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Amygdala is an intensively researched brain structure involved in social processing and
multiple major clinical disorders, but its functions are not well understood. The functions
of a brain structure are best hypothesized on the basis of neuroanatomical connectivity
findings, and of behavioral, neuroimaging, neuropsychological and physiological
findings. Among the heaviest neuroanatomical interconnections of amygdala are
those with perirhinal cortex (PRC), but these are little considered in the theoretical
literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed
representations of objects and conspecifics. Consistent with this connectivity, amygdala
is hypothesized to contribute meaningful and fine-grained representations of intangible
knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and
physiological findings further support amygdala mediation of a diversity of such
representations. These representations include subjective valence, impact, economic
value, noxiousness, importance, ingroup membership, social status, popularity,
trustworthiness and moral features. Further, the formation of amygdala representations
is little understood, and is proposed to be often implemented through embodied
cognition mechanisms. The hypothesis builds on earlier work, and makes multiple
novel contributions to the literature. It highlights intangible knowledge, which is an
influential but insufficiently researched factor in social and other behaviors. It contributes
to understanding the heavy but neglected amygdala-PRC interconnections, and the
diversity of amygdala-mediated intangible knowledge representations. Amygdala is a
social brain region, but it does not represent species-typical social behaviors. A novel
proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate
amygdala’s involvement in several core symptoms of autism spectrum disorder (ASD).
Specifically, novel and testable explanations are proposed for the ASD symptoms
of disorganized visual scanpaths, apparent social disinterest, preference for concrete
cognition, aspects of the disorder’s heterogeneity, and impairment in some activities of
daily living. Together, the presented hypothesis demonstrates substantial explanatory
potential in the neuroscience, social and clinical domains.

Keywords: amygdala, perirhinal cortex, intangible knowledge, embodied cognition, paradoxical functional
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INTRODUCTION

Amygdala is a complex brain structure, that is located in medial
temporal lobe, and comprises some 13 nuclei and cortical areas
in monkey (Freese and Amaral, 2009). Major nuclei are the
lateral, basal, accessory basal and central amygdaloid nuclei,
which constitute 33%, 27%, 10% and 3% of total amygdaloid
neuron numbers in human, respectively (Schumann and Amaral,
2005). Amygdala is an ancient structure, with a homolog of
it present in reptiles and origins in still earlier animal groups
(Laberge et al., 2006; Murray et al., 2009), as well as exceptionally
widely interconnected in primate (Young et al., 1994; Freese
and Amaral, 2009). Amygdala is also a multi-functional brain
region, with some functions being well established, such as
emotional memory enhancement (Hamann, 2009; Murty et al.,
2010; McIntyre et al., 2012; McGaugh, 2013), and participation in
the fear network (Shin and Liberzon, 2010; LeDoux, 2014; Janak
and Tye, 2015). Other functions are more recently reported, as
with the representation of features of behavioral plans (Hernádi
et al., 2015; Zangemeister et al., 2016).

Amygdala is likely involved in further cognitive functions, and
has long been suggested to mediate importance, significance,
salience and so forth (Geschwind, 1965; Gloor et al., 1982;
Amaral and Price, 1984; Sander et al., 2003; LaBar and Warren,
2009; Phelps, 2009; Adolphs, 2010; Pessoa and Adolphs,
2010). These proposals are built upon but reconceptualized
and elaborated further in this hypothesis article. Specifically,
rather than few, coarse-grained, often genetically pre-specified
representations of salience, relevance, or related concepts,
the novel hypothesis is presented that a principal function
of amygdala is the representation of diverse, meaningful and
fine-grained, intangible knowledge representations. Moreover,
amygdala often elaborates such knowledge representations
through interactions between brain, body and environment,
in accordance with the postulates of embodied cognition
(Varela et al., 1991; Chiel and Beer, 1997; Clark, 1999, 2008).
The hypothesis should significantly advance understanding
of amygdala, its involvement in normal social functions, its
contribution to clinical disorders with amygdala involvement,
such as posttraumatic stress disorder, anxiety disorders,
depressive disorders and autism spectrum disorder (ASD;
Koenigs et al., 2008; Mayberg, 2009; Schumann and Amaral,
2009; Shin and Liberzon, 2010; Amaral et al., 2011; Price
and Drevets, 2012; Weston, 2014), and is relevant for a
comprehensive account of amygdala function. Generally, the
functions of brain structures are best understood through
connectivity findings, and through behavioral, physiological and
related findings (Behrens and Johansen-Berg, 2005; Passingham
and Wise, 2012), so such findings pertaining to amygdala and
related regions will be examined in the next two sections,
respectively.

CONNECTIVITY

Amygdala Connectivity
Connectivity is largely elucidated through neuroanatomical
tracing studies in monkey and rodent, as well as physiological

studies. Amygdala interconnections are broadly similar in rodent
and non-human primate, and likely in human also (McDonald,
1998). Amygdala receives important inputs from the great
majority of sensory modalities, and these relay via high-level
subregions of sensory processing pathways. Visual inputs from
the anterior-most part of the ventral visual object pathway,
principally area TEa in ventral temporal cortex (VTC) in
monkey, relay to amygdala (Iwai and Yukie, 1987; McDonald,
1998; Stefanacci and Amaral, 2000, 2002; Freese and Amaral,
2009). Biological motion and multimodal information are
processed in superior temporal sulcus (STS; Beauchamp, 2005;
Pelphrey et al., 2005; Saygin, 2007), of which predominantly
anterior STS relays to amygdala (McDonald, 1998; Stefanacci
and Amaral, 2000, 2002; Freese and Amaral, 2009). These
interconnections are further supported by findings that early
amygdala lesions in monkey and human result in significant
degradation of anterior subregions of VTC and STS (Boes et al.,
2012; Grayson et al., 2017). Auditory inputs from the high-level
auditory area, in monkey predominantly area TAa located in
superior temporal gyrus (STG), relay to amygdala (McDonald,
1998; Stefanacci and Amaral, 2000, 2002; Yukie, 2002; Freese and
Amaral, 2009). Olfactory information is gathered by sensory cells
of the olfactory epithelium, and projected to the olfactory bulb,
primary olfactory cortex, thence to secondary olfactory cortex
in orbitofrontal cortex (OFC; Shepherd, 2006; Patin and Pause,
2015). The olfactory bulb and olfactory cortices project to several
amygdaloid nuclei (McDonald, 1998; Pitkänen, 2000; Patin and
Pause, 2015). Further, neuroimaging studies of healthy humans
have found reliable amygdala involvement in odor processing
(see for review, Patin and Pause, 2015).

Somatosensory, gustatory, nociceptive and viscerosensory
information are collected by specialized receptors and processed
through multiple and complex sensory processing pathways that
include subregions of insula (Friedman et al., 1986; Ostrowsky
et al., 2000; Saper, 2000, 2002; Craig, 2002; Gauriau and Bernard,
2002; Pritchard and Norgren, 2004; Mazzola et al., 2006; Small,
2010). Somatosensory information relays from posterior insula
to amygdala (Friedman et al., 1986; McDonald, 1998; Pitkänen,
2000), andmultiple forms of somatosensation are thereby relayed
to amygdala. These include, as found by single-cell recording
in monkey, tactile stimulation of the face, for stimuli in the
mouth the features of viscosity, fatty texture, grittiness, irritation
(elicited by capsaicin) and temperature (Kadohisa et al., 2005;
Mosher et al., 2016), and as found by fMRI in human, reducing
bodily temperature sensations (Oi et al., 2017). Gustatory
information relays from anterior insula to amygdala (McDonald,
1998; Pitkänen, 2000), and single-cell recording studies in
monkey report gustatory processing in amygdala (Kadohisa et al.,
2005). Nociceptive information relays from posterior insula to
amygdala (McDonald, 1998; Gauriau and Bernard, 2002). In
addition, clinical and experimental neuroimaging studies of
nociceptive processing in human, report activation of a network
of brain regions that includes amygdala (see for meta-analysis,
Simons et al., 2014).

