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Glioblastoma (GBM) is the most common glial tumour and has extremely poor prognosis.
GBM stem-like cells drive tumorigenesis and progression. However, a systematic
assessment of stemness indices and their association with immunological properties in
GBM is lacking. We collected 874 GBM samples from four GBM cohorts (TCGA, CGGA,
GSE4412, and GSE13041) and calculated the mRNA expression-based stemness indices
(mRNAsi) and corrected mRNAsi (c_mRNAsi, mRNAsi/tumour purity) with OCLR
algorithm. Then, mRNAsi/c_mRNAsi were used to quantify the stemness traits that
correlated significantly with prognosis. Additionally, confounding variables were
identified. We used discrimination, calibration, and model improvement capability to
evaluate the established models. Finally, the CIBERSORTx algorithm and ssGSEA
were implemented for functional analysis. Patients with high mRNAsi/c_mRNAsi GBM
showed better prognosis among the four GBM cohorts. After identifying the confounding
variables, c_mRNAsi still maintained its prognostic value. Model evaluation showed that
the c_mRNAsi-based model performed well. Patients with high c_mRNAsi exhibited
significant immune suppression. Moreover, c_mRNAsi correlated negatively with
infiltrating levels of immune-related cells. In addition, ssGSEA revealed that immune-
related pathways were generally activated in patients with high c_mRNAsi. We
comprehensively evaluated GBM stemness indices based on large cohorts and
established a c_mRNAsi-based classifier for prognosis prediction.
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1 INTRODUCTION

Glioblastoma multiforme (GBM), is the most common and most
malignant glial tumour (Young et al., 2015). There is no clear way to
prevent GBM; the disease can be very difficult to treat, and a cure is
often not possible. The typical treatment, which involves surgery,
chemotherapy, and radiation therapy, (Gallego, 2015), may slow
cancer progression and reduce signs and symptoms. However, cancer
usually recurs despite treatment (Gallego, 2015). The most common
length of survival following diagnosis is 12–15months, with less than
3–5% of the patients surviving longer than 5 years (Gallego, 2015).
Without treatment, the survival time is typically 3 months (McNeill,
2016). Therefore, developing and applying signatures or biomarkers
that can effectively predict the prognosis of these patients is of vital
importance. A good initial Karnofsky Performance Score (KPS), the
methylation of the O6-methylguanine-DNA methyltransferase
(MGMT) promoter, and mutations in isocitrate dehydrogenase 1
(IDH1) are associatedwith longer survival (Krex et al., 2007;Martinez
et al., 2007; Burgenske et al., 2019; Chaddad et al., 2019). The above
signatures or biomarkers can be used either alone or in combination
to predict the prognosis of GBM (Molenaar et al., 2014). However,
their predictive capacity is rather low and a new index is needed.

Stem-like cells, which are characterised by the self-renewal
properties and therapeutic resistance, play crucial roles in various
cancers, (Kaushal and Ramakrishna, 2020), especially in GBM
(Wang et al., 2018). Although cancer stem-like cells are very
important for prognosis in GBM, (Turaga et al., 2020), there are
still some shortcomings and complications in quantifying these
cells. The stemness features have been extensively studied using
artificial intelligence and deep learning methods. (Pan et al.,
2019). A good example is the calculation of the mRNA
expression-based stemness index (mRNAsi) with the one-class
logistic regression (OCLR) machine-learning algorithm (Sokolov
et al., 2016; Malta et al., 2018). Tathiane M. Malta et al. used
mRNAsi for the first time to reflect the degree of oncogenic
dedifferentiation (Malta et al., 2018). They also found tumour
heterogeneity at the single-cell level by measuring the mRNAsi
and concluded that a lower mRNAsi correlated with better
prognosis in various cancers. (Malta et al., 2018). The
prognostic value of the mRNAsi differs among different
cancers. Moreover, we have previously shown that the
prediction performance of a single mRNAsi-based signature is
not good in primary lower-grade glioma, (Zhang et al., 2020b),
partly because the tissue biopsy samples are often mixed with
non-tumour tissues (bulk tissues). This means that the expression
data on which the mRNAsi is based may be contaminated with
non-tumour information. Thus, tumour purity may solve this
issue (Xia et al., 2020).

It remains unclear whether the mRNAsi is an independent
prognostic indicator in GBM and whether the predictive capacity
of mRNAsi is better than that of existing factors such as the
mutational status of IDH1 and the methylation status ofMGMT.
Previous studies have shown that the combination of clinical
features with signatures or biomarkers can significantly improve
prognosis prediction, (Zhang et al., 2020b; Zhang et al., 2020c),
but this has not been verified with the mRNAsi, let alone the
corrected mRNAsi (c_mRNAsi), which is acquired using

‘Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data’ (ESTIMATE) (Yoshihara
et al., 2013) to calculate tumour purity. Whether c_mRNAsi
can predict GBM better than mRNAsi is unknown. Furthermore,
although Tathiane M. Malta et al.(Malta et al., 2018) analysed
cancer stemness quite extensively, this was done in almost 12,000
samples of 33 tumour types from only The Cancer Genome Atlas
(TCGA) (Hoadley et al., 2014). Thus, overfitting was inevitable
and the generalisation ability of the mRNAsi was not evaluated.
Therefore, the prognostic value of the mRNAsi in GBM needs to
be validated in other independent databases, such as the Chinese
Glioma Genome Atlas (CGGA) and Gene Expression Omnibus
(GEO) (Barrett et al., 2013).

