package in addition to both DP and DPA and the most accurate on
the available benchmark cases (Supplementary Fig. S2). The only
other algorithm succeeding on all benchmark cases is OPTICS
(Ankerst et al., 1999), which runs slightly slower than CLoNe on
these datasets and tends to classify too many points as outliers.
Similar to the original implementation of DP, CLoNe is applicable
to high dimensionality datasets as well (Supplementary Table S1
and Supplementary Fig. S4).

One of the principal aims of this work is to offer a clustering al-
gorithm able to classify unlabeled biological structural ensembles
into relevant states associated with their function and mechanism of
action. We have applied CLoNe to real-world structural biology
data reporting on the dynamic conformational space of a protein
that associates with its specific biological membrane, cryptic allo-
steric pocket opening and dimerization of transmembrane proteins.

3.2 Determining relevant states within protein

conformational ensembles
COQ9 is a lipid-binding protein associated with the biosynthesis of
coenzyme Q (CoQ), a redox-active lipid that is essential for cellular
respiration (Lohman et al., 2014). Recently, coarse-grained molecu-
lar dynamics (CG-MD) simulations and liposome co-flotation assays
were used together to reveal that COQ9 accesses membranes in a
multi-step fashion through a distinct, C-terminal amphipathic helix
(a10) (Lohman et al., 2019). In these simulations, COQ9 first dif-
fused in the aqueous environment, then underwent various

Fig. 2. Local neighborhood density analysis for automated center and cluster determination. For each panel, the cardinality of the core of each point as detailed in the Section 2

is shown on the left. The resulting clusters are shown on the right, with clusters in different colors and identified outliers as black crosses. (a) Noisy circles dataset. (b and c)

Four instances of spiral dataset with different values of the input parameter yielding different yet valid clusters. (d) The a3 dataset containing 50 Gaussian clusters. (e) The s4

dataset with highly overlapping Gaussian clusters, some with anisotropic distributions. (f) A synthetic dataset with clusters of significantly different sizes and densities taken

from Density Peaks Advanced
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conformational changes upon membrane binding (Lohman et al.,
2019). We applied CLoNe to the CG-MD trajectory used in the lat-
ter study and sought to identify the main binding events pertaining
to the protein itself. To this end, we extracted features characteriz-
ing both its movements in the aqueous environment through moni-
toring its distance to the membrane as well as key conformational
changes based on the angle between the unique a10 helix of COQ9
and its globular domain (Fig. 3a, left). Using these two features,
CLoNe outputs three clusters, each of which seem to follow
Gaussian distributions (Fig. 3b). One cluster regroups all conforma-
tions that correspond to diffusion movements in the aqueous envir-
onment, while the other two highlight the membrane association of
a10 first followed by the globular domain as a converging step
(Fig. 3a), thus its higher density (Fig. 3b). Similar results can be
obtained hypothesis-free by using raw atomic spatial coordinates
(Supplementary Fig. S4). The Gaussian distribution of structural
clusters has also been observed in a recent study from our group
involving the KAP1 protein, where CLoNe was also successfully
applied (Supplementary Fig. S5) (Fonti et al., 2019).

3.2 Isolating sub-ensembles of relevant conformations

for ligand–target interactions
In recent years, small-molecule docking software is no stranger to
dynamics, taking into account ensembles of ligand conformations
(Amaro et al., 2018) or receptor flexibility (Kokh et al., 2011;
Salmaso and Moro, 2018; Vahl Quevedo et al., 2014). A recent
study highlighted a novel replica exchange-based MD protocol com-
bined with benzene probes, where each replica harbors a different
scaling of water–protein interactions (Oleinikovas et al., 2016).
Using this method, the authors could observe the opening of cryptic
allosteric pockets in several systems, including that of the TEM1 b-
lactamase, which plays a critical role in antibiotic resistance (Horn
and Shoichet, 2004). The simulations were started from the apo
crystal structure with a closed allosteric pocket (Fig. 4a). Out of the
eight replicas of the simulation, we chose three with neutral (first),
medium (fourth) and highest (last) scaling factors as a tradeoff be-
tween maximizing the sampled conformational space and limiting
redundancy of the over-represented closed conformations
(Oleinikovas et al., 2016) (Fig. 4b). Along with key residue R244 on
the opposite wall of the pocket, the opening of a-helices H11 and
H12 and key residues L220 and N276 dictate pocket opening and
allow two inhibitors to be accommodated (Horn and Shoichet,
2004), while the three mentioned residues form a triad when the
pocket is closed. In addition to the opening of the two helices, visual
inspection of the simulations indicated a deepening of the pocket. As
a result, we chose features tracking the distance between the Ca of
residues L220 and N276 as well as that of their sidechains to moni-
tor pocket opening as well as the distance between the Ca of I263
and I279 as a measure of pocket depth (Fig. 4a). The original study
used fpocket (Le Guilloux et al., 2009) to monitor pocket exposure
in each replica (Fig. 4b, top). The same was done on the clusters

obtained by CLoNe (Fig. 4b, bottom), showing different levels of
pocket openness. Corresponding cluster centers highlight key struc-
tural differences between each state (Fig. 4c), which are representa-
tive of the feature distribution per cluster (Fig. 4d, top). Cluster
assignation follows the observation of the original publication,
where open states were more prevalent in the replica of medium
scaling (Fig. 4d, bottom).