Viscerosensory nerves of the autonomic nervous system
(ANS) collect diverse forms of information from widespread
bodily systems, including heart, lungs, gut, pelvic organs
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and so forth, and such information is processed through
multiple pathways, that include the insula (Loewy, 1990; Saper,
2002). Subregions of insula relay viscerosensory information to
amygdala (McDonald, 1998; Pitkänen, 2000). Consistent with
this neuroanatomy, in human respiratory challenge activates
a network of brain regions that includes amygdala (Brannan
et al., 2001; Liotti et al., 2001; Evans et al., 2002; von
Leupoldt et al., 2009). In physiological studies with animals,
manipulations of blood pressure, and of blood acidity, have
been found to modulate amygdala neuronal activity (Knuepfer
et al., 1995; Ziemann et al., 2009). The stress hormone
epinephrine binds to vagus neurons of the parasympathetic
subdivision of ANS, which projects via subcortical and
cortical routes to amygdala (Schreurs et al., 1986; Roozendaal
et al., 1997; Saper, 2002; McGaugh, 2004, 2013). Another
stress hormone, cortisol, binds directly to glucocorticoid
receptors on amygdala, predominantly the basal amygdaloid
nucleus, and to glucocorticoid receptors on Nucleus of the
Solitary Tract (NTS) neurons in brainstem which project to
amygdala (Roozendaal et al., 1997; Saper, 2002; McGaugh, 2004,
2013).

Perirhinal cortex (PRC) comprises Brodmann’s areas (BAs)
35, 36, and in the temporal pole part of 38 (also named
area TG by von Bonin and Bailey, 1947; Suzuki and
Amaral, 1994; Davies et al., 2004). Heavy inputs from PRC
originate extensively but most densely from polar PRC,
and relay extensively to amygdala, most heavily to lateral,
basal, and accessory basal nuclei (Stefanacci et al., 1996;
Stefanacci and Amaral, 2000). Lateral, basal, accessory basal
and periamygdaloid cortex return the heaviest projections,
and relay most densely to polar regions of PRC (Amaral
and Price, 1984; Stefanacci et al., 1996). Inputs specifically
to lateral amygdaloid nucleus in monkey have been traced
quantitatively, and the findings were that the heaviest unimodal
sensory input is received from high-level visual area TE in
VTC. The heaviest input of all to lateral amygdaloid nucleus,
at over twice the magnitude of TE input, is received from
PRC (Stefanacci and Amaral, 2000). Similarly for reciprocal
projections, (Amaral and Price, 1984, p. 492) report that of
amygdala projections to temporal and occipital lobes ‘‘the
heaviest projections are to the temporal pole (especially area
TG) and the inferior temporal cortex (especially areas 35, 36).’’
Furthermore, neonatal amygdala lesions in monkey produced
the heaviest brain structural degradation in PRC (Grayson et al.,
2017).

Inputs of modest and robust magnitude relay to amygdala
from parahippocampal cortex (PHC) and entorhinal cortex
(ERC), respectively (Stefanacci et al., 1996; Suzuki, 1996;
Stefanacci and Amaral, 2000; Freese and Amaral, 2009), and
are reciprocated modestly to PHC and heavily to ERC (Amaral
and Price, 1984; Stefanacci et al., 1996). Further, moderate
to robust inputs are received by amygdala from OFC and
anterior cingulate cortex (ACC), and heavy return projections
relay to OFC and ACC (Amaral and Price, 1984; Stefanacci
and Amaral, 2002; Freese and Amaral, 2009; Vogt, 2009).
Amygdala also receives and relays dense interconnections
with BA 45 in ventrolateral prefrontal cortex (VLPFC;

Gerbella et al., 2014). Numerous subcortical projections
that are mainly reciprocal also interconnect with amygdala,
largely with thalamus, hippocampus, multiple brainstem
regions, hypothalamus, striatum and basal forebrain (Davis,
1992; Suzuki, 1996; Pitkänen, 2000; Freese and Amaral,
2009).

Taken together, the great majority of sensory systems
project heavily to robustly to amygdala, and their high-level
subregions relay most frequently and strongly to lateral, basal
and central amygdaloid nuclei; in addition, amygdala returns
heavy projections to extensive parts of visual cortex, STS,
STG and insula (Amaral and Price, 1984; Yukie, 2002; Freese
and Amaral, 2005, 2006, 2009). There are generally robust to
heavy amygdala interconnections with multiple further cortical
areas, and with subcortical brain regions. PRC relays heavily
and reciprocally to lateral, basal and accessory basal nuclei,
and these are likely the heaviest amygdala interconnections
of all; this suggests they mediate a principal amygdala
function.

Perirhinal Cortex
PRC integrates complex, multimodal, meaningful and fine-
grained, distributed object representations (Taylor et al., 2006,
2007, 2009; Cowell et al., 2010; Clarke et al., 2013; Mundy et al.,
2013; Behrmann et al., 2016). Further, neural interconnections
that are heavy and reciprocal support recurrent processing,
that crucially facilitates the processing and development of
meaningful, and fine-grained representations (Rossion et al.,
2003, 2012; Hegdé, 2008; Cardin et al., 2011; Naci et al., 2012;
Clarke et al., 2013; Kravitz et al., 2013; Martin, 2016; Sato et al.,
2017a). Together, PRC’s function, and the heavy and reciprocal
interconnections of amygdala and PRC, suggest that amygdala
likewise contributesmeaningful and fine-grained representations
for integration by PRC (Figure 1).

Complex, multimodal, and meaningful, distributed
representations comprise sensory, motor and other specialized
components that are distributed across the primate brain,
and this is supported by neuroimaging studies and
neuropsychological findings. For instance, faces and other
complex objects are represented across multiple brain regions,
the chief ones including inferior occipital cortex (IOC), fusiform
gyrus (FG) and other subregions of VTC, STS, amygdala, insula,
OFC and temporal pole (Allport, 1985; Rossion et al., 2003;
Bouvier and Engel, 2006; Atkinson and Adolphs, 2011; Ku et al.,
2011; Perrodin et al., 2015). Such distributed representations
are integrated by means of nodes or hubs, which also efficiently
reactivate those networks so as to achieve knowledge reactivation
and retrieval (Barsalou et al., 2003; Barsalou, 2008; Martin, 2009;
Meyer and Damasio, 2009). A major such hub is PRC (Taylor
et al., 2006, 2007, 2009; Cowell et al., 2010; Clarke et al.,
2013; Mundy et al., 2013; Behrmann et al., 2016). PRC’s
function of integrating complex, multimodal, meaningful and
fine-grained, distributed object representations, is supported
by neuropsychological and neuroimaging studies that place
demands on such functions.

Human neuropsychological and monkey lesion studies report
that lesions to PRC produce visual recognition and visual
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FIGURE 1 | Summary of the hypothesis. PRC integrates complex, multimodal, meaningful and fine-grained, distributed representations. Amygdala interconnects
especially heavily and reciprocally with PRC, suggesting it contributes specialized representations for integration by PRC. Consistent with this, amygala represents
such forms of intangible knowledge as valence, economic value, importance, noxiousness, social status, trustworthiness and social popularity. Taken together, it is
hypothesized that amygala represents diverse forms of intangiable knowledge, that participate in distributed represntations of humans, objects and other stimuli.
VTC, ventral temporal cortex; PHC, parahippocampal cortex; ERC, entorhined cortex; STS, superior temporal sulcus; OFC, orbitofrontal cortex; PRC, perirhined
cortex.

discrimination impairments for complex object stimuli, but
not for more basic ones (Lee et al., 2005, 2006; Saksida
et al., 2007; Taylor et al., 2009; Cowell et al., 2010; Hoffman
et al., 2014; Behrmann et al., 2016). Neuroimaging studies
have examined brain activations during tasks of naming the
presented pictures of common objects. The findings were that
the task of general naming (e.g., animal, musical instrument)
that requires coarse-grained representations, engaged posterior
VTC regions, whereas the task of specific naming of the
same objects (e.g., zebra, saxophone) that requires complex
fine-grained representations, engaged these and additional
regions including PRC (Tyler et al., 2004; Clarke and Tyler,
2014). Studies using related paradigms have reported concordant
findings (Mundy et al., 2013; Abel et al., 2015; Mollo
et al., 2017). Furthermore, temporal pole, PRC and adjacent
anterior brain regions participate in recurrent processing
with posterior brain regions during cognitive processing.
This is evidenced by electroencephalographic (EEG) and
magnetoencephalographic (MEG) neuroimaging, as well as
transcranial magnetic stimulation (TMS) manipulations, during
the performance of challenging object processing tasks (Naci
et al., 2012; Chiou and Lambon Ralph, 2016; Mollo et al.,
2017). Thus, convergent evidence supports meaningful and
fine-grained representations being processed and integrated
in PRC.

