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Abstract: Intensive care unit (ICU) patients develop an altered host immune response after severe
injuries. This response may evolve towards a state of persistent immunosuppression that is associated
with adverse clinical outcomes. The expression of human leukocyte antigen DR on circulating
monocytes (mHLA-DR) and ex vivo release of tumor necrosis factor α (TNF-α) by lipopolysaccharide-
stimulated whole blood are two related biomarkers offered to characterize this phenomenon. The
purpose of this study was to concomitantly evaluate the association between mHLA-DR and TNF-α
release and adverse clinical outcome (i.e., death or secondary infection) after severe trauma, sepsis or
surgery in a cohort of 353 ICU patients. mHLA-DR and TNF-α release was similarly and significantly
reduced in patients whatever the type of injury. Persistent decreases in both markers at days 5–7
(post-admission) were significantly associated with adverse outcomes. Overall, mHLA-DR (measured
by flow cytometry) appears to be a more robust and standardized parameter. Each marker can be
used individually as a surrogate of immunosuppression, depending on center facilities. Combining
these two parameters could be of interest to identify the most immunosuppressed patients presenting
with a high risk of worsening. This last aspect deserves further exploration.

Keywords: immunosuppression; monocyte; HLADR; TNF; LPS; sepsis; trauma; surgery

1. Introduction

The third sepsis conference in 2016 established a new definition for sepsis, which is
now depicted as a life-threatening organ dysfunction caused by a dysregulated host re-
sponse to infection [1]. This reflects our evolving understanding of sepsis pathophysiology
since the host immune response in sepsis is complex, rapidly evolving over time and in-
volves an initial excessive inflammation associated with a compensatory anti-inflammatory
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response [2,3]. When unbalanced, this response can lead to a delayed state of hypo-
responsiveness known as sepsis-induced immunosuppression [3,4].

Given improvements in early sepsis detection and acute intensive care management,
most patients now survive their initial septic insult, but a significant number do not fully
recover immune functions and experience recurrent infections, which may contribute to
increased morbidity or mortality [5,6]. Marked immunosuppression has been partially
described in patients admitted to the intensive care unit (ICU) for severe trauma and
major surgery [7,8]. A better understanding of the putative role of immune alterations in
clinical worsening after an injury may enable the use of agents that stimulate the immune
system as a potential therapeutic strategy to reduce morbidity and mortality of critically
ill patients [9,10]. Because the immune response during the ICU course can vary among
patients and over time, it is necessary to correctly identify the patients who will most
benefit from these treatments [11]. The development of reliable biomarkers to identify
individuals with clinically meaningful immunosuppression is thus required [9,12].

Among the variety of candidate biomarkers available to assess immunosuppression,
two are interrelated since both focus on monocytes: expression of human leukocyte antigen
DR on circulating monocytes (mHLA-DR) and ex vivo tumor necrosis factor α (TNF-α)
release of lipopolysaccharide (LPS)-stimulated whole blood [13]. The diminished mHLA-
DR expression was proposed as a reflection of monocyte deactivation in critically ill patients.
It is considered a reliable marker of immunosuppression as it has been extensively studied
in many clinical settings and repeatedly associated with an increased risk of nosocomial
infection and mortality [3,14]. The measurement of mHLA-DR expression is a rapid, non-
expensive and reproducible technique, but it requires the use of flow cytometry performed
within 4 h of blood sampling, which may not be available routinely in all centres. TNF-α
release upon ex vivo LPS challenge is a functional test to assess monocyte pro-inflammatory
cytokine production capacity [15]. After a severe injury, a reprogramming of monocytes is
observed, which results in a decreased TNF-α release capacity. This hypo-responsiveness
to a second challenge led to the concept of endotoxin tolerance [16] and supported the use
of TNF-α release as a reliable read-out of monocyte functionality. Decreased TNF-α release
was also reported to predict patients’ outcomes in ICU [17]. However, reported results are
more heterogeneous than those of mHLA-DR [18–20]. This may be owed to the fact that
TNF-α release measurement is less standardized [11,19] and is based on whole blood that
contains various types of leukocytes.

Only a few studies simultaneously assessed the performances of mHLA-DR and
TNF-α release to monitor injury-induced immune alterations in critically ill patients. To
our knowledge, none focused on the correlation between these two markers over the first
week of ICU stay, and none addressed this question in large cohorts of critically ill non-
septic patients [20,21]. Thus, the objective of the present biomarker-oriented study was to
determine the correlation between both these tests and their association with nosocomial
infections and death in a large cohort of septic, trauma and surgical patients.

