
Research Article
Mortality Prediction Using SaO2/FiO2 Ratio Based on eICU
Database Analysis

Sharad Patel,1 Gurkeerat Singh ,2 Samson Zarbiv,1 Kia Ghiassi,3

and Jean-Sebastien Rachoin1

1Cooper University Hospital, Camden, NJ, USA
2Piedmont Columbus Regional, Columbus, GA, USA
3University of Missouri, St. Louis, MO, USA

Correspondence should be addressed to Gurkeerat Singh; gurkeeratmail@gmail.com

Received 10 December 2020; Revised 24 December 2020; Accepted 25 September 2021; Published 8 November 2021

Academic Editor: Quincy K Tran

Copyright © 2021 Sharad Patel et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. PaO2 to FiO2 ratio (P/F) is used to assess the degree of hypoxemia adjusted for oxygen requirements. *e Berlin
definition of Acute Respiratory Distress Syndrome (ARDS) includes P/F as a diagnostic criterion. P/F is invasive and cost-
prohibitive for resource-limited settings. SaO2/FiO2 (S/F) ratio has the advantages of being easy to calculate, noninvasive,
continuous, cost-effective, and reliable, as well as lower infection exposure potential for staff, and avoids iatrogenic anemia.
Previous work suggests that the SaO2/FiO2 ratio (S/F) correlates with P/F and can be used as a surrogate in ARDS. Quantitative
correlation between S/F and P/F has been verified, but the data for the relative predictive ability for ICU mortality remains in
question. We hypothesize that S/F is noninferior to P/F as a predictive feature for ICU mortality. Using a machine-learning
approach, we hope to demonstrate the relative mortality predictive capacities of S/F and P/F.Methods. We extracted data from the
eICU Collaborative Research Database. *e features age, gender, SaO2, PaO2, FIO2, admission diagnosis, Apache IV, mechanical
ventilation (MV), and ICUmortality were extracted. Mortality was the dependent variable for our prediction models. Exploratory
data analysis was performed in Python. Missing data was imputed with Sklearn Iterative Imputer. Random assignment of all the
encounters, 80% to the training (n� 26690) and 20% to testing (n� 6741), was stratified by positive and negative classes to ensure a
balanced distribution. We scaled the data using the Sklearn Standard Scaler. Categorical values were encoded using Target
Encoding. We used a gradient boosting decision tree algorithm variant called XGBoost as our model. Model hyperparameters
were tuned using the Sklearn RandomizedSearchCV with tenfold cross-validation. We used AUC as our metric for model
performance. Feature importance was assessed using SHAP, ELI5 (permutation importance), and a built-in XGBoost feature
importance method. We constructed partial dependence plots to illustrate the relationship between mortality probability and S/F
values. Results. *e XGBoost hyperparameter optimized model had an AUC score of .85 on the test set. *e hyperparameters
selected to train the final models were as follows: colsample_bytree of 0.8, gamma of 1, max_depth of 3, subsample of 1,
min_child_weight of 10, and scale_pos_weight of 3.*e SHAP, ELI5, and XGBoost feature importance analysis demonstrates that
the S/F ratio ranks as the strongest predictor for mortality amongst the physiologic variables. *e partial dependence plots
illustrate that mortality rises significantly above S/F values of 200. Conclusion. S/F was a stronger predictor of mortality than P/F
based upon feature importance evaluation of our data. Our study is hypothesis-generating and a prospective evaluation is
warranted. Take-Home Points. S/F ratio is a noninvasive continuous method of measuring hypoxemia as compared to P/F ratio.
Our study shows that the S/F ratio is a better predictor of mortality than the more widely used P/F ratio to monitor and
manage hypoxemia.
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1. Introduction

Management of hypoxia is an integral part of the intensive
care unit (ICU) care. Patients in the ICU present with a wide
variety of pathologies requiring varying degrees of oxy-
genation support. Evaluation and management of hypoxia
are achieved through various forms of monitoring, including
partial pressure of oxygen (PaO2) from an arterial blood gas
analysis and pulse oximetry for oxygen saturation (SaO2).

*e Berlin definition for Acute Respiratory Distress Syn-
drome (ARDS) includes the PaO2/FiO2 (P/F) ratio as a di-
agnostic criterion [1]. Most cutoffs for ARDS interventions are
based on the P/F ratio [2,3]. Measuring PaO2 requires an
arterial blood gas (ABG) analysis, an invasive and potentially
cost-prohibitive clinical setting procedure with limited re-
sources [4]. ABGmeasurement overuse has been recognized as
a problem for 20 years now, leading to practice guidelines to
curb this testing [5]. PaO2 values can vary significantly from
one blood gas draw to another, and given the relative infre-
quency of checks, this can lead to erroneous conclusions and
interventions [6,7]. Furthermore, considering the current
COVID-19 pandemic, frequent blood gas checks may increase
the risk of infection transmission. Many of these dogma-based
processes in the ICU warrant a renewed risk-and-benefit
analysis in the postpandemic scenario.