The formation of persisting knowledge representations results
from consolidation processes, whereby initially transient neural
activity is transformed into persisting neural representations
(Brashers-Krug et al., 1996; Karni et al., 1998; Maquet, 2001).
There is abundant and convergent evidence from rodent studies
that consolidation is implemented in amygdala (Li et al., 2013;
Cestari et al., 2014; LeDoux, 2014; Janak and Tye, 2015; Fanselow
and Wassum, 2016; Schiff et al., 2017), including consolidation
in the amygdala-PRC circuit (Perugini et al., 2012; Laing and
Bashir, 2014). In addition, a study of seven surgical patients

with intracranial electrodes implanted in amygdala, presented
the patients with degraded fearful and happy faces, and their task
was to judge the faces as either fearful or happy. It was found that
neuronal activity of a subset of amygdala neurons encoded the
patients’ subjective judgments, rather than the physical features,
of the face stimuli (Wang et al., 2014). Thus, amygdala encodes
representations that are persisting and early evidence suggests
likely meaningful too.

Taken together, knowledge representations are distributed
across multiple specialized brain regions. Meaningful,
fine-grained visual object representations, as well as high-level
representations in other modalities, are processed and integrated
into complex, multimodal, meaningful and fine-grained,
distributed object representations by PRC (Taylor et al., 2006,
2007, 2009; Cowell et al., 2010; Clarke et al., 2013; Mundy
et al., 2013; Behrmann et al., 2016). The interconnections
of amygdala and PRC, which are especially heavy as well as
reciprocal, amygdala implementation of consolidation processes,
and early intracranial recording findings consistent with
meaningful amygdala representations, together suggest that
amygdala likewise contributes meaningful and fine-grained
representations for integration by PRC. These representations
are hypothesized to concern intangible knowledge. Intangible
knowledge is an important component of cognition (see
later section: significance for social processing), but it has
been little researched as evidenced by few entries in the
Medline database. There is no accepted definition, so it is
provisionally defined as non-physical or non-concrete features
of stimuli, that ubiquitously and substantively modulate
behavior, cognition, and emotion. Likewise, the formation
of intangible knowledge representations is little researched,
but some forms of it are likely self-generated, often through
interactions between body, brain and environment. In the
next section, these cognitive hypotheses are supported with
behavioral, neuroimaging, neuropsychological and physiological
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evidence, for amygdala’s representation of diverse forms of
intangible knowledge.

BEHAVIORAL, NEUROIMAGING,
NEUROPSYCHOLOGICAL AND
PHYSIOLOGICAL EVIDENCE

Subjective Valence Representation
In a study with rhesus monkeys, individual abstract visual
images were paired with liquid reward, or aversive air-puffs.
The monkeys successfully learned the valence (positive or
negative) of each image, and this was expressed by behavioral
responses of anticipatory licking or blinking, respectively. After
training, the valences were reversed, so that images formerly
paired with reward were now paired with air-puffs, and
vice versa. Single-cell recording of amygdala neurons revealed
that amygdala neuronal activity predominantly encoded image
valence, and to a limited extent, image identity. Moreover, after
the valence reversals, amygdala neuronal activity was rapidly
modified to again reflect image valence (Paton et al., 2006).
A subsequent single-cell recording study with rodents, reported
that amygdala neurons preferentially encode positive or negative
valence (consistent with Paton et al., 2006), and further that this
is related to their anatomical projection targets (Beyeler et al.,
2016).

A large literature has developed on sensory-specific satiety
and its effects on the subjective valence of foods. Specifically,
human or monkey subjects are allowed to eat a food until
satiety. They are then presented with a choice of that food
and another one, and their preference for the first food has
commonly fallen relative to the pre-feeding baseline condition.
That is, the subjective valence of that food falls during
satiety (O’Doherty et al., 2000; Small et al., 2001; Murray
and Rudebeck, 2013). Extensive investigations of the brain
network underlying this effect indicate that amygdala, OFC and
mediodorsal thalamus are involved (Machado and Bachevalier,
2007; Rudebeck andMurray, 2011; Murray and Rudebeck, 2013).
Moreover, combining the sensory-specific satiety paradigm
with transient inactivation of amygdala in monkey, revealed
that amygdala generates revised valence representations of the
satiated food (Wellman et al., 2005). Similarly, a human study
using satiety manipulations and fMRI, found that subjective
valence (attractiveness) representations of foods were mediated
by amygdala (Piech et al., 2009). Such valence representations
are relayed to anterior OFC which is likely an integrative
hub for high-level multimodal food desirability representations
(Kringelbach and Rolls, 2004; Rolls, 2005; Price, 2006; Piech et al.,
2009; Murray and Rudebeck, 2013).

Further studies have used musical stimuli varying in
subjective valence from unpleasantness to intense pleasantness
or joyfulness, combined with fMRI or intracerebral electrode
arrays to measure human brain activity. The findings were that
amygdala is centrally involved in the network mediating musical
valence representation (Koelsch et al., 2013; Koelsch and Skouras,
2014). Further, amygdala generates such representations with

a relatively lengthy latency, and it modulates the activity of
other major network regions, specifically auditory cortex and
OFC (Kumar et al., 2012; Omigie et al., 2015a,b). These
findings suggest a principal and high-level role of amygdala in
the circuit mediating the subjective unpleasantness-pleasantness
representations of music. Collectively, diverse paradigms support
the generation and representation of subjective valence, a form of
intangible knowledge, in amygdala.

Impact Representation
Amygdala likely processes the ‘‘impact’’ feature of stimuli. High
impact features are those features that make stimuli striking and
powerful, and often characterize photographs of trouble spots
and crises across the world. In a study of this feature, healthy
subjects were presented with photographs of stimuli that were
high impact or low impact, as well as control stimuli, and inverted
neutral stimuli. The task was to respond by button press to all
inverted images, and subjects were neuroimaged with fMRI while
they performed it. The findings were that high impact stimuli
engaged amygdala, and this effect remained after controlling for
such potential confounds as arousal, pleasantness, distinctiveness
and visual complexity (Ewbank et al., 2009). Thus, amygdala
mediates impact representations, a further form of intangible
knowledge, but further replications of this finding are desirable.

Economic Value Representation
Amygdala participates in planning processes, and it represents
the values of the benefits and other features of plans. In a
physiological study, monkeys were presented with two cues on
each trial. They could freely choose by means of saccades to
one cue to consume a fruit juice reward immediately (‘‘spend
choices’’), or they could choose by saccades to the other cue
to defer consumption, and thus accumulate multiple fruit juice
rewards (‘‘save choices’’), which were further augmented with
‘‘interest.’’ Single cell recording of amygdala neurons during the
performance of this task, revealed that separate populations of
amygdala neurons proactively represented the economic value
and length of plans, and that these were predictive of subsequent
actions. Moreover, such representations were reset when a new
plan commenced after a ‘‘spend choice,’’ and were absent when
plans were not engaged during instructed sequences of trials
(Hernádi et al., 2015). The key findings above were replicated in
a study using healthy human subjects and fMRI neuroimaging
(Zangemeister et al., 2016).

Noxiousness Representation
The hypothesis that amygdala contributes noxiousness
representations, generated from nociceptive experiences, to
distributed object representations has not been explicitly
examined, but is supported by the behavioral study of Kavaliers
et al. (1999). Initially, deer mice have no knowledge of biting
stable flies, as they do not attempt to avoid those that have
had their mouthparts surgically removed. After having been
bitten by intact biting stable flies, however, the deer mice on
subsequent encounters burrow and take other actions to avoid
the biting stable flies, as well as activate endogenous analgesic
processes, as demonstrated by the hotplate test. They engage
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in the same activities even on encountering stable flies whose
mouthparts have been surgically removed, so cannot have
bitten them. In contrast, the deer mice do not manifest such
behaviors when encountering visually similar but non-biting
houseflies (Kavaliers et al., 1999). Thus, deer mice evidently form
knowledge representations that specifically relate to stable flies
and incorporate their noxious character. It appears likely that
the crucial interactions that give rise to the latter representation
are the stable flies’ bites and the resulting pain suffered by the
deer mice (Kavaliers et al., 1999). Together, environment, body,
and brain collaborate to generate specific adaptive knowledge, in
accordance with embodied cognition.