2. Material and Methods
2.1. Design

This is an ancillary analysis of the REALISM study, a prospective longitudinal, single-
center observational study conducted in the Anesthesiology and Intensive Care Department
at the Edouard Herriot Hospital [22]. The objective of the REALISM study was to broadly
assess immune parameters in a cohort of critically ill patients during the first two months
after an injury and to correlate these findings with clinical data and outcomes in order
to define immunosuppression in ICU patients better. The protocol for this study was
published previously [23].

2.2. Patients

The inclusion criteria were: patients aged >18 years, clinical diagnosis of sepsis as
defined by 2016 SEPSIS-3 consensus guidelines [1], severe trauma with injury severity score



J. Clin. Med. 2022, 11, 96 3 of 15

(ISS) >15 or surgical patients undergoing major surgery such as oesophagogastrectomy,
bladder resection with Brickers’ reconstruction, cephalic pancreaticoduodenectomy and
abdominal aortic aneurysm surgery by laparotomy. Exclusion criteria were any of the
following: the presence of a preexistent condition or treatment that could influence patients’
immune status, pregnancy, institutionalized patients or inability to obtain informed consent.

A cohort of 175 healthy volunteers aged from 18 to 82 years (81 males and 94 females)
was also recruited prospectively. In order to account for the possible influence of age and
sex on immune parameters, the distribution of healthy volunteers was based on the age
and sex demographic data for the French population in 2016. Written informed consent was
obtained from every healthy volunteer and patient upon inclusion. If a patient was unable
to consent directly, informed consent was obtained from the patient’s legally authorized
representative and reconfirmed from the patient at the earliest opportunity. Patients’
demographics, comorbidities, diagnosis, severity and clinical outcome were prospectively
collected. Longitudinal follow-up was performed for a period of 90 days.

2.3. TNF Release and mHLA-DR Measurements

Clinical samples and data were collected three times during the first week after
admission: on day 1 or 2 (D1–2), day 3 or 4 (D3–4) and day 5, 6 or 7 (D5–7). One sample
was collected in healthy volunteers during the study visit, and clinical data were recorded.

Ex vivo stimulation of whole blood by LPS was performed through the use of TruCulture
tubes (MYRIAD RBM, Austin, TX, USA) containing a standardized LPS component. The
tubes contain the medium alone (Null; Null-R; MYRIAD RBM) or the medium with LPS
100 ng/mL (LPS from Escherichia coli O55:B5) (LPS-R; MYRIAD RBM). The blood samples
were collected on heparin and immediately transported to the laboratory, where 1 mL of
heparinized blood was transferred to each TruCulture tube and incubated for 24 h at 37 ◦C.
Following incubation, the supernatant (medium and plasma) was collected using a separation
valve (according to manufacturer instructions) and stored at −80 ◦C until batch quantification
of TNF-α by ELISA (BE55001; BL International-Tecan, Männedorf, Switzerland).

The number of HLA-DR molecules per monocyte was determined using the BD Quan-
tibrite Anti–HLA-DR/Anti-Monocyte standardized method (Becton Dickenson, Franklin
Lakes, NJ, USA) as previously described [24].

2.4. Definition of Endpoint

The primary endpoint for this study was the adverse outcome, defined as the occur-
rence of death or a nosocomial infection within the 30 days following ICU admission and
during the hospital stay. During the ICU stay, patients were screened daily for exposure to
invasive devices (intubation, indwelling urinary catheter and central venous line) and oc-
currence of secondary infection. Information related to infections were collected, reviewed
and validated by a blinded dedicated adjudication committee, comprising three physicians
not involved in the recruitment of the patients, with confirmation of secondary infection
made according to the definitions used by the European Centre for Disease Prevention and
Control [25] and the Infectious Diseases Society of America.