In this study, we used mRNA expression data and the OCLR
machine-learning algorithm to simultaneously examine the
independent prognostic value of mRNAsi/c_mRNAsi in
TCGA, CGGA, and two GEO datasets. We compared
mRNAsi/c_mRNAsi directly and evaluated the model
improvement ability. Then, we applied the latest CIBERSORTx
tool (Newman et al., 2019) to evaluate the relationship between
mRNAsi/c_mRNAsi and immune cell infiltration and conducted
single sample gene set enrichment analysis (ssGSEA) to
comprehensively examine its prognostic value and relationship
with the immune microenvironment.

2 MATERIALS AND METHODS

2.1 Data Acquisition
RNA-sequencing data (level 3) of 158 patients with GBM from
TCGA and 279 patients with GBM from the CGGA were
obtained. The data from TCGA were downloaded from the
University of California Santa Cruz (UCSC) Xena website
(https://xena.ucsc.edu/). Transcript abundances were measured
in fragments per kilobase of transcript per million mapped reads
(FPKM). We only included patients who had adequate clinical
and pathological data. Then, to uncover the practicability and
accuracy of independent prognostic factors for GBM, samples
from the TCGA and CGGA cohorts were applied as training and
validation cohorts, respectively. Moreover, we included two GEO
datasets (GSE4412 (Freije et al., 2004) and GSE13041 (Lee et al.,
2008)) with more than 100 samples and follow-up data as our
external validation data. The characteristics of the patients from
the databases are presented as means ± standard deviations
(continuous variables that satisfied the normal distribution),
median, minimum, maximum and quartile (continuous
variables that did not satisfy the normal distribution), and
percentage (categorical variables), as appropriate.

2.2 mRNAsi/c_mRNAsi Acquisition
The mRNAsi was calculated using the OCLR machine-learning
algorithm (Malta et al., 2018). Tumour purity was evaluated with
ESTIMATE (Yoshihara et al., 2013) and c_mRNAsi was obtained
by dividing the mRNAsi by tumour purity (Zhang et al., 2020b).
The gene expression-based mRNAsi/c_mRNAsi was represented
using β values ranging from zero (no gene expression) to one
(complete gene expression).
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2.3 Analysis of Independent Prognostic
Factors
2.3.1 The Relationship Between mRNAsi/c_mRNAsi
and Overall Survival (OS)
To explore the effect of mRNAsi/c_mRNAsi on OS of patients
with GBM, we used locally weighted scatterplot smoothing
(Lowess) algorithm to flexibly evaluate the association of
mRNAsi/c_mRNAsi with OS. The results were obtained as a
fitting smooth curve. When the curve was linear, mRNAsi/
c_mRNAsi was included as a continuous variable; otherwise,
mRNAsi/c_mRNAsi was included as a dichotomous variable in
the subsequent analysis.

2.3.2 Survival Analysis
When the variables were analysed as dichotomous variables, the
optimal cut-off for each index with the associated hazard of OS
was identified by log-rank statistics in a survfit model, using the
cutp function of the survMisc package. Then, patients with GBM
were included into either the high or the low group according to
the optimal cut-off. Next, Kaplan-Meier analysis with log-rank
test was conducted to estimate the survival curves of each group
and to compare the prognosis between different groups, by using
the survival package.

2.3.3 Identification of Confounding Variables
Residual confounding variables refer to incomplete adjustment for
factors related to both exposure and outcome (Kernan et al., 2000).
The confounding variables that may influence the OS of patients
with GBM need to be identified. To estimate the magnitude of the
effect of mRNAsi/c_mRNAsi on GBM, we used the Cox
proportional hazards model. The regression coefficient changed
more than 10% when the adjustment variables were included or
not included or when those with p < 0.1 in the univariate analysis
with OS were considered as confounding variables to be adjusted
(adjusted I/II model) (Kernan et al., 2000). The common covariates
in TCGA were age, gender, IDH, radiotherapy, chemotherapy, and
subtype. In addition, 1p19q and MGMTp were common covariates
in CGGA but without subtype. Afterward, an interaction test and a
stratified analysis (Soria et al., 2015) of the association between
mRNAsi/c_mRNAsi and OS were conducted in both the non-
adjusted model and adjusted I model (identified confounders). A
two-tailed p < 0.05 was considered statistically significant. Empower
(www.empowerstats.com; X&Y solutions Inc., Boston, MA) and R
(http://www.R-project.org) were used for the abovementioned
statistical analyses.

2.4 Construction and Comparison of
Prognostic Models
2.4.1 Model Establishment
After confirming the effect of mRNAsi/c_mRNAsi on OS, we
further evaluated and compared the benefit of five different
models, including the prognostic model constructed by well-
established clinical factors (model 1), model 1 integrated with
mRNAsi (model 2)/c_mRNAsi (model 3), and single mRNAsi
(model 4)/c_mRNAsi (model 5).