Amygdala likely plays a crucial role in these effects for
multiple reasons. Fear conditioning experiments, which possess
common features with the Kavaliers et al.’s (1999) design but
use electric shocks instead, have demonstrated an important
contribution for amygdala (LeDoux, 2014; Fanselow and
Wassum, 2016; Schiff et al., 2017). Nociceptive information
is relayed to amygdala, as summarized earlier, and there is
substantive evidence that consolidation of nociceptive activations
is implemented in amygdala (Neugebauer et al., 2003; Bird et al.,
2005; Ikeda et al., 2007; Veinante et al., 2013; Neugebauer, 2015;
Shinohara et al., 2017). In addition, disruption of consolidation
in a related study by means of injection of NMDA receptor
antagonist into the peritoneum of deer mice, was found to
abolish the adaptive behaviors and analgesia (Kavaliers et al.,
1999, Experiment 2). These results also parallel those in
fear conditioning studies (Fanselow and Kim, 1994; Goosens
and Maren, 2004) and are consistent with a substantive role
for amygdala. Further, encounters of experienced deer mice
with biting stable flies elicited endogenous analgesia, which is
known to crucially involve amygdala (Helmstetter et al., 1998;
Bingel et al., 2006; Eippert et al., 2009; Rouwette et al., 2012;
Veinante et al., 2013; Maire et al., 2016), further supporting
its involvement. Additionally, amygdala lesions or inactivation
performed in pain experiments have not affected baseline levels
of pain sensitivity nor of latency of pain responses (Fox and
Sorenson, 1994; Bernard et al., 1995; Manning et al., 2001, 2003;
Veinante et al., 2013); amygdala also modulates cognition during
pain (Veinante et al., 2013); together these findings support
amygdala mediation of high-level pain-related functions. In
summary, the nociceptive effects of stable fly bites lead deer mice
to generate specific knowledge representations of those insects
that include their noxious character, and it is suggested the latter
representation comprising intangible knowledge, is mediated by
amygdala.

Importance Representation
Amygdala has long been suggested to represent significance
or importance (Geschwind, 1965; Gloor et al., 1982; Amaral
and Price, 1984; Sander et al., 2003; LaBar and Warren, 2009;
Phelps, 2009; Adolphs, 2010; Pessoa and Adolphs, 2010), and
it may generate such representations on embodied cognition
principles. A stimulus characterized by importance is one
‘‘having much import or significance; carrying with it great or
serious consequences; weighty, momentous, grave, significant,’’
as defined by the Oxford English Dictionary Online (1989).

An instance in modern times is that employees regard their
employers and their associated powers as important, as
employees can experience great consequences (promotion,
unemployment) from interactions with their employer.
Important stimuli mobilize enhanced arousal, effort, perceptual
processing, attention, cognition and other functions in an
individual, so that the important stimuli can be met with
prepared and proportionate resources.

Amygdala participates in distributed representations (see
earlier), and it can drive the above enhanced functions for
important stimuli, because it projects to an extensive array
of brain regions (Amaral and Price, 1984; Young et al.,
1994; McDonald, 1998; Freese and Amaral, 2009). Specifically,
amygdala (predominantly the central nucleus) projects heavily
to hypothalamus and NTS, projects to an array of brainstem
regions, including the reticular formation, periacqueductal gray,
laterodorsal tegmental nucleus, ventral tegmental area, locus
coeruleus and dorsal motor nucleus of the vagus, and projects
heavily and reciprocally to the parabrachial complex (PBC; Davis,
1992; Bernard et al., 1993, 1995; Pitkänen, 2000; Freese and
Amaral, 2009). Such projections enable amygdala to enhance
arousal and effort through modulation of ANS, hormonal,
cardiovascular, respiratory, digestive and other visceral systems.

Amygdala sends heavy and excitatory projections to visual
cortical areas (Amaral and Price, 1984; McDonald, 1998;
Freese and Amaral, 2005, 2006, 2009) enabling it to enhance
visual perceptual processing and attention. Amygdala-driven
enhancement of vision and attention is further supported
by human neuropsychological and monkey lesion findings,
that provocative stimuli that enhanced visual processing in
healthy controls, did not do so in patients and monkeys
with amygdala lesions and intact visual cortex (Anderson and
Phelps, 2001; Vuilleumier et al., 2004; Hadj-Bouziane et al.,
2012). Projections from amygdala to auditory cortical areas
(Amaral and Price, 1984; McDonald, 1998; Pitkänen, 2000;
Yukie, 2002; Freese and Amaral, 2009), enable amygdala to
drive similar perceptual and attentional enhancements in that
modality (Kumar et al., 2012; Omigie et al., 2015b). In addition,
amygdala can drive persisting representational changes and
specialization in sensory cortical areas (Chavez et al., 2009, 2013).
Amygdala also projects to frontal cortex, including heavily to
ACC, BA 45 in VLPFC and anterior insula (Amaral and Price,
1984; Freese and Amaral, 2009; Vogt, 2009; Gerbella et al.,
2014), likely enabling it to enhance cognitive function. Taken
together, amygdala participation in stimulus representations
and its extensive connectivity, enable amygdala representations
to predictively enhance a network of functions that together
likely constitute importance, a form of intangible knowledge.
Moreover, this arrangement is consistent with predictive coding
being a major strategy of the brain (Nadel and Hardt, 2011;
Weston, 2012; Smith and Goodale, 2015; Saker et al., 2018),
including of amygdala (Hernádi et al., 2015; Zangemeister et al.,
2016).

Importance representations may develop through embodied
cognition processes. For instance, in the hyperarousal form
of PTSD, during the traumatic event (peritrauma) traumatic
stimuli provoke extreme levels of arousal (hyperarousal) and
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related responses. The individual involuntarily replicates these
intense responses on subsequently encountering trauma-related
reminders; in other words, these reminders are characterized
by extreme importance. Amygdala processing of peritraumatic
bodily responses likely underlies these effects; in contrast, a study
of identical twins discordant for PTSD, found genetic influences
to be non-significant (Koenigs et al., 2008; Gilbertson et al., 2010;
Weston, 2014). PTSD is at the extreme of the stress continuum
(Ruscio et al., 2002; Forbes et al., 2005; Broman-Fulks et al.,
2006), so the above processes may generalize, but this issue awaits
investigation.

Exclusiveness Representation
A very different experimental paradigm involved ewes; these
animals normally form a specific memory of the scent of
their own newborn offspring in the 2 h after birth, and they
subsequently suckle their own offspring only while aggressively
rejecting all others. Transient inactivation by lidocaine over
the critical period of the cortical or medial amygdaloid
nuclei resulted in indiscriminate suckling, although olfactory
perception and memory retrieval were unimpaired (Keller et al.,
2004). In addition, inactivation of the ewe’s olfactory system
has been found to disrupt selective nursing behavior (Lévy
et al., 1995; Ferreira et al., 2000). It is hypothesized that in
the Keller et al. (2004) inactivation study, the ewes perceived
the scent of their own offspring but failed to regard it as
‘‘exclusive’’ or ‘‘special,’’ which is likely mediated by the cortical
or medial amygdaloid nuclei. Related modulatory findings
mediated by rodent amygdala have been reported (Demas
et al., 1997; Petrulis, 2009; Gur et al., 2014). Thus, amygdala
likely mediates this further form of intangible knowledge,
and environment, body and brain collaborate in ewes to
produce specific adaptive knowledge, as proposed by embodied
cognition.