SaO2 is a continuously available parameter, which corre-
lates well with PaO2. PaO2 alone is nebulous and must be
considered in the context of the degree of oxygenation support.
P/F ratio provides information about the pulmonary gas ex-
change adjusted for the quantity of oxygen delivered. SaO2/
FiO2 (S/F) ratio can be calculated easily and can be considered a
noninvasive alternative to P/F. A strong correlation between S/
F and P/F has been reported in the available literature. Brown
et al. found that PaO2/FiO2 ratios could accurately be imputed
with SaO2/FiO2 (S/F) ratios through nonlinear equations, with
clinical equivalence, which can be verified by comparing
mortality [8]. S/F correlates with P/F for diagnosing ARDS in
medical and surgical patients [9–11].

Although the S/F ratio has good accuracy and is con-
tinuously available, the S/F ratio is not a standard assessment
tool for hypoxia in the ICU. *ere have been attempts to
utilize S/F when resources are limited, where ABG may not
be readily available [10]. *e current evidence suggests that
the S/F ratio correlates well with P/F and is comparable in
ARDS diagnostic performance. S/F ratio has the advantage
of being easy to calculate, noninvasive, continuous, cost-
effective, and reliable, with potentially low risk of exposure,
and avoids iatrogenic anemia [11]. Despite the aforemen-
tioned obvious benefits of using S/F over P/F, the data
assessing clinical outcomes exists but remains sparse [9–12].
A diagnostic test’s utility can partially be measured by the
ability to discriminate accurately between outcomes of in-
terest; as intensivists, the outcome of interest is often
mortality. Using a machine-learning approach, we aim to
retrospectively estimate the relative predictive capacity of S/
F and P/F in measuring ICU mortality. Our assessment is
novel. We hope to demonstrate the predictive capacity of S/F
in a heterogeneous ICU population, including surgical,
medical, mechanically ventilated, and nonmechanically

ventilated patients. Our purpose is to demonstrate the
noninferiority for mortality predictive ability of S/F relative
to P/F with the ambition to promote practice change to-
wards a less resource-laden method to assess hypoxia.

2. Methods

2.1. Ethics Statement. *is study analyzed a publicly avail-
able, anonymized database with preexisting institutional
review board (IRB) approval.

2.2. Sample Selection. *e eICU Collaborative Research Da-
tabase is a multicenter intensive care unit database with data
from over 200,000 ICU admissions monitored by eICU pro-
grams [13]. *e eICU database comprises 200,859 patient unit
encounters for 139,367 unique patients admitted between 2014
and 2015 from 208 hospitals located throughout the US. From
the eICU encounters, stays involving adult patients (18 years
and above) were included (Figure 1). Patients at all levels of
oxygen and mechanical support were included. *e ranges of
oxygen requirements include nasal cannula to mechanical
ventilation and ECMO. Patients with no admission day PaO2
or FiO2 were excluded. *e variables age, gender, SaO2, PaO2,
FIO2, admission diagnosis, Apache IV, mechanical ventilation
(MV), and ICU mortality were extracted from the database
[14]. PaO2 and FiO2 were drawn from the worst arterial blood
gas (ABG) on day 1 of admission. SaO2 was measured every
minute, but the final recorded value was the five-minute
median value. We used the first SaO2 measurement recorded
for the admission.Mortality was the dependent variable for our
predictionmodels. Using SaO2, PaO2, and FiO2, we created two
new features using the ratios SaO2/FiO2 (S/F) and PaO2/FiO2
(P/F). SaO2, PaO2, FiO2, S/F, gender, admission diagnosis,
mechanical ventilation (Vent), and P/F were the final features
used during the algorithm’s training and testing. Our feature
importance rankings are the physiologic parameters, including
SaO2, PaO2, FiO2, P/F, and S/F.