3.3 Identifying dominant conformational motifs in

protein oligomerization
Another challenge in structural biology is the understanding of how
biomolecules oligomerize to distinctive functional states. One of
these cases, the transmembrane a-helix of the Amyloid Precursor
Protein (termed APP hereafter), has recently been studied by our lab
through the high-throughput MD protocol DAFT (Docking Assay
For Transmembrane components, (Wassenaar et al., 2015)) in order
to identify which of two dimerization motifs is promoted depending
on the lipid composition of the synaptic plasma membrane
(Audagnotto et al., 2016). The G700G704G708 motif is thought to
direct the binding of APP to regulators promoting cholesterol bio-
synthesis, while the G709A713 motif would bind to cholesterol mole-
cules (Fig. 5a). Extracting features from molecular datasets is not
always straightforward. Macromolecular movements possess an in-
herent redundancy due to the sheer number of internal degrees of
freedom or prior knowledge may be lacking in order to select mean-
ingful features, such as those highlighted in Figures 3 and 4. The use
of dimensionality reduction methods, such as principal component
analysis (PCA) has been seen for clustering of MD simulations
(Wolf and Kirschner, 2013) and can help identifying coordinates of
significance while discarding less useful dimensions. The DAFT sim-
ulations of APP from (Audagnotto et al., 2016) are over 2 ms in total
and contain countless states, many corresponding to unbound
monomers. The first principal component based on the Cartesian
coordinates of the coarse grain backbone covers 77% of the vari-
ability in the simulation, highlighting two clusters (Fig. 5b). The
blue cluster of lower amplitude corresponds to all states exhibiting
unbound monomers (Fig. 5e, left), while the second cluster regroups
all the dimerized states regardless of motif. Focusing on that cluster,
we calculated the pair-wise distances between the backbone atoms
of each motifs in both helices (Fig. 5a) and reduced these features to
a two-dimensional principal space covering 94% of the variability
before clustering (Fig. 5c). We want to highlight CLoNe’s ability to
analyze the neighborhood of low-density clusters without influence
from high-density regions (Fig. 5c and Supplementary Table S2).
Clusters in blue in Figure 5d all depict states close to the
G700G704G708 motifs and those in green the G709A713 motif. In the
middle are two clusters, shown in brown, that we interpret as hy-
brid. In all cases, the darker-shaded clusters of each group corres-
pond to the closest to the optimal motif arrangement, while the
others can be considered as closely related metastable states
(Supplementary Fig. S6). Similar to the original study (Audagnotto

Fig. 3. Utilizing Gaussian cluster properties to extract centers as key biological states of the COQ9 membrane protein. (a) COQ9 and its associated features, which include an

internal angle h and its distance to the membrane d (left). Cluster centers are shown on the right side of the panel. (b) Every frame is plotted in the mentioned feature space and

color coded according to their core cardinality (left) and cluster assignation (right), which follows the same color code as in (a). Outliers are shown as black crosses and centers

as black stars
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et al., 2016), CLoNe finds the preferred dimerization motif to be
G700G704G708 as evidenced by the corresponding centers’ local den-
sities, cluster population and core cardinality (Fig. 5c and
Supplementary Table S2). A comparison between CLoNe and other
state-of-the-art algorithms on all the structural data shown in this
section demonstrates the advantages of CLoNe for analysis of mo-
lecular structural ensembles (Supplementary Fig. S7).