Ingroup Membership Representation
Cooperation among conspecifics is widespread among animals,
and is strongly developed in human. It is a factor that is similarly
or more important than competition-related factors such as
dominance, in the achievement of health and reproductive
success in human and other primates (Platt et al., 2016; Schmelz
and Call, 2016; Hare, 2017). Humans rapidly form social groups,
and simply belonging to a group (e.g., as a result of random
allocation in experiments) leads to richer and more complex
representations and amplified processing of ingroup members.
For instance, belonging to a group leads to more detailed and
individuated perceptual processing, greater liking and amplified
processing, of ingroup members (Van Bavel et al., 2008, 2011;
Cikara and Van Bavel, 2014; Guassi Moreira et al., 2017).
The network that mediates the representation and amplified
processing of ingroup members has been found by fMRI
neuroimaging to involve amygdala, OFC, FG and striatum (Van
Bavel et al., 2008, 2011; Cikara and Van Bavel, 2014; Guassi
Moreira et al., 2017). Thus, amygdala participates in ingroup
representation, a form of intangible knowledge, although further
work is needed to more precisely specify its contribution.

Social Status Representation
A number of studies have examined the formation and encoding
of social status representations, in monkey and human. In a
study of 25 group-living macaque monkeys, status relationships
were measured through observation and recording of the
behavioral interactions between animals. The animals’ neural
structure and function were also measured by structural and
functional MRI, respectively. The findings were that social
status was positively related to gray matter (GM) volume of
amygdala, hypothalamus, brainstem subareas and mid STS
all bilaterally, as well as hippocampus and anterior DLPFC
unilaterally. Social status was negatively related to GM volume
of basal ganglia subregions and dorsal septum bilaterally. In
addition, findings were reported of resting functional coupling
between amygdala and hypothalamus, as well as amygdala and
brainstem subregions, that were significantly associated with
status (Noonan et al., 2014).

In two human neuroimaging studies, during training sessions
a set of human faces were presented, and subjects were required
to learn by trial and error the individuals’ status within the linear
social hierarchy. Subjects were tested during testing sessions
interleaved with training sessions, and were required to indicate
an individual’s status, and give a confidence rating in their
answer. The findings of functional neuroimaging were again
that a network of brain regions generates and encodes social
status representations, principally bilateral amygdala, bilateral
anterior hippocampus, posterior hippocampus, ventromedial
prefrontal cortex (VMPFC; BAs 24, 32, 9), and FG. Further,
structural neuroimaging revealed that variation in subjects’
performance was significantly predicted by variation in GM
volume, only of amygdala bilaterally (Kumaran et al., 2012,
2016). Moreover, the brain regions summarized above have been
reported across diverse paradigms, that have investigated the
formation and encoding of social status representations (see
for review, Watanabe and Yamamoto, 2015). In addition, the
contributions of regions within the network are being clarified.
Specifically, Bayesian modeling of behavioral performance and
its correlation with neural activation, suggests that VMPFC
(BAs 24, 32, 9) forms and updates particular social status
representations, and relays these to amygdala and hippocampus.
Amygdala likely represents social status knowledge, which is also
activated automatically. Posterior hippocampus likely represents
linear hierarchies more generally (Kumaran et al., 2012, 2016).
Taken together, there is robust evidence from diverse paradigms
in monkey and man, that amygdala is a principal region in
the representation of knowledge of social status, a further form
of intangible knowledge. Moreover, status is learned through
interactions with other individuals in a hierarchy.

Popularity Representation
Individuals vary in popularity, which is represented by a
small network that includes amygdala. The popularity of a
member of a group can be quantified, by combining the
ratings of liking given by fellow group members for that
individual. In a study of the neural representation of popularity,
members of two real-world voluntary groups of 13 members
each, completed questionnaires requiring ratings of liking of
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other group members, and other variables, and had their
faces photographed. During fMRI neuroimaging, each group
member viewed the faces of group members and performed
a simple cover task. The findings were that popularity was
represented by a small network, comprising amygdala, VMPFC
and ventral striatum. These findings remained after controlling
for potential confounds, such as facial attractiveness, sex and
interpersonal closeness; additionally, brain regions’ identities
were determined with independent functional localizer tasks
performed in the same scanning session (Zerubavel et al., 2015).
Thus, amygdala participates in the representation of popularity,
another form of intangible knowledge. Replications of this
finding are desirable, as are findings from additional research
paradigms (e.g., neuropsychology, single-cell recordings), as well
as more precise specification of the contribution of amygdala to
popularity representation.

Trustworthiness Representation
Amygdala is a major part of the network that mediates
trustworthiness, more specifically untrustworthiness, and this
is supported by neuroimaging and neuropsychological findings.
In a meta-analysis of PET and fMRI neuroimaging studies of
trustworthiness represented in facial stimuli, it was found that
reducing levels of trustworthiness (i.e., untrustworthiness) were
associated with consistent activation of amygdala, as well as
of anterior insula, VLPFC, inferior frontal gyrus (IFG) and
part of the basal ganglia (Mende-Siedlecki et al., 2013). A
subsequent meta-analysis of fMRI studies of trustworthiness
represented in facial stimuli, again found amygdala involvement
in untrustworthiness representation (Santos et al., 2016). In
such studies, however, potential confounding variables such as
inadvertent processing of facial attractiveness, may be affecting
the findings (Mende-Siedlecki et al., 2013).

Neuropsychological approaches have examined patients with
amygdala lesions, mostly brought about by disease or surgical
excisions to treat epilepsy. In a study of three patients with
bilateral amygdala lesions, varied facial stimuli of unfamiliar
persons were presented, and the findings were that the patients
were significantly impaired in trustworthiness ratings relative to
neuropsychological and normal controls (Adolphs et al., 1998). A
larger neuropsychological study used a group of 32 patients with
unilateral amygdala lesions, a brain damage control group with
focal brain lesions of any region other than amygdala, insula, or
VMPFC, and a healthy control group (Koscik and Tranel, 2011).
The task did not involve facial stimuli but playing the Trust
Game, which entailed participating in 40 rounds of monetary
exchanges with a computer player. Variables included the money
given by the computer player, and the subjects’ monetary
responses; these and the sums accumulated by the players were
displayed to subjects. The findings were that whereas the healthy
control group engaged in a tit for tat exchange strategy, the
amygdala lesion patients responded to decreased or unchanged
sums of money from the computer player with increased sums.
These findings were interpreted as a failure to generate and
represent appropriate distrust during interactions with the Trust
Game player, and were associated with amygdala damage (Koscik
and Tranel, 2011). More generally, behavioral studies have

found that trust is likely learned through experiences, rather
than being a prespecified disposition (Glanville and Paxton,
2007). In sum, substantive evidence supports the hypothesis
that amygdala mediates untrustworthiness, a form of intangible
knowledge. Moreover, the Koscik and Tranel (2011) findings
suggest that amygdala may generate through experience this
form of intangible knowledge.

Moral Representations
Moral knowledge and judgments are a further form of
intangible representation in which amygdala participates. An
fMRI neuroimaging study required subjects to estimate how
muchmoneywas contained in pictured transparent jars that were
partly filled with penny coins across a series of trials. Subjects
were incentivized by a reward structure to give inaccurate
estimates (overestimates or underestimates), that in different
experimental conditions benefited or harmed themselves or
an associate. The behavioral findings were that self-benefitting
dishonesty measures escalated across trials, consistent with
reports that minor transgressions can snowball into major
ones. The neuroimaging findings were that dishonesty that is
self-serving and weighted by position in the succession of trials,
was significantly associated with reducing activity of amygdala
and anterior insula. In addition, reducing activation of amygdala
across two trials in response to dishonesty, was found to
predict the escalation in self-serving dishonesty on the following
trial (Garrett et al., 2016). Thus, amygdala may encode some
form of moral standards, whose weakening permits escalating
dishonesty. Two meta-analyses have examined brain activations
engaged by moral tasks. Both found consistent and reliable
involvement of a network of areas, that included amygdala, OFC,
MPFC, TPJ and precuneus (Bzdok et al., 2012; Eres et al., 2018).
The contribution of each region in the network requires to be
specified. In sum, amygdala reliably participates in the network
that represents moral knowledge, another form of intangible
knowledge, and some insight into amygdala’s contribution is
offered by the Garrett et al.’s (2016) study.