2.4.2 Model Evaluation and Nomogram
We used discrimination, calibration, and model improvement
capability to assess the performance of the different models.
Discrimination was evaluated through the receiver operating
characteristic (ROC) curve, (Zhou et al., 2019), concordance
index (C-index) (Harrell et al., 1996) and the prediction error
and decision curve analysis (DCA) curves (Kerr et al., 2016).
Notably, the enhanced bootstrap method with 500 resamples was
used for internal validation (Wang et al., 2019). Discrimination and
calibration were evaluated by apparent and adjusted C-index and
Brier Score. Finally, model improvement capability was evaluated by
applying net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) using the survIDINRI package
(Pencina et al., 2008). After the best model was identified, the regplot
package was employed to construct the nomogram.

2.4.3 External Validation
We applied the data from CGGA and GEO as external validation. In
CGGA, as described above, we performed mRNAsi/c_mRNAsi
acquisition, independent prognostic factors analysis, and prognostic
model construction and comparison. It should be noted that because
the clinical information in TCGA and CGGA was not identical,
common covariates were not the same. GSE4412 (Freije et al., 2004)
and GSE13041, (Lee et al., 2008), which constitute GEO, were also
applied for the external effect validation of mRNAsi/c_mRNAsi on
OS. Similarly, patients were divided into the high or low group based
on the optimal cut-off, which was previously calculated using the
same package. Kaplan-Meier analysis was employed to assess the two
groups with the log-rank test. Afterwards, ROC analysis of time-
independent outcomes was also performed.

2.5 Function Analysis
2.5.1 Infiltrative Immune Cell Analysis
To characterise the abundance of 22 infiltrative immune cell types
based on the expression matrix data of patients with GBM, the
CIBERSORTx web tool (https://cibersortx.stanford.edu/) was
applied (Newman et al., 2019). This tool uses batch correction
to adjust the gene expression profile of the bulk of cells (mixture
data) to eliminate possible cross-platform variations between the
mixture data and the gene expression data of single cells
(signature matrix) (Le et al., 2020). After enabling batch
correction, performing the Bulk mode, and selecting the
quantile normalisation algorithm, the absolute score for the
proportion of 22 immune cell subsets in GBM samples was
calculated. The samples with p < 0.05 were enrolled for
further analysis because of the high reliability of the inferred
results (Ali et al., 2016). Wilcoxon rank-sum test was used to
compare the differences in the proportion of the 22 infiltrative
immune cell subtypes between the high and low groups. The
Spearman correlation test was used to further explore the
correlation of the two indexes with immune cell types.

2.5.2 Single Sample Gene Set Enrichment Analysis
(ssGSEA)
The ssGSEA method, (Barbie et al., 2009), which is a
modification of GSEA, (Subramanian et al., 2005), was

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7779213

Zhang et al. mRNAsi/c_mRNAsi in GBM

http://www.empowerstats.com
http://www.R-project.org
https://cibersortx.stanford.edu/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


developed to obtain an enrichment score for a single sample
instead of two groups of samples. Here, the ssGSEA was used
to compare differentially enriched hallmarks of cancer gene
sets (Barbie et al., 2009). To identify key pathways in different
groups, we chose to focus on 50 hallmark gene sets, which were
designed to highlight gene sets contained in the Molecular
Signatures Database (MSigDB), (Liberzon et al., 2015), one of
the most widely used and comprehensive databases of gene sets
for performing gene set enrichment analysis. The hallmarks of
the gene sets effectively summarise most of the relevant
information of the original founder sets and, by reducing
both variation and redundancy, provide more refined and
concise inputs for gene set enrichment analysis (Liberzon
et al., 2015). Gene symbol profiles for Homo sapiens were

downloaded from the MSigDB. Then, the degree of association
between each hallmark’s ssGSEA profile was estimated using
the gsva package. Next, differential analysis was performed
with the limma package under the threshold of the absolute
value of t > 1 and adjusted p value <0.05.

3 RESULTS

3.1Patient Characteristics
An overview of the stemness indices-related signature
development and validation workflow is presented in Figure 1.
A total of 874 GBM samples (158 from TCGA as the training
cohort, and 279 from CGGA and 437 from GEO as the validation

FIGURE 1 | Flow chart.
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cohort) were obtained in our study. The patient characteristics are
presented in Table 1.

3.2 mRNAsi/c_mRNAsi Acts as an
Independent Prognostic Factor
3.2.1 Patients With High mRNAsi/c_mRNAsi GBM had
a Better Prognosis
In the TCGA dataset, the relation between mRNAsi/c_mRNAsi
and OS was nonlinear. Therefore, they were considered
dichotomous variables in subsequent analysis (Supplementary
Figures S1A,B). A total of 158 samples were clustered into the
high- (n � 111) or low- (n � 47) mRNAsi group based on the
optimal cut-off value identified by survMisc package
(Supplementary Figure S2A). Patients in the high-mRNAsi
group had better OS than those in the low-mRNAsi group
(p � 0.0003) (Figure 2A). Similarly, 158 patients were
clustered into the high- (n � 123) or low- (n � 35) c_mRNAsi
group based on the optimal cut-off value identified by the same
package (Supplementary Figure S2B). Patients in the high-
c_mRNAsi group had better OS than those in the low-
c_mRNAsi group (p � 0.0008) (Figure 2B). Moreover, we
explored the relationship between mRNAsi/c_mRNAsi and
disease-specific survival/progression-free interval in TCGA,
and found that the trends for disease-specific survival (p �
0.0028) (Supplementary Figures S3A,B) and progression-free
interval (p < 0.0001) (Supplementary Figures S3C,D) were
similar to that for OS.