2.5. Statistical Analysis

Qualitative variables are presented as numbers and percentages, and quantitative
variables as median and 25th/75th percentiles. Chi-square or Fisher’s exact test was used
for qualitative variables assessment. Quantitative variables were compared with the Mann–
Whitney U test or Student’s t-tests according to the distribution of the variables. Normality
was assessed using histograms and Shapiro–Wilk test. Receiver operating characteristic
curves for mHLA-DR and TNF-α release measured at time point D5–D7 were estimated.
Correlation between mHLA-DR and TNF-α release was assessed using Spearman’s rho
correlation coefficients after log transformation of the data. The coefficients were calculated
at the three time points and in all predefined subgroups. Kaplan–Meier estimations were
performed at different time points for both immune parameters combined and individually.
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A log-rank test was applied. The Cox proportional hazards model was used at time points
D5–D7 as the association was the strongest at this time in univariate analysis. Clinically
relevant variables were included in the model, namely age, severity assessed by Sequential
Organ Failure Assessment (SOFA) Score and invasive devices exposure duration (tracheal
intubation, venous catheter, urinary catheter). Hazard ratios calculated for both immune
parameters were normalized to an increment from the first to the third quartile to allow
comparison between the two models. All statistical analyses were performed with R
software v4.0.3.

3. Results

Three hundred and fifty-three patients were included: 107 septic patients, 137 trauma
patients and 109 patients included after elective major surgery. The median age was
60 years (range 47–71). At inclusion, the median SOFA score was 5 (range 1–8). Of
353 patients, 74 (21%) developed at least one secondary infection within the first 30 days
after enrolment. This incidence was 18.7%, 16.8% and 28.4% in sepsis, trauma and surgery
patients, respectively. The mortality rate at day 30 in the whole cohort was 5%. This rate
was higher among septic patients (16%). Additional results were provided elsewhere [22].
Regarding the occurrence of adverse outcomes, clinical and biological characteristics at
inclusion and exposure to invasive devices are reported in Table 1. Characteristics related
to septic, trauma and surgery subgroups are reported in Supplementary Tables S1–S3.
Age-matched healthy volunteers (n = 175) were also recruited.

Table 1. Patients’ characteristics at inclusion.

Adverse Outcome
(n = 90)

Favorable Outcome
(n = 263) p-Value

Gender (n, %) 57 (63.3) 174 (66.2) 0.720

Age (years) 67.5 (55.3–75.0) 57.0 (44.0–70.0) <0.001

BMI (kg/m2) 26.1 (22.2–29.9) 24.7 (22.3–27.6) 0.093

Severity scores

SAPSII 35.0 (26.3–49.8) 26.0 (18.0–40.0) <0.001

Charlson 2.0 (0.0–3.0) 1.0 (0.0–2.0) <0.001

SOFA 7.0 (2.0–10.0) 4.0 (1.0–8.0) <0.001

Biological values

ALT (UI/L) 84.0 (41.8–150.0) 63.0 (32.0–160.0) 0.419

AST (UI/L) 126.0 (50.5–235.0) 83.0 (48.0–177.0) 0.189

Bilirubin (µmol/L) 17.5 (11.8–34.0) 15.0 (9.0–35.0) 0.335

Creatinine (µmol/L) 108.5 (71.8–183.8) 87.0 (66.3–125.8) 0.016

Leucocytes (×109/L) 13.9 (10.1–18.4) 12.7 (10.32–16.4) 0.389

Lymphocytes (×109/L) 1.1 (0.8–1.6) 1.3 (0.82–1.8) 0.059

Monocytes (×109/L) 0.9 (0.6–1.4) 0.9 ( 0.67–1.3) 0.709

Neutrophils (×109/L) 11.6 (8.3–15.9) 10.7 (7.88–14.1) 0.271

Platelets (×109/L) 193 (144–241) 206 (162.00–274) 0.112

PaO2/FiO2 (mm Hg) 242 (160–316) 246 (181–358) 0.146

Hemoglobin (g/dL) 113(93–127) 117 (103–132) 0.075

pH 7.34 (7.28, 7.39) 7.36 (7.30–7.41) 0.116

Lactate (mmol/L) 2.50 (1.70, 3.50) 2.20 (1.60–3.20) 0.205
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Table 1. Cont.