Further Observations and Summary
A number of intangible knowledge representations in which
amygdala participates, have now been summarized. These
findings have accumulated through some perceptive insights
(e.g., Adolphs et al., 1998; Ewbank et al., 2009; Kumaran
et al., 2012), rather than through deliberate focus on the
domain of intangible knowledge representation. Additional
amygdala intangible representations are likely to be revealed.
In a physiological study, a rich range of visual object images
was presented to monkeys who passively viewed them, while
responses of a large sample of amygdala neurons were recorded.
The findings were that similar proportions of amygdala neurons
responded differentially to monkey faces, human faces, or most
other objects. Moreover, many amygdala neurons responded
quite differently to visually similar stimuli (Gothard et al., 2007),
which suggests the neurons were processing features that have
yet to be identified.

It has been hypothesized that amygdala’s principal
representations may lie on a continuum of negative to positive
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valence, or ‘‘good to bad’’ (e.g., Paton et al., 2006; Koelsch
and Skouras, 2014; Janak and Tye, 2015). It is suggested
instead that amygdala may be better conceived as mediating
a diversity of independent representations. That amygdala-
mediated intangible knowledge representations are frequently
independent, is supported by findings that social status and
trustworthiness were not significantly correlated (Kumaran
et al., 2012); social status was independent from social network
size (Noonan et al., 2014); the impact feature representation
was found after controlling for valence, arousal and other
features (Ewbank et al., 2009); and amygdala neuronal activity
encoding the economic value and length of plans differed
substantially from that encoding reward (Hernádi et al., 2015;
Zangemeister et al., 2016). Neuroanatomically, amygdala
receives neural inputs that include those concerning visual
objects, visual motion, audition, taste, the fattiness and grittiness
of foods, temperature of foods, bodily temperature, other
viscerosensations, blood acidity changes, epinephrine levels,
cortisol levels, nociception and so forth (see earlier). Such
wide diversity of inputs is suggestive of diverse representations
being mediated by amygdala. In addition, the especially heavy
and reciprocal interconnections of amygdala and PRC, which
integrates fine-grained representations, are consistent with
amygdala relaying a multitude of fine-grained representations
to PRC; if only few coarse-grained representations needed to
be processed, they would be unlikely to require such heavy
and particular neural resources. Thus, this evidence supports
amygdala mediation of diverse representations, but it does
not resolve the issue. Hence, more direct and systematic tests
are needed to definitively settle this issue, as set out in the
penultimate section.

The diversity of amygdala representations likely contributes
to adaptation. Dubos conceived the essence of adaptation as
follows:

The real measure of health is not the utopian absence of all
disease but the ability to function effectively within a given
environment. And since the environment keeps changing, good
health is a process of continuous adaptation to the myriad
microbes, irritants, pressures and problems that daily challenge
man (Dubos, 1990, p. 95).

That is, environments are highly complex, variable, and
unforeseeable and individuals must continually achieve specific
and tailored adaptation to the particular conditions in which
they live. Amygdala’s potential for diverse and fine-grained
representations can answer such demands. In addition, it is
optimal for such representations to be elaborated through
experience of the particular environment rather than to be
prespecified in the genome. In other words, initially domain-
general encoding may be elaborated through interactions
with the environment into domain-specific and fine-grained
representations that are tailored to the particular conditions.
For example, amygdala receives nociceptive system projections,
which may be regarded as domain-general. Through interactions
with biting insects, which involve body, environment and
brain as envisaged by embodied cognition, representations that
specific insects are noxious are generated (Kavaliers et al., 1999).

This elaboration of fine-grained representations is consistent
with the proposal of Spunt and Adolphs (2017) that domain-
general systemsmay through their structural connectivity, inputs
and intrinsic computations, become domain-specific. Amygdala
representations may also be computed by other means, such
as in other brain regions that relay them to amygdala. This
overall hypothesis is also consistent with findings that human
cortical organization is ‘‘relaxed.’’ That is, in human there is
high genetic control of brain size, but lower genetic control
of cortical organization, particularly of high-level cortical areas,
which enables increased levels of plasticity and neural circuit
specialization (Gómez-Robles et al., 2015). A contrary view,
however, holds that amygdala circuits may involve strong genetic
prespecification (Gore et al., 2015; Beyeler et al., 2016). Currently,
the formation of amygdala representations is poorly understood,
so empirical studies are needed to test between these hypotheses.

In summary, the novel hypothesis is presented that a principal
function of amygdala is the mediation of diverse, independent
and fine-grained intangible knowledge representations,
which are integrated into multimodal, meaningful and
fine-grained distributed knowledge representations. Such
amygdala representations encompass non-social knowledge
(e.g., valence, noxiousness, economic value) and social
knowledge (e.g., social status, trustworthiness, popularity). The
hypothesis has considerable explanatory potential with regard to
unanswered questions in several domains, as demonstrated in
the next section.

SIGNIFICANCE FOR SOCIAL
PROCESSING; CLINICAL SIGNIFICANCE

Significance for Social Processing
Amygdala participates in social processing, and there is
convergent evidence for this. In human and other primates,
structural studies have found the volume of amygdala and other
brain regions to be significantly and positively associated with
the size and complexity of social networks (Barton and Aggleton,
2000; Bickart et al., 2011; Sallet et al., 2011; Von Der Heide
et al., 2014). Moreover, in Sallet et al. (2011), social group size
had been independently imposed on the monkey subjects, hence
social network size likely drove this amygdala volume increase.
Increased brain region volumes that were also associated with
social network size included those of several temporal areas,
anterior PFC and ACC (Sallet et al., 2011; Von Der Heide et al.,
2014). Functional neuroimaging and electrophysiological studies
of social tasks have also reported consistent amygdala activation,
hence its inclusion in the ‘‘social brain’’ (Atkinson and Adolphs,
2011; Ku et al., 2011; Gotts et al., 2012; VonDerHeide et al., 2014;
Rutishauser et al., 2015; Patriquin et al., 2016).

Amygdala, however, does not encode actual social behaviors.
In experimental lesion studies, selective ibotenic acid lesions
were made to amygdala bilaterally at 2 weeks after birth in
macaque monkey infants, and the animals were observed and
tested behaviorally over subsequent years. The findings were that
infant-mother interactions and behaviors, as well as the species-
typical repertoire of social behaviors, did not differ from those
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of controls. The young animals did, however, manifest a number
of modest behavioral anomalies, such as retrieving without delay
food placed adjacent to a fearful object such as a model snake,
and displayed limited exploration of objects in some conditions
but not in others (Prather et al., 2001; Machado and Bachevalier,
2003; Bauman and Amaral, 2011). When mature, the animals
became less sociable in that they groomed others less, spent
more time alone but alert, and females expressed little interest
in the infants of other females. The animals also expressed more
anxiety-related behaviors, and performed more self-directed
stereotypies (Toscano et al., 2009; Moadab et al., 2015). Hence,
amygdala does not directly encode social behaviors; instead its
contribution is indirect andmodulatory (Adolphs, 2010; Bauman
and Amaral, 2011), but there is no consensus on the nature of it.

It is hypothesized that amygdala’s contribution is that
of intangible knowledge, which differentially affects social
behaviors compared to other behaviors. Specifically, conspecifics
are commonly characterized in terms of being, for instance:
supportive, caring, kind, loyal, faithful, important, trustworthy,
interdependent, dishonest, hostile, critical, tolerant, constructive,
understanding, appreciative, respectful, contemptuous, fair,
dominant, subordinate, interesting, close, special, rich, aggressive
and so forth. Moreover, many of these features have major
roles in social relationships (e.g., Wright, 1985; Reynolds and
Mansfield, 1999; Gilligan, 2000; Rachman, 2010; Lavner and
Bradbury, 2012; Platt et al., 2016; Fincham and May, 2017).
In contrast, other objects and stimuli are infrequently so
characterized. That is, intangible knowledge processing is more
extensive, critical, and finer-grained in social contexts. Amygdala
processes some of these features, which may explain its influence
on social processing, and its expansion with larger and more
complex social networks (Barton and Aggleton, 2000; Bickart
et al., 2011; Sallet et al., 2011; Von Der Heide et al., 2014).
Amygdala disruption, moreover, is likely to preferentially impair
social cognition and social interactions, as occurs in ASD and is
discussed next.