To determine whether the mRNAsi/c_mRNAsi-associated
prognostic signature had a similar prognostic value in different
populations, its prediction performance was validated externally
in CGGA and GEO. Similarly, we considered mRNAsi/
c_mRNAsi as a dichotomous variable in CGGA according to
the Lowess result (Supplementary Figures S1C,D). All samples
in CGGA and GEO were clustered into the high- or low-
mRNAsi/c_mRNAsi group based on the optimal cut-off value
identified by the same package (Supplementary Figure S2C).
Consistent with the findings in TCGA, the Kalan-Meier curve in

CGGA revealed that patients in the high-mRNAsi/c_mRNAsi
group had better OS than those in the low-mRNAsi/c_mRNAsi
group (p � 0.0040 and 0.0011, respectively) (Figures 2C,D).
GSE4412 has the transcriptional profiling of 170 GBM
samples from 74 patients (Freije et al., 2004). A total of 170
GBM samples were divided into the high- (n � 121) or low- (n �
49) c_mRNAsi group based on the optimal cut-off value
(Supplementary Figure S2D), and the high-c_mRNAsi group
had better OS (p � 0.0400) (Figure 2E). GSE13041 has 267 GBM
samples from 239 patients, (Lee et al., 2008), which were divided
into the high- (n � 186) or low- (n � 81) c_mRNAsi group based
on the optimal cut-off value (Supplementary Figure S2). The
high-c_mRNAsi group also had better OS (p � 0.0040)
(Figure 2F).

3.2.2 Identification of Confounding Variables
Given the possible interference of confounding variables, we
carried out confounders identification and then adjusted for
these potential confounding factors. In TCGA, we found that
mRNAsi had to be adjusted for age through univariate analysis
(Figure 3A). These covariates combined with common
covariates (age, gender, IDH, radiotherapy, chemotherapy,
and subtype) were enrolled into the adjusted II model. In
the adjusted I model, after adjusting for confounders (age and
IDH), mRNAsi was still associated with OS (hazard ratio (HR)
� 0.561, 95% confidence interval (CI) 0.383–0.823, p � 0.003)
(Figure 3B). Furthermore, after adjusting for predominant
clinical and prognostic factors (age, gender, IDH,
radiotherapy, chemotherapy, and subtype) in the adjusted II
model, mRNAsi independently predicted prognosis in TCGA
(HR � 0.552, 95% CI 0.370–0.823, p � 0.004) (Figure 3C). The
interaction analysis revealed that gender played an interactive
role in the association between mRNAsi and OS
(Supplementary Table S1). Male patients had higher HRs
between mRNAsi and OS (HR � 0.92; 95% CI, 0.11–7.59) than
females (HR � 0.32; 95% CI, 0.17–0.61). In the same way, we
found that only age should be adjusted on c_mRNAsi through
univariate analysis (Figure 3D), and this covariate combined

TABLE 1 | Patient characteristics.

Character Training cohort External validation cohort External validation GEO cohort External validation GEO cohort

TCGA (n = 158) CGGA (n = 279) GSE4412 (n = 170) GSE13041 (n = 267)

Age 59.6 (13.6) 48.00 (39.5–57.0) 42.0 (33.0–54.0) 53.71 (13.8)
mRNAsi 0.56 (0.22) 0.50 (0.17) 0.60 (0.23) 0.42 (0.33–0.52)
c_mRNAsi 0.74 (0.25) 0.57 (0.16) 0.71 (0.25) 0.51 (0.15)
Male 102 (64.56%) 165 (59.14%) 64 (37.65%) 151 (63.18%)
IDH
Wild type 148 (93.67%) 211 (75.63%) NA NA
Mutation 10 (6.33%) 68 (24.37%) NA NA

Radiotherapy
No 29 (18.35%) 53 (19%) NA NA
Yes 129 (81.65%) 226 (81%) NA NA

Chemotherapy
No 45 (28.48%) 49 (17.56%) NA NA
Yes 113 (71.52%) 230 (82.44%) NA NA

Data are presented as median (interquartile range) or N (%). TCGA, the cancer genome atlas; CGGA, chinese glioma genome atlas; GEO, gene expression omnibus; IDH, isocitrate
dehydrogenase; NA, not applicable.
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with common covariates were enrolled in the adjusted II
model. In the adjusted I model, after adjusting for the
confounder (age), c_mRNAsi was still associated with OS
(HR � 0.550, 95% CI 0.376–0.805, p � 0.002) (Figure 3E).
Furthermore, after adjusting for predominant clinical and
prognostic factors in the adjusted II model, c_mRNAsi
independently predicted prognosis in TCGA (HR � 0.552,

95% CI 0.356–0.856, p � 0.008) (Figure 3F). The effect of
mRNAsi/c_mRNAsi on OS was consistent across subgroups
(Supplementary Table S1). Ultimately, mRNAsi/c_mRNAsi
was an independent prognostic factor for OS in patients
with GBM.