4 Discussion

Many clustering methods rely on parameters that are often non-
trivial to optimize or on random initial conditions that may drastic-
ally change the outcome. Commonly used algorithms are generally
restricted to specific cluster properties, forcing the researcher
through a process of trial and error. Moreover, choosing relevant
features from structural datasets is challenging and different features
may generate different cluster topologies, sometimes irrelevant.
CLoNe was designed with these issues in mind and aims to provide
a stream-lined analytic process to yield results rapidly along with
helpful visualization scripts to analyze and confirm the relevance of
the clusters in the target biological context (Supplementary Fig. S1).
CLoNe’s only parameter regulates the size of the local neighborhood
considered around each data point, which can be regarded as cluster
sizing parameter. Its value need only be decreased if clusters seem
too inclusive and vice-versa, making CLoNe an intuitive algorithm
to use in addition to its general applicability. For structural datasets,
CLoNe is able to extract clusters as separate trajectories and pro-
vides scripts for their automatic loading in the visualization software
VMD (Humphrey et al., 1996). For larger macromolecules, the con-
cept of a conformational state is blurry, hard to determine and often
depends on context. It is not always clear which features to use to
obtain an accurate partition of the structural ensemble. The results
obtained on COQ9 can be obtained hypothesis-free on raw spatial
coordinates or using PCA to extract relevant features
(Supplementary Fig. S4). This was done in the case of APP as well as
to reduce an otherwise redundant feature space to one of lower
dimensionality. If one wishes to disentangle internal from overall
motion, dihedral PCA was used with success to study peptide fold-
ing (Altis et al., 2007; Mu et al., 2004). However, when other

features than the chosen ones can be expected to exhibit motions of
larger amplitudes, PCA will favor the latter over the former. This is
true for the TEM1 b-lactamase, where internal structural motions
will be more prevalent than the fluctuations of the selected key
pocket residues. In such cases, a feature-based approach is to be pre-
ferred. Alternatively, some will advocate the use of time-lagged inde-
pendent component analysis (TICA) (Naritomi and Fuchigami,
2011) instead. TICA was found to be the better alternative for build-
ing Markov state models (Husic and Pande, 2018; Pérez-Hernández
et al., 2013). However, in cases where large amplitude fluctuations
are the target or when there is redundancy in features, we believe
that PCA remains a safe approach.

As the conformational ensembles presented in this study tend to
exhibit Gaussian distributions, CLoNe may thus be used to extract
cluster centers as higher probability states. Such states offer an over-
view of the ensemble and may serve as starting models for building
Markov state models in general. Moreover, the precision of the clas-
sification achieved by CLoNe enables the identification of dominant
biological states from large datasets. Beyond the case of APP,
CLoNe identified different key pocket conformations in the case of
TEM1 b-lactamase. Further clustering efforts on this system should
target the different positions of R244, which was not tracked in this
study but was previously shown to play a dual role between TEM1’s
active site and allosteric pocket (Horn and Shoichet, 2004). CLoNe
may then be used as a pre-processing tool prior to small-molecule
docking studies, where accounting for receptor flexibility is an active
development area (Kokh et al., 2011; Vahl Quevedo et al., 2014).

Integrative modeling aims at incorporating data from multiple
sources to determine the structure of macromolecular complexes.
Such hybrid strategies typically combine low resolution data of
whole complexes with high resolution structures of their compo-
nents so as to predict the quaternary structure of the former
(Cassidy et al., 2018). This process is however severely hindered by
structural dynamics differing between a complex and its isolated
components. For this reason, many hybrid modeling strategies now
incorporate some form of dynamics to bridge this gap (Malhotra
et al., 2019; Tamò et al., 2015). While we previously utilized classic-
al MD for the prediction of heptameric aerolysin pores (Degiacomi
et al., 2013; Degiacomi and Dal Peraro, 2013), such an approach
would not be feasible for heteromultimeric assemblies where

Fig. 4. Identification of different opening states of the allosteric cryptic pocket in TEM1 b-lactamase. (a) apo and Holo structures (left and right, respectively). Allosteric inhibi-

tors are shown in gray and white. Features following helical opening include the distance between Ca atoms of N276 and L220 (medium blue) and the Cc of their sidechain

(light blue). Pocket depth is monitored by the distance between Ca-carbons of I263 and 279 (dark blue). (b) The pocket exposure calculated using the fpocket software for the

original replicas (top) and for each clusters (bottom). The dotted line in both is the reference value of the holo crystal structure used in the original paper. (c) The center of each

cluster in cartoon representation on top of a surface representation of the allosteric pocket, highlighting the different states of helical openness and pocket depth. The triad

N276-L220-R244 governing pocket opening and closing are shown as gray sticks. (c) The distribution of each feature for each cluster (top) and the cluster assignation along

the three chosen replicas (bottom)
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multiple conformational ensembles are required simultaneously.
Reducing them to their crucial components may enable the struc-
tural characterization of large macromolecular complexes, which
may otherwise be intractable. Applied to the fields of small-
molecule docking, integrative modeling and structural dynamics
studies, CLoNe presents itself as a versatile and powerful tool for
modern computational structural biology.

Acknowledgements

We thank Vladimiras Oleinikovas and Francesco L. Gervasio for providing

the simulations of the TEM1 b-lactamase as well as offering general advice;

Lucien F. Krapp and Romain Groux for helpful discussions.