Clinical Significance: Autism Spectrum
Disorder
Amygdala Is Disrupted in ASD
Amygdala is commonly disrupted in ASD, and the presented
amygdala hypothesis offers testable explanations of a number
of prominent but unexplained ASD symptoms and features.
Amygdala dysfunction in ASD has long been suggested
(Bachevalier, 1994; Baron-Cohen et al., 2000) and is supported
by functional evidence, which includes neuroimaging findings
of amygdala functional abnormalities (see for meta-analysis,
Patriquin et al., 2016), and electrophysiological findings in two
ASD patients of abnormal selectivity of a subpopulation of
amygdala neurons (Rutishauser et al., 2013). In addition, deep
brain stimulation of basolateral amygdala but not adjacent brain
regions, was found to ameliorate numerous ASD symptoms, as
well as self-injurious behaviors (Sturm et al., 2013). Structural
evidence includes structural neuroimaging findings of reduced
amygdala volume in adolescents and adults (Stanfield et al.,
2008; Schumann and Amaral, 2009; Via et al., 2011; Sato

et al., 2017b), cellular findings of reduced amygdala neuron
numbers (Schumann and Amaral, 2006) or amygdala neuron
density (Wegiel et al., 2014), and findings of an abnormal
amygdala growth trajectory that is also associated with ASD
symptomatology (Munson et al., 2006; Nacewicz et al., 2006;
Stanfield et al., 2008; Schumann and Amaral, 2009; Schumann
et al., 2009; Kim et al., 2010). Together, these provide robust
and convergent evidence of amygdala disruption in ASD. Such
disruption can likely explain the following ASD symptoms and
features.

Disorganized Scanpaths and Apparent Social
Disinterest
A core feature that manifests early, persists throughout life, is
independent of IQ, and whose mechanism is unclear (Frazier
et al., 2017), is the disorganized visual scanpaths of ASD
individuals. Specifically, eye-tracking recordings of TD controls’
scanpaths of scenes reveal that such scanpaths are organized
and selective. Stimuli such as humans, their faces, and eyes
commonly receive the majority of visual processing, whereas
trivial stimuli receive fleeting processing at most (Klin et al.,
2002, 2003, 2009). These and other findings suggest that
importance, valence, salience, arousingness, and other intangible
features are major factors in the organizing of scanpaths (Niu
et al., 2012; Vuilleumier, 2015; Schomaker et al., 2017). ASD
individuals’ visual scanning of scenes, in contrast, is atypical:
it is unorganized, unselective, and almost random (e.g., Klin
et al., 2002, 2003, 2009; see for meta-analysis, Frazier et al.,
2017). ASD individuals’ object recognition and face recognition,
however, are essentially intact (Jemel et al., 2006; Simmons et al.,
2009; Weigelt et al., 2012). When orderly scanpaths in ASD
have been reported, moreover, they were found to be driven not
by intangible knowledge as in TD individuals, but by physical
aspects of the scene, namely audio-visual synchronies (Klin et al.,
2009). A subsequent fine-grained study examined ASD and TD
individuals’ visual scanpaths that were executed while viewing
complex naturalistic images. It was found that ASD differences in
scanpaths did not emerge early at the basic visual or object levels,
but emerged later in the time course of viewing and particularly at
the level of processing of meaning. Moreover, fixations to social
stimuli were delayed, whereas fixations to artifactual stimuli were
speeded (Wang et al., 2015). Taken together, it is hypothesized
that deficits of intangible knowledge are sufficient to induce
the commonly unorganized visual scanpaths in ASD. Moreover,
amygdala mediates intangible knowledge, and it participates in
the organizing of scanpaths (Gonzalez Andino and Grave de
Peralta Menendez, 2012), hence its disruption may underlie ASD
scanpath disorganization.

Auditory stimuli such as parents’ voices, the individual’s
own name being called, and language sounds, commonly elicit
interest in TD children. ASD children, in contrast, are frequently
unresponsive to their parents’ voices, to their own name being
called, and to language sounds, according to observational and
experimental evidence (Kanner, 1943; Klin, 1991; Jolliffe et al.,
1992; Nadig et al., 2007; Miller et al., 2017). Basic sensory
function, however, is found by audiometric tests to be normal in
the great majority of ASD individuals (Tharpe et al., 2006; Tas
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et al., 2007). Similarly in the visual modality, ASD individuals
are commonly reported to be apparently uninterested in fellow
humans, including family members, peers, acquaintances, and
social relationships generally, despite intact face recognition
(American Psychiatric Association, 2013; Kanner, 1943; Jolliffe
et al., 1992; Simmons et al., 2009; Weigelt et al., 2012).

At the neural level, TD individuals show enhanced high-level
auditory cortex processing of human speech sounds; in contrast,
ASD individuals commonly fail to show such enhanced
high-level cortical processing. Nevertheless, corresponding
processing of acoustically and complexity matched control
sounds does not differ significantly between ASD and TD
groups as measured by fMRI or event-related brain potentials
(Ceponiene et al., 2003; Gervais et al., 2004; Lepistö et al., 2005;
Whitehouse and Bishop, 2008). Similarly in the visual modality,
high-level visual area FG has the capacity for normal levels
of activation, but is commonly hypoactive when performing
social tasks, and this has been ascribed to impaired modulation
(Grelotti et al., 2005; Pierce and Redcay, 2008; Perlman et al.,
2011; Patriquin et al., 2016). Together, these findings suggest
there is a failure of enhancement of otherwise intact auditory and
visual cortical processing in ASD individuals. This is suggested
to manifest as apparent indifference to parents, peers, own
name being called, speech, and so forth. Amygdala disruption
likely participates in such impaired enhancement. Amygdala is
heavily and extensively interconnected with visual cortex, and
has an excitatory effect on it (Freese and Amaral, 2005, 2006,
2009; Smith et al., 2009). Further, in a monkey lesion study,
facial expressions were found to enhance visual cortical activity
in control animals, but such enhancement was abolished in
monkeys with amygdala lesions (Hadj-Bouziane et al., 2012).
Moreover in ASD, connectivity between amygdala and FG is
reduced, and the latter is commonly hypoactive (Conturo et al.,
2008; Kleinhans et al., 2008; Patriquin et al., 2016). Taken
together, further studies are required, but current evidence is
consistent with the hypothesis that apparent disinterest in visual
social stimuli in ASD, likely arises from impaired enhancement
of activity in high-level visual cortex, which is likely driven
by amygdala disruption (see Kleinhans et al., 2011; Hadj-
Bouziane et al., 2012). Corresponding processes in high-level
auditory cortex, which is also hypoactive in ASD (see above),
and is interconnected with amygdala (McDonald, 1998; Yukie,
2002; Freese and Amaral, 2009), are plausible and require
testing.

A further marked feature is the inability to understand social
situations reported by ASD individuals (Jolliffe et al., 1992;
Williams, 1996; Grandin, 2005). Given their intact physical
knowledge but impairments at the meaning level (see above),
it is hypothesized that impaired intangible knowledge likely
contributes. Furthermore, this impairment in understanding has
been reported as a major source of the stress and dysphoric
emotions that are a common feature of ASD (Jolliffe et al., 1992;
Williams, 1996; Grandin, 2005).

Preference for Concrete Cognition
Amygdala dysfunction may explain the preference for concrete
and mechanical cognition in ASD, a feature which is evidenced

by multiple findings (Baron-Cohen and Wheelwright, 1999;
Klin and Jones, 2006; Klin et al., 2007, 2009; Ropar and
Peebles, 2007; Wang et al., 2015). Generally, an impaired
brain system can facilitate enhanced use and development of
brain systems remaining intact, and this has been reported
for diverse brain diseases that affected disparate brain regions
(Kapur, 1996; Miller et al., 1998, 2000; Thomas-Anterion
et al., 2010; Schott, 2012; Midorikawa and Kawamura,
2015). For example, anterior temporal lobe degeneration,
which manifests in social and language impairments, can
co-occur with posterior parieto-occipital enhancement,
which is associated with outstanding artistic development
(Miller et al., 2000; Schott, 2012; Midorikawa and Kawamura,
2015). Correspondingly in ASD, impaired neural systems
for intangible cognition are suggested to facilitate enhanced
use and development of preserved systems for concrete and
mechanical cognition. Hence, the strongly developed and
prominent concrete and mechanical cognition that is frequently
reported in ASD.