Moreover, in CGGA, we identified different confounders
(IDH, chemotherapy, and 1p19q on mRNAsi, as well as IDH

FIGURE 2 |Survival curve of mRNAsi/c_mRNAsi on prognosis. (A). Overall survival curve of mRNAsi in TCGA. (B). Overall survival curve of c_mRNAsi in TCGA. (C).
Overall survival curve of mRNAsi in CGGA. (D). Overall survival curve of c_mRNAsi in CGGA. (E). Overall survival curve of c_mRNAsi in GSE4412. (F). Overall survival
curve of c_mRNAsi in GSE13041.
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and 1p19q on c_mRNAsi) that had to be adjusted through
univariate analysis (Figures 4A,D), and these confounders
(adjusted I model, Figures 4B,E) combined with common
covariates (age, gender, IDH, radiotherapy, chemotherapy,
1p19q, and MGMTp) were enrolled in the adjusted II model
(Figures 4C,F). We found that only c_mRNAsi was an
independent prognostic signature in patients with GBM in
both the adjusted I and adjusted II models (p � 0.008, 0.015,

respectively) (Figures 4E,F) and across stratified analyses
(Supplementary Table S2).

3.3 Construction and Evaluation of
Prognostic Models
We used discrimination, calibration, and model improvement
capability to evaluate five established models. Models 2 and 3 had

FIGURE 3 | Forest plots of univariate andmultivariate Cox regression analysis in TCGA. (A). Univariate Cox regression analysis of mRNAsi in TCGA. (B). Multivariate
Cox regression analysis of mRNAsi adjusted I model in TCGA. (C). Multivariate Cox regression analysis of mRNAsi adjusted II model in TCGA. (D). Univariate Cox
regression analysis of c_mRNAsi in TCGA. (E). Multivariate Cox regression analysis of c_mRNAsi adjusted I model in TCGA. (F). Multivariate Cox regression analysis of
c_mRNAsi adjusted II model in TCGA.
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a higher area under the curve (AUC), better C-index, and lower
prediction error than the other models (Figures 5A–C). The
apparent and adjusted C-index as well as the Brier scores in years
0.5-, 1-, and 1.5-years indicated that models 2 and 3 were better
than the others (Supplementary Table S3). DCA showed that the

net benefit of models 2 and 3 in years 0.5 and 1 years was better
than that of other models, but there was no significant difference
in year 1.5 (Figures 5D–F). We found that the calibration of
models 2 and 3 was better than that of other models in 0.5 and
1 years, while the calibration of the five models was poor in

FIGURE 4 | Forest plots of univariate and multivariate Cox regression analysis in CGGA. (A). Univariate Cox regression analysis of mRNAsi in CGGA. (B).
Multivariate Cox regression analysis of mRNAsi adjusted I model in CGGA. (C). Multivariate Cox regression analysis of mRNAsi adjusted II model in CGGA. (D). Univariate
Cox regression analysis of c_mRNAsi in CGGA. (E). Multivariate Cox regression analysis of c_mRNAsi adjusted I model in CGGA. (F). Multivariate Cox regression
analysis of c_mRNAsi adjusted II model in CGGA.
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1.5 years (Figures 5G–I). As for model improvement capability,
whenmodel 1 was considered as the reference, the NRI and IDI of
models 2 and 3 were both positive. In contrast, the NRI and IDI of
models 4 and 5 were both negative, although there were no
significant statistical differences (Supplementary Table S4).
From the above results, we determined that models 2 and 3
had good discrimination and calibration in the OS prediction of
patients with GBM.

In CGGA, we also built five models that were similar to those
in TCGA. In TCGA, only 24 patients were followed up for more
than 2 years, and the prognosis was very poor. Since the median
follow-up time was only 12 months, the selected time points were
0.5, 1 and 1.5 years. In CGGA, since the 62 cases were followed up
for more than 2 years, the time point was extended to 3 and
5 years. Here, models 2 and 3 also had a higher AUC and better
C-index but had the same prediction error as the other models
(Supplementary Figures S4A–C). DCA showed that the net
benefit of model 2 in 0.5, 1, 1.5, and 3 years was higher than

that of other models, but there was no significant difference in
5 years (Supplementary Figures S4D–H). The calibration of
models 2 and 3 was better than that of other models in 0.5
and 1 years, while the calibration of the five models was poor in
1.5, 3, and 5 years (Supplementary Figures S4I–M). The Brier
scores indicated that models 2 and 3 were better than the others
(Supplementary Table S5). As for model improvement
capability, when model 1 was considered as the reference, the
NRI and IDI of models 2 and 3 were both positive. In contrast, the
NRI and IDI of models 4 and 5 were both negative
(Supplementary Table S6). Because of the limited clinical data
of GEO, we only compared models 4 and 5. The AUCs were
0.536–0.618, 0.544–0.589 in GSE4412 and GSE13041,
respectively (Supplementary Figures S4N,O).