2.3. Experimental Methods. *e missing data were imputed
with Sklearn Iterative Imputer (Version 0.23.2) [15]. Ran-
dom assignment of all the encounters, 80% to the training
(n� 26690) and 20% to testing (n� 6741), was stratified by
positive and negative classes to ensure a balanced distri-
bution. Figure 2 shows the class balance for the primary
outcome. *e data were scaled using the Sklearn Standard
Scaler. Admission diagnosis was encoded via the library
Category_encoder with the Target Encoding method [16].
All predictive models depicted in this paper were instances
of the XGBoost gradient boosted tree model, implemented
in Python [17]. XGBoost is a tree ensemble method that
builds progressively on the loss generated by weak decision
tree base learners. A baseline XGBoost model was trained,
followed by training of the final model with optimized
hyperparameters. Model hyperparameters were tuned using
the Sklearn RandomizedSearchCV with tenfold cross-vali-
dation. *e hyperparameters chosen to optimize were col-
sample_bytree, gamma, max_depth, subsample,
min_child_weight, and scale_pos_weight.
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*e XGBoost predictive models were trained and tested
using repeated/stratified K cross-validation (K� 10). In this
validation paradigm, the data were partitioned into ten
random folds, and outcomes were distributed in equal
proportions in each fold to reduce bias. Each of the ten
models trained was then tested on the hold-out test set
partitioned before hyperparameter tuning. *e final metrics
reported were averages of the five models.

Our dataset is imbalanced. An imbalanced dataset has a
large difference between the majority and minority outcome
classes. In our cohort, the number of patients who survived was
larger than that of those who expired. Imbalanced datasets are
common in medical databases and can negatively affect ma-
chine-learning classification performance. *e Area Under the
ReceivingOperator Curve (AUC)was used as a goodness-of-fit
test for our model’s predictive performance. AUC was chosen
as our primary metric as it is known to be relatively agnostic to
minority and majority class occurrence differences [18]. Ad-
ditionally, Accuracy, Recall, and Precision were reported.

Once the final model was trained, feature selection using
three techniques, SHAP, Eli5, and the built-in feature impor-
tance within XGBoost, was performed [19–22]. Our primary
means of assessing feature importance in this study is via the

SHAP library, which derives importance using Shapley values.
Shapley values are based on the idea that the outcome of each
possible combination of features should be considered to de-
termine the significance of a single feature. *e Eli5 library
derives feature importance via permutation importance. Values
are shuffled within the dataset for each feature, predictions are
generated by the model, and score change is calculated. *e
prediction score change of each feature is then ranked, and
feature importance is derived. *e XGBoost model provides
feature importance ranking, which uses gain as the default
method for calculation. Gain implies the relative contribution of
the corresponding feature to themodel calculated by taking each
feature’s contribution for each tree in the model. A higher value
of this metric than the other features implies that it is more
important for generating a prediction. Partial dependence plots
were created to illustrate S/F values and the relative probability of
death. *is plot gives the curve representing how much the
variable affects the final prediction at which variable value.

3. Results

Feature distribution stratified by mortality is demonstrated in
Table 1.*e feature value ranges and distributions were complex
and at times multimodal, which are best displayed via violin
plots. Violin plots provide both the interquartile range distri-
butions and the probability distributions, the latter of which
cannot be ascertained by the traditional box plot. Overall feature
distribution is displayed via Violin plots (Supplemental
Figures 1–6). Additionally, patients were stratified as mechan-
ically ventilated (n� 27382) and nonmechanically ventilated
(n� 5873), as displayed in Table 1. Admission diagnosis dis-
tribution is displayed in a descending order based upon the
frequency in Supplemental Figure 6, with missing values
demonstrated in Supplemental Figures 7 and 8.

Using the training data, we performed fivefold cross-
validation on every combination of the hyperparameter
values. *ere were 405 different hyperparameter com-
binations, and, with 10-fold cross-validation, a total of
2020 models were fit on the training data. *e evaluation
metric used to determine the best performing hyper-
parameter combination was AUC. *e hyperparameters
selected to train the final models were as follows: col-
sample_bytree of 0.8, gamma of 1, max_depth of 3,

Age < 18 Excluded ( 5508 )

Total encounters to XGBoost Classifier -33701

EICU: EICU Collaborative Research Database. PaO2: Partial pressure of oxygen;
FiO2: Fraction of inspired oxygen; SaO2: Oxygen saturation. 

Encounters without any one of the
following were Excluded (107,834) 

FiO2
PaO2
SaO2

Total EICU encounters –147043 

Figure 1: Inclusion flowchart. EICU: EICU Collaborative Research Database. PaO2: partial pressure of oxygen; FiO2: fraction of inspired
oxygen; SaO2: oxygen saturation.
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Figure 2: Final AUC for the test set of the hyperparameter op-
timized model. Pipeline: Iterative Imputer, Label Encoding, Target
Encoding, Standard Scaler, and XGBoost Classifier.
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subsample of 1, min_child_weight of 10, and scale_-
pos_weight of 3.