Heterogeneity of ASD
Heterogeneity characterizes most medical disorders (Lawrie,
2017), but it is particularly severe in ASD (Schumann et al., 2011),
and impedes progress in understanding of the mechanisms of
the disorder. Amygdala is commonly regarded as mediating a
homogeneous class of representations such as valence or fear
(see earlier), rendering the heterogeneity of ASD difficult to
comprehend. Amygdala, however, likely mediates a diversity of
independent representations as argued above, rendering ASD
heterogeneity more intelligible. For example, inputs to amygdala,
which is one of the most widely interconnected of brain
regions (Young et al., 1994), include visual, oral somatosensory,
nociceptive, blood acidity and stress hormone inputs, which
likely participate in different amygdala representations. Hence,
for the richly interconnected amygdala, disrupted inputs that
vary in number and in combinations, will elicit unusually
heterogeneous patterns of impairments. Moreover, any one
dysfunction is unlikely to be universal in ASD (see Rapin, 2006).
Thus, amygdala’s diversity of connectivity and functions is likely
a substantive contributor to ASD heterogeneity.

Activities of Daily Living
Impaired activities of daily living in ASD are widespread,
disproportionate to IQ, particularly disabling, stressful both for
the affected individuals and their carers, and the mechanisms
are unclear (Green et al., 2000; Howlin et al., 2013; Duncan
and Bishop, 2015). It is likely that an inability to plan underlies
impairments in some routine activities, such as making phone
calls, handling money and using public transport (Green
et al., 2000). Amygdala participates in planning processes
(Hernádi et al., 2015; Zangemeister et al., 2016), hence it is
hypothesized that amygdala dysfunction may participate in
the impairment of such daily living activities. In addition,
impaired trustworthiness representations likely contribute to
social naivety and vulnerability, and impaired noxiousness
representations to an inability to appreciate the dangerousness
of objects and situations (see American Psychiatric Association,
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1994, 2013; Wing, 1976), which are further features that impair
daily living in ASD. In summary, the presented amygdala
hypothesis offers testable explanations of a number of prominent
but poorly understood symptoms and features of ASD. A
comprehensive account of ASD symptomatology, however, will
involve dysfunctions of additional brain regions.

CAUTIONS AND DIRECTIONS FOR
FUTURE RESEARCH

The generation and representation of intangible knowledge
has been little researched, and more extensive studies of its
contributions to cognition, and of amygdala’s contributions are
needed. Diverse studies have examined the representation of
trust in the brain, and similar research attention should focus
on further forms of intangible knowledge, which have often been
investigated by few studies. The forms of intangible knowledge
that are important in social relationships and social living, need
to be delineated and merit more research attention.

Almost all sensory systems relay strongly to amygdala,
predominantly to the lateral and basal nuclei, and these same
nuclei relay heavily and reciprocally to PRC, as summarized
earlier. This pattern of connectivity suggests the existence of
significant neural circuits but these have not been examined.
Their existence may be tested by means of diffusion tensor
imaging in human, or by transneuronal viral tracers in
monkey. The structure of these pathways suggests, interactive,
recurrent processing, which is engaged in the formation of
fine-grained, meaningful representations (see earlier). Such
processing has been demonstrated in the vision—amygdala
pathway (Sato et al., 2017a); the prediction of such processing
in the amygdala—PRC pathway could be tested with intracranial
electroencephalography in suitable but rare human patients, or
single-cell recording in monkey.

The hypothesized diversity of amygdala-mediated
representations raises a number of questions. Is the diversity
real or an artifact of the experimental paradigms? There
is some evidence that various amygdala representations
are independent (e.g., Ewbank et al., 2009; Kumaran et al.,
2012), but it is not sufficient. Future investigations of a
particular amygdala representation should also examine
potentially overlapping constructs, so as to be able to test
systematically and explicitly, amygdala representations in
terms of distinctiveness, fine-grained nature, or independance
from fear, valence, and so forth. How does the diversity
come about? It is likely that differing inputs may partly
account for different representations. For example, pain, stress
hormone, and gustatory inputs to amygdala are suggested to
be processed to generate corresponding representations, such
as noxiousness, importance, and valence, respectively. A useful
strategy would be to examine disruptions of particular sensory
systems or other inputs to amygdala, and their associations
with particular forms of intangible knowledge impairment,
as was illustrated by Kavaliers et al. (1999). In addition,
replications of the Kavaliers et al.’s (1999) study are desirable,
and verification needed that amygdala is indeed crucially

involved in this processing. Amygdala receives high-level
visual and auditory inputs, engages in markedly lengthy
processing of them, and generates representations that differ
from those of the sensory inputs (Wang et al., 2014; Omigie
et al., 2015a; Minxha et al., 2017). The nature of the amygdaloid
computations performed, and how the amygdaloid inputs
and outputs differ, should further illuminate representation
formation. How can the proposed representational diversity
be encoded? The challenge of encoding a rich diversity of
representations in a common region of brain tissue, has
been answered in other brain regions, such as VTC. The
latter encodes an infinite variety of face and other object
forms by means of a powerful coding strategy, population
coding. That is, the forms of diverse stimuli are encoded by
means of different patterns of activation across a common
region of cortex (Rolls, 2000; Haxby et al., 2004). The
operation of population coding in monkey amygdala has
been reported by Rolls (2000), and requires more detailed
investigation.

In ASD, impaired intangible knowledge is hypothesized to
underlie a number of symptoms and features, and empirical
testing is required. Such impairment of intangible knowledge
can be tested with the property-listing paradigm and its
variants, in which the participants’ task is to list all the
features they can for each presented item, or to rate the
presence or influence of given features in each item (e.g., Taylor
et al., 2007; Gainotti, 2012). Open-ended questions such as
‘‘What kind of person is Elizabeth?’’ (see Klin et al., 2007)
may also be revealing about intangible knowledge deficits. To
further examine the atypicality of visual scanpaths in ASD,
the paradigm used by Gonzalez Andino and Grave de Peralta
Menendez (2012), could be adapted for use with ASD and
control presurgical patients, or eye tracking studies may be
combined with investigation of prominent fixation regions in
terms of salience, valence, and other intangible features. Impaired
intangible knowledge is hypothesized to drive the preference for
concrete cognition. An empirical prediction is that independent
measures of abnormalities of intangible cognition and of
concrete cognition should be inversely associated. Amygdala
lesions in monkeys abolished the normal enhancement of visual
cortex to emotional facial expressions (Hadj-Bouziane et al.,
2012). It would be valuable to explore whether a corresponding
impairment occurs in the auditory modality too, as this is a
candidate mechanism for the apparent indifference to parents’
voices, to own name being called, and to speech sounds in ASD.
More generally, studies of sensory systems, amygdala, and PRC,
and their involvement in intangible knowledge generation and
representation, may facilitate advances in embodied cognition
theory (see Varela et al., 1991; Chiel and Beer, 1997; Clark, 1999,
2008).

CONCLUSION

A hypothesis of an amygdala function that builds on and
extends earlier proposals has now been presented, and makes
several novel and substantial contributions to the literature.
The hypothesis highlights the domain of intangible knowledge,
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which is an influential factor in social and other behaviors,
but which has been little researched. The hypothesis elucidates
the function that engages the likely heaviest of amygdala
interconnections, and proposes it as a principal amygdala
function. It has not received proportionate research attention.
The hypothesis proposes that this amygdala function is the
mediation of diverse, independent, meaningful, and fine-grained
intangible knowledge representations; this differs from the few
coarse-grained representations of relevance, salience, and so
forth that are typically proposed. The formation of intangible
knowledge representations and amygdala representations is
not well understood. Evidence and hypotheses are set out on
the formation of some of these representations. Amygdala’s
contribution to social cognition is unclear, following the
monkey neonatal lesion experiments that refuted the proposal
that amygdala mediates actual species-typical social behaviors
(Bauman and Amaral, 2011). A novel answer to this open
and important question is presented. On the basis of the
main hypothesis, novel hypotheses are presented to explain
several core ASD symptoms, which are currently poorly

understood, together with clear and specific proposals for
empirical tests. This demonstrates the explanatory potential
and broad significance of the main hypothesis. Taken together,
the presented hypothesis should progress understanding of
amygdala generally, of embodied cognition processes, of social
processing, of clinical disorders with amygdala involvement,
and is relevant for a comprehensive account of amygdala
function.
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