Combined with the above results, we found that mRNAsi/
c_mRNAsi is an independent prognostic factor in TCGA, but
only c_mRNAsi is an independent prognostic factor in CGGA. In
TCGA, the comparison of the five models revealed that models 2

FIGURE 5 | Evaluation of prognostic models in TCGA. (A). AUC in TCGA. (B). C-index in TCGA. (C). Prediction error in TCGA. (D). 0.5-years DCA in TCGA. (E). 1-
year DCA in TCGA. (F). 1.5-years DCA in TCGA. (G). 0.5-years calibration in TCGA. (H). 1-year calibration in TCGA. (I). 1.5-years calibration in TCGA.
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and 3 were the best, and there was little difference between these
two models. In CGGA, model 3 performed the best among the
five models. In GEO, there was no significant difference between
the single mRNAsi and c_mRNAsi models. Therefore, we finally
decided to adopt model 3 (clinical factors integrated with the
c_mRNAsi) to predict OS and construct a nomogram in TCGA
(Supplementary Figure S4). According to the nomogram, a
representative patient with the total point of 286, the 0.5-
years, 1-year, and 1.5-years survival rates were 82.6, 68.9, and
40.4%, respectively (Supplementary Figure S5).

3.4 Functional Analysis
3.4.1 Differential Abundance of Infiltrative Immune
Cells
By applying the CIBERSORTx algorithm, the relative proportions
of 22 immune cell subsets in GBM were acquired. A total of 158
patients with GBM from TCGA and 279 patients with GBM from
the CGGA were enrolled for further analysis. In the TCGA
dataset, the infiltration level of M1 macrophages was
significantly higher in the high-c_mRNAsi group, whereas the
infiltration levels of memory B cells, neutrophils, CD8+ T cells,

and regulatory T cells were significantly higher in the low-
c_mRNAsi group (Figure 6A). In CGGA, the infiltration
levels of resting dendritic cells, monocytes, activated NK cells,
and follicular T helper cells were significantly higher in the high-
c_mRNAsi group, whereas macrophages (M0 and M2), activated
mast cells, and neutrophils were significantly higher in the low-
c_mRNAsi group (Figure 6B). Radar chart indicated that in the
TCGA dataset, c_mRNAsi was positively correlated with M1
macrophages and negatively correlated with neutrophils, M0
macrophages, resting NK cells, and activated memory CD4+

T cells in the training cohort (Figure 6C). In the CGGA
dataset, c_mRNAsi was positively correlated with resting
dendritic cells, activated NK cells, and follicular T helper cells,
and negatively correlated with neutrophils, activated mast cells,
and macrophages (M0 and M2) (Figure 6D).

3.4.2 Pathway Enrichment Analysis
The ssGSEA was used to estimate the degree of enrichment of the
MSigDB hallmark gene set in individual samples from the high-
and low-c_mRNAsi groups of both TCGA and CGGA. This
allowed us to identify signalling pathways involved in GBM and

FIGURE 6 | The associations between c_mRNAsi and the abundance of infiltrative immune cells. (A). Infiltrative immune cell analysis in TCGA. (B). Infiltrative
immune cell analysis in CGGA. (C). Radar chart in TCGA. (D). Radar chart in CGGA. Abbreviations: Bm, memory B cells; Bn, naive B cells; Dc, Dendritic cells; Eos,
eosinophils; M0, macrophageM0; M1, macrophageM1; M2, macrophageM2; Mc, mast cells; Mon, monocytes; Neu, neutrophils; Tm, memory T cells; Tn, naïve T cells;
Tfh, follicular helper T cells; γδT, gamma delta T cells; Treg, regulatory T cells.
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to estimate their degree of association with each group (high
versus low). The results indicated that spermatogenesis, MYC
targets v2, and pancreas beta cell pathways were involved
significantly in the low-c_mRNAsi group of both TCGA and
CGGA, whereas unfolded protein response, haem metabolism,
early and late oestrogen response, NOTCH signalling, glycolysis,
bile acid metabolism, interferon α/γ response, apical surface,
myogenesis, adipogenesis, allograft rejection, androgen
response, xenobiotic metabolism, hypoxia, reactive oxygen

species pathway, apical junction, KRAS signalling,
complement, P53, IL6/JAK/STAT3 signalling, inflammatory
response, UV response DN, apoptosis, TGF-β signalling,
angiogenesis, TNFα signalling via NF-κB, IL-2/STAT5
signalling, coagulation, and epithelial mesenchymal transition
pathways were involved significantly in the high-c_mRNAsi
group of both TCGA and CGGA (Figures 7A,B).