Funding

M.D.P. lab was supported by the Swiss National Science Foundation (grants

number 200021_157217 and 31003A_170154).

Conflict of Interest: none declared.

References

Abriata,L.A. and Dal Peraro,M. (2020) Will cryo-electron microscopy shift

the current paradigm in protein structure prediction? J. Chem. Inf. Model.,

60, 2443–2447.

Altis,A. et al. (2007) Dihedral angle principal component analysis of molecular

dynamics simulations. J. Chem. Phys., 126, 244111.

Amaro,R.E. et al. (2018) Ensemble docking in drug discovery. Biophys. J.,

114, 2271–2278.

Ankerst,M. et al. (1999) OPTICS: Ordering Points to Identify the Clustering

Structure. In: Proceedings of the 1999 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’99, pp. 49–60. ACM, New

York, NY, USA.

Audagnotto,M. and Dal Peraro,M. (2017) Protein post-translational modifica-

tions: in silico prediction tools and molecular modeling. Comput. Struct.

Biotechnol. J., 15, 307–319.

Audagnotto,M. et al. (2016) Effect of the synaptic plasma membrane on the

stability of the amyloid precursor protein homodimer. J. Phys. Chem. Lett.,

7, 3572–3578.

Barducci,A. et al. (2011) Metadynamics. Wiley Interdiscip. Rev. Comput.

Mol. Sci., 1, 826–843.

Beauchamp,K.A. et al. (2012) Simple few-state models reveal hidden complex-

ity in protein folding. Proc. Natl. Acad. Sci. USA, 109, 17807–17813.

Bhattacharyya,A. (1943) On a measure of divergence between two statistical

populations defined by their probability distributions. Bull. Calcutta Math.

Soc., 35, 99–109.

Bussi,G. (2014) Hamiltonian replica exchange in GROMACS: a flexible im-

plementation. Mol. Phys., 112, 379–384.

Cassidy,C.K. et al. (2018) CryoEM-based hybrid modeling approaches for

structure determination. Curr. Opin. Microbiol., 43, 14–23.

Chang,H. and Yeung,D.-Y. (2008) Robust path-based spectral clustering.

Pattern Recogn., 41, 191–203.

Chavent,M. et al. (2016) Molecular dynamics simulations of membrane pro-

teins and their interactions: from nanoscale to mesoscale. Curr. Opin.

Struct. Biol., 40, 8–16.

Cheng,L.S. et al. (2008) Ensemble-based virtual screening reveals potential

novel antiviral compounds for avian influenza neuraminidase. J. Med.

Chem., 51, 3878–3894.

d’Errico,M. et al. (2018) Automatic topography of high-dimensional data sets

by non-parametric density peak clustering. arXiv:1802.10549v1 [stat.ML]

De Paris,R. et al. (2015) Clustering molecular dynamics trajectories for opti-

mizing docking experiments. Comput. Intell. Neurosci., 2015, 1–9.

de Souza,V.C. et al. (2017) Clustering algorithms applied on analysis of pro-

tein molecular dynamics. In: 2017 IEEE Latin American Conference on

Computational Intelligence (LA-CCI). Arequipa, 2017, pp. 1–6. https://doi.

org/10.1109/LA-CCI.2017.8285695

De Vivo,M. et al. (2016) Role of molecular dynamics and related methods in

drug discovery. J. Med. Chem., 59, 4035–4061.

Degiacomi,M.T. and Dal Peraro,M. (2013) Macromolecular symmetric as-

sembly prediction using swarm intelligence dynamic modeling. Structure,

21, 1097–1106.

Degiacomi,M.T. et al. (2013) Molecular assembly of the aerolysin pore reveals

a swirling membrane-insertion mechanism. Nat. Chem. Biol., 9, 623–629.

Doerr,S. et al. (2016) HTMD: high-throughput molecular dynamics for mo-

lecular discovery. J. Chem. Theory Comput., 12, 1845–1852.

Du,M. et al. (2016) Study on density peaks clustering based on k-nearest neigh-

bors and principal component analysis. Knowl. Based Syst., 99, 135–145.

Ester,M. et al. (1996) A density-based algorithm for discovering clusters a

density-based algorithm for discovering clusters in large spatial databases

with noise. In: Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, KDD’96, pp. 226–231. AAAI

Press, Portland, OR, USA.

Fonti,G. et al. (2019) KAP1 is an antiparallel dimer with a natively functional

asymmetry. Life Science Alliance, 2(4), e201900349.

Frank,J. (2018) New opportunities created by single-particle cryo-EM: the

mapping of conformational space. Biochemistry, 57, 888–888.
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