Adverse Outcome
(n = 90)

Favorable Outcome
(n = 263) p-Value

Organ failure

Coma (n, %) 7 (7.8) 19 (7.2) 1.000

Vasopressors (n, %) 57 (63) 121 (46) 0.007

Renal Replacement Therapy (n, %) 30 (33) 31 (12) <0.001

Exposure to invasive devices

Urinary Catheter (n, %) 81 (90) 213 (81) 0.070

Venous Catheter (n, %) 74 (82) 145 (55) <0.001

Tracheal intubation (n, %) 59 (66) 105 (40) <0.001

Invasive Ventilation D30 Free Days 17.00 (0.00, 28.75) 29.00 (27.00, 29.00) <0.001

Urinary Catheter D30 Free Days 7(0–22) 27 (22–28) <0.001

Venous Catheter D30 Free Days 0 (0–15) 23.00 (17–27) <0.001

Follow-up

Length of ICU stay 9.50 (4.00, 15.00) 5.00 (3.00, 8.00) <0.001

Time to adverse outcome (days) 9.00 (5.00, 14.00) NA
Results are expressed as medians and interquartile ranges [IQR] or numbers and percentages (%). ALT: alanine
transaminase, AST: Aspartate transaminase, BMI: Body mass index, SAPS: Simplified Acute Physiology Score,
SOFA: Sequential Organ Failure Assessment. Chi-square or Fisher’s exact test was used for qualitative variables
assessment. Quantitative variables were compared with Mann–Whitney U test or Student’s t-tests according to
the distribution of the variables. Normality was assessed using histograms and Shapiro–Wilk test.

Figure 1 shows mHLA-DR at each time point in the septic, trauma and surgery
subgroups and in the whole cohort. All types of injuries induced a decrease in mHLA-DR
expression compared to the healthy volunteers’ group. Overall, this decrease was more
marked in the group of patients presenting with adverse outcomes. The difference between
the two groups increased over time, reaching statistical significance at D3–D5 in all types
of injury. The same tendency was observed for TNF-α release (Figure 2) even though the
difference between the groups was less marked.

As previously described by principal component analyses [22], marker trajectories
were similar between etiologies (i.e., the common response to injuries). As the association
with adverse outcomes was more pronounced at D5–D7, we focused on this time point to
next compare mHLA-DR and TNF release in the whole cohort. Kaplan–Meier analysis was
used to provide unadjusted cumulative events for adverse outcomes at D30 with patients
stratified into four groups based on quartiles of the range of values of each marker at
D5–D7. The lowest expressions of both markers were associated with adverse outcomes
(mHLA-DR, p < 0.001; TNF-α release, p = 0.01). Cumulative incidence curves are shown
in Figure 3. Based on the ROC curves, mHLA-DR expression presented an area under the
curve of 0.78 compared to 0.71 for TNF-α release.

In multivariate analysis, after accounting for clinically relevant variables in the Cox
model (age, SOFA, tracheal intubation, catheterization), elevated mHLA-DR and TNF-α
release measured at D5–7 were significantly and independently associated with better
outcomes with respective normalized hazard ratios of 0.34 and 0.56 (Figure 4). Age and the
duration of invasive mechanical ventilation were also found as risk factors, whereas the
SOFA score and exposure to other invasive devices (central or urinary catheter) were not.
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Figure 1. Time course of mHLA-DR expression after injury. (a) mHLA-DR expression in septic patients; (b) mHLA-DR 
expression in trauma patients; (c) mHLA-DR expression in surgical patients; (d) mHLA-DR expression in the whole cohort 
of patients. Results are presented as box plots and are expressed as numbers of anti-mHLA-DR antibodies bound per 
monocyte (AB/C). Dotted lines represent reference values for mHLA-DR, based on 2.5th and 97.5th percentiles of healthy 
volunteers’ values. Blue plots correspond to patients who did not present with clinical worsening (n = 263). Red plots 
correspond to patients with clinical worsening (n = 90). Mann–Whitney test used for comparison between groups. Ns—
non-significant, *p < 0.05, **p < 0.01, *** p< 0.001, **** p < 0.0001. 