4 DISCUSSION

GBM is composed of non-homogeneous cell populations exhibiting
varying degrees of genetic and functional heterogeneity. Cancer stem
cells are capable of sustaining tumours by manipulating genetic and
non-genetic factors tometastasise, resist treatment, andmaintain the
tumour microenvironment (Saygin et al., 2019). Understanding the
key traits and mechanisms of stemness of cancer stem-like cells
provides opportunities to improve patient outcomes via improved
prognostic models and therapeutics. However, tumour cells are
usually comprised of a heterogeneous mixture of subclones, each
of which may have its own distinct characteristics. Therefore,
accurately assessing the make-up of the different cell states within
a tumour biopsy is very important. Here, we calculated an mRNAsi,
which was also corrected by tumour purity (c_mRNAsi), based on
the expression profile of 12,953 genes in 874 GBM samples from the
TCGA, CGGA, and GEO public databases using the OCLR
machine-learning algorithm. We found that, after confounding
variable identification and interaction and stratified analyses,
c_mRNAsi remained an independent prognostic factor in both
TCGA and CGGA, whereas mRNAsi was affected by gender in
TCGA and was no longer an independent prognostic factor after
adjustment in CGGA. Model 2 (clinical factors integrated with
mRNAsi) and model 3 (clinical factors integrated with
c_mRNAsi) showed better calibration and discrimination than
clinical factors alone in both TCGA and CGGA. Moreover,
model 3 performed better than model 2, although there was no
significant difference between the single mRNAsi and c_mRNAsi
models in GEO. Therefore, we concluded that c_mRNAsi can be
used as a new index for the construction of algorithms that predict
the prognosis of patients with GBM. To explore the possible reasons
for the difference in prognosis between the high- and low-
c_mRNAsi groups, we applied the CIBERSORTx algorithm to
infer the abundance of immune infiltrating cells in TCGA and
CGGA and found differential infiltration patterns across 5 and 8
clusters in TCGA and CGGA, respectively. Importantly, we found
that high mRNAsi correlated significantly with high infiltration of
immune activated cells, especially M1 macrophages, dendritic cells,
monocytes, activatedNK cells, and follicular T helper cells. Lastly, we
screened the potential signalling pathways of the c_mRNAsi-related
signature and found that most of the pathways were immune-
related.

In this study, we utilised the OCLR machine-learning
algorithm to quantify mRNAsi and c_mRNAsi for each GBM
sample. Using OCLR, we previously identified undiscovered
biological mechanisms associated with the dedifferentiated
oncogenic state (Lian et al., 2019). Moreover, OCLR exhibited
comparable performance with a more flexible and convenient

FIGURE 7 | Pathway enrichment analysis in high and low c_mRNAsi
groups. (A). Pathway enrichment analysis in TCGA. (B). Pathway enrichment
analysis in CGGA.
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formulation to that with traditional support vector machine-
based one-class predictors (Sokolov et al., 2016). We drew
support from OCLR machine-learning algorithm to derive two
distinct molecular metrics of stemness indices and finally selected
c_mRNAsi for subsequent validation analysis, owing to its
observed prognostic significance in various data. Stemness
indices had already been identified in several malignancies and
had different prognostic values in ovarian cancer, (Kaipio et al.,
2020), medulloblastoma, (Lian et al., 2019), colon cancer, (Tao
et al., 2019), or acute myeloid leukaemia (Seneviratne et al., 2019).
However, stemness indices are targeted at bulk tissues, a mixture
of tumour tissue and normal tissue. Although some scholars
developed new algorithms to adjust stemness indices, (Pan et al.,
2019), the algorithms are complex. The ESTIMATE algorithm
can adjust directly from transcriptome data, (Yoshihara et al.,
2013), which is more convenient. In our multi-cohort screening,
we examined the capacity of c_mRNAsi, which is obtained after
correcting the index by the tumour purity calculated with
ESTIMATE, (Yoshihara et al., 2013), to predict OS. Our
findings demonstrate that c_mRNAsi can be implemented in
clinical practice, something that has not been previously reported.
Common clinical indicators of GBM include KPS,MGMT, IDH1,
and epidermal growth factor receptor vIII (Burgenske et al., 2019;
Chaddad et al., 2019). GBM-specific microRNAs, including miR-
21 and miR-10b, have also been presented as biomarkers with
promising prognostic values (Sasmita et al., 2018). Confounder
identification and interaction tests could help us to better
understand the relationship between the variables and disease.
In our study, we first used the mRNAsi/c_mRNAsi calculated by
the algorithm as a variable to carry out residual confounder
identification and interaction test with common clinical
indicators, so as to minimise the impact of confounding
factors on GBM OS as much as possible. Furthermore,
discrimination and calibration are the most commonly used
indicators in the evaluation of clinical prediction models.
However, a systematic review found that while 63% of the
studies on prediction models reported discrimination data,
only 36% included calibration data (Wessler et al., 2015). In
the present study, we report both discrimination and calibration
in the training and validation cohorts. In addition, we did not
only use the enhanced bootstrap test for internal validation, but
also directly compared multiple models in two data sets (TCGA
and CGGA) to minimise model overfitting. This significantly
differs from traditional studies of clinical models, and allowed us
to select the optimal model for prognosis prediction in patients
with GBM.

Previous studies have shown that the higher the stemness indices
scores, the worse the overall survival outcomes, (Pei et al., 2020),
which is the opposite from our results. Therefore, we wanted to
further explore the reasons for the different prognosis among the
groups. Using gene-expression-based metrics, a recent study
reported the association of stemness with immune cell infiltration
and genomic, transcriptomic, and clinical parameters across 21 solid
cancers (Miranda et al., 2019). Pervasive negative associations
between cancer stemness and anticancer immunity have also
been found (Miranda et al., 2019). In line with the current pan-
cancer findings, we also analysed infiltrative immune cells in distinct

cohorts (TCGA and CGGA) using the CIBERSORTx algorithm and
found that the high-c_mRNAsi group exhibited significant immune
suppression. Based on the expression data in TCGA and CGGA, we
observed that c_mRNAsi correlated negatively with infiltrating levels
of immune cells. Promoting Treg overrepresentation and function
induces systemic and intratumoural immunosuppression (Long
et al., 2020). CD8+ cytotoxic T lymphocyte cells, macrophages,
Tregs, and other immune cells can respond to GBM treatment,
including immunotherapy, to a certain extent (Choi et al., 2019).
Meanwhile, high c_mRNAsi was associated with the up-regulation
ofM1macrophages, resting dendritic cells, monocytes, activated NK
cells, and follicular T helper cells. In addition, we also found that
general immune-related pathways were activated in the high-
c_mRNAsi group, which is consistent with previous findings
(Zhang C. et al., 2020). Collectively, our results suggest that the
better prognosis of patients with high c_mRNAsi may be owing to
the presence of more tumour stem cells and more tumour
neoantigens, which results in the higher infiltration of tumour
immune cells. Based on our findings, we propose c_mRNAsi as a
new marker for tumour immunotherapy in the future.

The stemness indices reflects the ability of self-renewal and
unlimited proliferation. We found that significantly different
enrichment pathways are mainly related to cell cycle, damage
repair, proliferation, apoptosis, angiogenesis, glucose, lipid
metabolism and energy metabolism through ssGSEA. The
current view is that tumour stem cells are related to the
inhibitory immune microenvironment (Alves et al., 2021). At
present, it is found that the stemness indices is also related to
IL6/JAK/STAT3, IL-2/STAT5, and TGF-β signalling pathways
(Zhang et al., 2019; Liu et al., 2021; Mo et al., 2021; Zhou et al.,
2021). Interleukins are closely related to the proliferation and
function of T cells (Ceuppens et al., 1988; Popmihajlov et al.,
2012; Raeber et al., 2018). Tregs are a key source of TGF-β ligands
(Zhang Y. et al., 2020). Together, the pathways we enriched here
are closely related to immune response.

There are several limitations in our study that need to be
addressed in the future. First, we used four different datasets
(TCGA, CGGA, GSE4412, and GSE13041) to test the prognostic
value of mRNAsi/c_mRNAsi and found the power and
robustness of c_mRNAsi. However, we could not definitively
determine whether the c_mRNAsi obtained from the bulk
tumour sequencing/array could be utilised for all types of
GBM samples from diverse genetic backgrounds. Furthermore,
the study was based on public data. We should use our own
sequencing data to verify the c_mRNAsi and clinical model.
Besides, the c_mRNAsi signature could distinguish differential
subpopulations with distinct prognosis. Whether stemness
indices mediate poor immunotherapy response requires
further investigation. There is still a long way before we can
accomplish individualised classifications for treatment because
other clinical and genetic/epigenetic factors must be considered
and incorporated into treatment decision-making (Mansouri
et al., 2019). In addition, due to the limitation of GEO data
sources, we could only verify the prognostic signature of
c_mRNAsi, but could not identify confounding factors as in
CGGA. Moreover, the c_mRNAsi-related signature should be
further validated in large samples of patients with GBM from
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multiple centres to identify the associations not only with survival
outcomes but also conventional drug responses, especially
immunotherapy. Lastly, although we performed functional
analysis and identified numerous differences in infiltrative
immune cell abundance and the regulation of related
pathways, specific experimental validations need to be
designed to assess the real effect. Despite the above
shortcomings, our work has certain advantages that cannot be
ignored. We calculated the mRNAsi/c_mRNAsi using a large
number of samples and, for the first time, performed confounding
variable identification and interaction and stratified analyses.
Furthermore, we made a comprehensive comparison of several
models, and proved the validity of our conclusions in multiple
ways to verify the credibility of our results.

In conclusion, our study systematically assessed the GBM
stemness indices based on multiple independent cohorts,
providing a robust quantified mRNAsi/c_mRNAsi reflective of
stemness indices, and the associations with immune infiltration
and immune related pathways. The c_mRNAsi-based signature
proved to be superior to other models in predicting OS prognosis,
and may be a valuable classifier for uncovering distinct subgroups
of stemness indices.
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in CGGA.

Supplementary Figure 3 | Survival curve of mRNAsi/c_mRNAsi on prognosis. (A).
Disease-specific survival curve of mRNAsi in TCGA. (B). Disease-specific survival
curve of c_mRNAsi in TCGA. (C). Progression-free interval curve of mRNAsi in
TCGA. (D). Progression-free interval curve of c_mRNAsi in TCGA.

Supplementary Figure 4 | External validation in CGGA and GEO. (A). AUC in
TCGA. (B). C-index in CGGA. (C). Prediction error in CGGA. (D). 0.5-year DCA in
CGGA. (E). 1-year DCA in CGGA. (F). 1.5-year DCA in CGGA. (G). 3-year DCA in
CGGA. (H). 5-year DCA in CGGA. (I). 0.5-year calibration in CGGA. (J). 1-year
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CGGA. (M). 5-year calibration in CGGA. (N). AUC in GSE4412. (O). AUC in
GSE13041.

Supplementary Figure 5 | Construction of prognostic nomogram.
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