Figure 1. Time course of mHLA-DR expression after injury. (a) mHLA-DR expression in septic
patients; (b) mHLA-DR expression in trauma patients; (c) mHLA-DR expression in surgical patients;
(d) mHLA-DR expression in the whole cohort of patients. Results are presented as box plots and
are expressed as numbers of anti-mHLA-DR antibodies bound per monocyte (AB/C). Dotted lines
represent reference values for mHLA-DR, based on 2.5th and 97.5th percentiles of healthy volunteers’
values. Blue plots correspond to patients who did not present with clinical worsening (n = 263).
Red plots correspond to patients with clinical worsening (n = 90). Mann–Whitney test used for
comparison between groups. Ns—non-significant, * p < 0.05, ** p < 0.01, *** p< 0.001, **** p < 0.0001.
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Figure 2. Time course of TNF-α release after injury. (a) TNF-α release in septic patients; (b) TNF-α
release in trauma patients; (c) TNF-α release in surgical patients; (d) TNF-α release in the whole
cohort of patients. Results are presented as box plots and are expressed as concentrations (pg/mL) of
TNF-α in supernatants after whole blood LPS stimulation. Dotted lines represent reference values
for TNF-α release, based on 2.5th and 97.5th percentiles of healthy volunteers’ values. Blue plots
correspond to patients who did not present with clinical worsening (n = 263). Red plots correspond
to patients with clinical worsening (n = 90). Mann–Whitney test was used for comparison between
groups. Ns—non-significant, * p < 0.05, ** p < 0.01, *** p< 0.001, **** p < 0.0001.
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mHLA-DR expression at D5–D7 (b) TNF-α release at D5–D7. Of note, cumulative incidence curves 
for clinical worsening at D30 based on mHLA-DR expression at D3-4 are depicted in Supplemen-
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Figure 3. Cumulative incidence curves for clinical worsening at D30. Population was stratified into
four groups depending on quartiles of each marker in the population at D5–D7. Cumulative incidence
curves were estimated with Kaplan–Meier method, and log-rank test was applied. (a) mHLA-DR
expression at D5–D7 (b) TNF-α release at D5–D7. Of note, cumulative incidence curves for clinical
worsening at D30 based on mHLA-DR expression at D3–D4 are depicted in Supplementary Figure S1.
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Figure 4. Multivariable analysis. Cox proportional hazards model at D5–D7 including (a) mHLA-DR expression or (b) 
TNF-α release. Hazard ratios calculated for both immune parameters were normalized to an increment from first to third 
quartile to allow comparison between the two models. 

As both markers were separately associated with adverse outcomes, we then esti-
mated the correlation between mHLA-DR and TNF release. Overall, although significant, 
correlation in the whole cohort of patients was moderate (i.e., ρ = 0.41, p < 0.001). In sub-
group analysis, this correlation was the greatest in the sepsis group (ρ = 0.45, p < 0.001) 
and improved over time, i.e., the highest correlations were observed at D5–D7. All results 
are presented in Table 2 and Figure 5. 

Table 2. Spearman’s correlation for mHLA-DR expression and TNF-α release. 

Population ρ p-Value 
All cohort (all time points) 0.41 <0.001 
D1–D2 0.36 <0.001 
D3–D4 0.39 <0.001 
D5–D7 0.49 <0.001 
Sepsis (all time points) 0.45 <0.001 
Sepsis D1–D2 0.32 0.003 
Sepsis D3–D4 0.40 <0.001 
Sepsis D5–D7 0.52 <0.001 
Trauma (all time points) 0.34 <0.001 
Trauma D1–D2 0.17 0.04 
Trauma D3–D4 0.36 <0.001 
Trauma D5–D7 0.46 <0.001 
Surgery (all time points) 0.38 <0.001 
Surgery Day 1–2 0.39 <0.001 
Surgery D3–D4 0.24 0.02 
Surgery D5–D7 0.43 <0.001 

Figure 4. Multivariable analysis. Cox proportional hazards model at D5–D7 including (a) mHLA-
DR expression or (b) TNF-α release. Hazard ratios calculated for both immune parameters were
normalized to an increment from first to third quartile to allow comparison between the two models.

As both markers were separately associated with adverse outcomes, we then esti-
mated the correlation between mHLA-DR and TNF release. Overall, although significant,
correlation in the whole cohort of patients was moderate (i.e., ρ = 0.41, p < 0.001). In
subgroup analysis, this correlation was the greatest in the sepsis group (ρ = 0.45, p < 0.001)
and improved over time, i.e., the highest correlations were observed at D5–D7. All results
are presented in Table 2 and Figure 5.

Finally, as correlation was moderate between both markers, we combined them to
stratify patients into four groups at D5–D7. Cut-off thresholds were defined as TNF-α or
mHLA-DR results below the median in the population at D5–D7 for each marker. Group
1 had both TNF-α release and mHLA-DR expression altered, Group 2 only had altered
mHLA-DR expression, Group 3 only had altered TNF-α release and Group 4 had increased
values of TNF-α release and mHLA-DR expression. The incidence of adverse outcomes
in each group is reported in Table 3. When combining low values for both markers, we
identified a subset of patients with a higher risk of worsening (41% of patients with an
adverse outcome). Conversely, when only one marker was altered, the incidence of adverse
outcome was much lower, ranging from 16% (low TNF only) and 24% (low mHLA-DR
only) to 3% (both markers above median). Cumulative incidence curves related to each
marker combination are reported in Figure 6.

Table 2. Spearman’s correlation for mHLA-DR expression and TNF-α release.

Population ρ p-Value

All cohort (all time points) 0.41 <0.001

D1–D2 0.36 <0.001

D3–D4 0.39 <0.001

D5–D7 0.49 <0.001

Sepsis (all time points) 0.45 <0.001

Sepsis D1–D2 0.32 0.003

Sepsis D3–D4 0.40 <0.001

Sepsis D5–D7 0.52 <0.001
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Table 2. Cont.

Population ρ p-Value

Trauma (all time points) 0.34 <0.001

Trauma D1–D2 0.17 0.04

Trauma D3–D4 0.36 <0.001

Trauma D5–D7 0.46 <0.001

Surgery (all time points) 0.38 <0.001

Surgery Day 1–2 0.39 <0.001

Surgery D3–D4 0.24 0.02

Surgery D5–D7 0.43 <0.001
J. Clin. Med. 2022, 11, x FOR PEER REVIEW 10 of 16 
 

 

 

 
Figure 5. Correlation plots between mHLA-DR expression and TNF-α release. Correlation be-
tween log transformation of mHLA-DR expression and TNF-α release at (a) time points D1–D2, 
(b) time points D3–D4, (c) time points D5–D7 in whole cohort. 
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Table 3. Incidence of clinical worsening after stratifying patients by combining mHLA-DR expression
and TNF-α release at D5–D7.

Clinical Worsening No Clinical Worsening

Group 1 (mHLA-DR expression and
TNF-α release lower than medians) 40 (41%) 57 (59%)

Group 2 (only mHLA-DR expression
lower than median) 11 (24%) 35 (76%)

Group 3 (only TNF-α release lower
than median) 7 (16%) 38 (84%)

Group 4 (mHLA-DR expression and
TNF- α release higher than medians) 3 (3%) 94 (97%)

Results are expressed as numbers and percentages (%). mHLA-DR: human leukocyte antigen DR on circulating
monocytes, TNF-α: Tumor necrosis factor α. Stratification was based on median distribution of each marker at
D5–D7 (mHLA-DR = 9537 Ab/c and TNF-α release = 1741 pg/mL). p < 0.0001.
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monocytes, TNF-α: Tumor necrosis factor α. Stratification was based on median distribution of each
marker at D5–D7 (mHLA-DR = 9537 Ab/c and TNF-α release = 1741 pg/mL).

4. Discussion

In this ancillary analysis of the REALISM dataset [22], we showed that both decreased
mHLA-DR and TNF-α release were associated with a higher risk of death or nosocomial
infections in critically ill patients with sepsis, trauma or after elective surgery.

mHLA-DR and TNF-α release was markedly decreased immediately after ICU ad-
mission. After this initial response to stress and due to homeostatic mechanisms, some
patients recover from their initial insult and present with a progressive rise in mHLA-DR
and TNF-α release over time. In contrast, we observed that both markers remained sig-
nificantly lower in the subgroup of patients with adverse outcomes. In addition, for both
markers, the strength of the association was maximal at D5–7 compared to earlier time
points. This is in accordance with previous studies, which did not observe any association
upon ICU admission [25,26]. The existence of two overlapping pro-inflammatory and
anti-inflammatory responses induced at the initial stage after injury may have blurred the
signal of immunosuppression [2].

We observed that mHLA-DR and TNF-α release was statistically but moderately
correlated. As they are focused on monocytes, both markers are interrelated, but they
represent slightly different immune mechanisms. HLA-DR is part of the MHC class II
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molecule system, which allows monocytes to exert the function of antigen-presenting cells,
thus linking innate immunity to adaptive immune response. Decreased mHLA-DR is thus
associated with a reduced capacity of monocytes to induce T-cell responses [27]. Elsewhere,
TNF-α release reflects monocyte inflammatory function. Decreased TNF-α release by
monocytes was linked with the phenomenon of endotoxin tolerance [16]. However, as it is
currently performed in whole blood, it cannot be excluded that part of the TNF-α release
after LPS stimulation may be coming from other leukocytes, although this is likely to be a
limited amount.

The present results confirm that there is an association between markers of immuno-
suppression and adverse outcome after various types of injury such as trauma or major
surgery [8,11,28,29]. Our study also confirms the strong and independent association
between each marker and adverse outcome after multivariate analysis. However, this
association was stronger for mHLA-DR (Figures 1–4 and Figure 6). Interestingly, when
combining the two markers, we were able to enrich a subgroup of patients with a higher
risk of adverse outcomes in which almost 50% of patients would deteriorate (Figure 6).
As both markers may delineate different pathways of immune modifications, alterations
of both of them may reflect a more pronounced state of immunosuppression, and thus,
combining them could be helpful to identify patients that may benefit the most from the
use of immunostimulatory drugs.

Unlike our work, two recent studies failed to establish a link between TNF-α release
and complicated ICU course. In a cohort of septic shock patients, Drewry et al. [20] observed
a trend toward lower values of TNF-α measured on days 6 to 8 after admission between
survivors and non-survivors; however, the difference was not statistically different. To
note, the number of patients analyzed at this time point was low (n = 28) and may account
for this lack of statistical power. Likewise, Levin et al. [30] did not report any difference
in rates of nosocomial infections and worse clinical outcomes among groups of patients
based on stratification of TNF-α levels. However, they limited their analyses to the values
measured on ICU admission, whereas our findings suggest that TNF-α values have better
performance when measured at D5–D7. The lack of consistency in the association with
clinical outcomes in some studies may also result from the lack of reproducibility in the
measurement of TNF-α release, which has never been standardized [11]. This issue was
underscored by Segre et al. [19]. They reported high variability in the values of TNF-α
release depending on the LPS source, LPS concentration, duration and temperature of
incubation, as well as sample handling before stimulation. As immune monitoring may be
used to guide immunoadjuvant therapies in the future, this question needs to be resolved in
order to identify which patients would benefit from such a strategy precisely. In the present
study, we used standardized commercial tubes containing LPS from E. Coli O55:B5 in order
to minimize the bias and variability introduced by sample shipping and manipulation.
Conversely, mHLA-DR standardization was extensively reported [14] and has proven
to ensure inter-laboratory reproducibility [24,31]. Pre-analytical handling requires EDTA
anticoagulation, storage on ice as soon as possible and analysis by flow cytometry within 4 h
after sampling. These conditions may limit the accessibility of the technique in centers that
do not have rapid access to flow cytometry facilities [32]. Recent data nevertheless suggest
the possibility to measure mHLA-DR after blood collection in stabilizing sampling tubes
allowing to quantify mHLA-DR expression up to 72 h after sampling and storage at room
temperature [31,33]. Alternatively, a bedside protocol for flow cytometry measurement
of mHLA-DR was recently proposed [34]. This recent progress could help to overcome
drawbacks in mHLA-DR measurement and facilitate its use.

Our study has several limitations that should be addressed. First, this was a mono-
center study. That said, the patients’ recruitment was performed among three different
ICUs and allowed us to investigate different types of injuries. Second, regarding ICU
patients, the overall mortality rate of the cohort may be considered relatively low due to
the inclusion of trauma and patients after elective surgery. This supports our choice to
evaluate adverse outcomes as defined by the occurrence of death or a secondary infection
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as the primary outcomes. Thus, in the next larger cohorts, the validity of the present results
regarding association with mortality should be further confirmed.

5. Conclusions

We reported that both persistent decreased mHLA-DR and TNF-α release, two mark-
ers of immunosuppression, were significantly associated with adverse outcomes in a large
cohort of patients recruited after different types of injuries. Overall, although mHLA-DR
appears to be a more robust and standardized parameter, each marker can be used individ-
ually as a surrogate of immunosuppression in ICU patients, depending on each center’s
facility. In addition, although a significant correlation was observed between markers,
the present work illustrates that combining these two parameters could be of interest to
identify a subgroup of patients with deep injury-induced immunosuppression better. This
last aspect deserves further exploration. The development of robust, standardized and
routinely available markers of injury-induced immunosuppression will help to promote
wider use of reliable immune monitoring in the future. This is of major importance to guide
future clinical trials evaluating immune-adjuvant treatments in critically ill patients.
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