*e XGBoost base model had a final AUC of 0.84 and
0.84 on the training set and test set, respectively. *e
hyperparameter optimized model had AUC scores of 0.84
and 0.85 on the training set and test set, respectively. Given
the minimal to no difference between the training and test
scores, it is reasonable to assume that our model did not
overfit. Performance metrics of the final model are shown in
Table 2 and Figure 2. Base model scores are available in
Supplemental Figure 9.

*e SHAP plot demonstrates that the S/F ratio ranks as
the strongest predictor for mortality amongst the physiologic
variables of interest (Figure 3). Figure 4 illustrates a similar
trend as the S/F ratio remains the highest-ranking physiologic
feature using the Eli5 library. Figure 5 relays the feature
importance using the XGBoost built-in feature importance
method with the results remaining like SHAP and Eli5.

S/F ratio is the highest-ranking physiologic feature for
predicting ICU mortality. *is holds with the three different
feature importance evaluation methods: SHAP, permutation
importance, and the XGBoost feature importance. *e S/F
ratio partial dependence plot demonstrates a significant
increase in mortality as the S/F drops below 200 (Figure 6).

4. Discussion

*is study has described a supervised machine-learning
model to predict ICU mortality using the standard pa-
rameters to assess hypoxia. *e objective was to assess the
feature importance from the classification model, but the
importance is only valid if there is an accurate model. Model

classifiers attained a strong AUC of 0.85, which reinforces
confidence in the feature importance rankings. Feature
importance rankings were created using three different
methods, with the primary method being SHAP values. We
employed an advanced machine-learning feature impor-
tance method in the form of SHAP. SHAP values are at the
cutting edge for interpretable machine-learning models
previously considered as black boxes by demonstrating
feature importance in the context of every possible per-
mutation combination. S/F ratio appeared to be the
strongest physiologic predictor for ICU mortality based on
all three modalities’ feature importance rankings.

P/F ratio is the most used method for assessing hypoxic
respiratory failure severity, especially ARDS. P/F calculation
requires blood draws, increases costs, and can vary signif-
icantly even without oxygenation physiology changes [7].
Temporally, P/F has significant limitations as it is more
labor-intensive and can cause theoretic delays in urgent
interventions. Furthermore, since COVID-19 has changed
the landscape of clinical care in the ICU, it can be argued that
frequent ABG checks may potentially increase the infection
risk for the ICU staff.

Continuous pulse oximetry is an accurate, continuous,
noninvasive, and cost-effective method to assess hypoxia. It
is a better indicator of oxygen delivery than P/F, as indicated
by the oxygen delivery equation [23]. However, in our
practice, it is not often used to make critical decisions for
severe hypoxia, such as prone ventilation and neuromus-
cular blockade. S/F ratio provides all the benefits of SaO2 but
provides a more nuanced understanding of the patient’s
hypoxia. Previous studies have shown a strong correlation
between S/F and P/F, and S/F values can be accurately
imputed from P/F and vice versa [11]. Hence, it would be
reasonable to contemplate that a cheaper, safer, comparably
accurate, and continuous disease monitoring method should
be considered the primary means of disease evaluation.

A potential pitfall to consistent use of the S/F ratio to
stratify hypoxic respiratory failure is the relative lack of
knowledge of the proper cutoffs that guide interventions. *e
Kigali protocol provides cutoffs, and prior studies have shown
linear and nonlinear relationships to P/F, which can be used
[24]. We created a partial dependence plot to illustrate the
cutoff at whichmortality sharply increases, and this appears to
be at an S/F ratio of about 200 (Figure 6). Additionally, in the
partial dependence plots, we plot P/F against the probability
of mortality with superimposed S/F values, which denotes the
strong correlation between high and low values in the two
measures (Figure 7). Table 1 illustrates the mean P/F and S/F
ratios for patients grouped by mortality. *ough our study
aimed not to create specific cutoff values for S/F, this should
be a future objective for a prospective evaluation.

*e patient sample used in this study was multicentered
and diagnostically heterogeneous. It included mechanically
ventilated and nonmechanically ventilated patients, which
distinguishes it from past studies evaluating the S/F ratio. To
the best of our knowledge, there have been no prior studies
that have used a machine-learning approach to compare the
relative strengths of mortality prediction of S/F and P/F
using modern feature importance methods.

Table 1: Summary statistics of demographics and features.

Overall Alive Expired P value
n 33701 29363 4338
Age, mean (SD) 63.2 (15.5) 62.8 (15.5) 65.9 (14.9) <0.001

Vent, n (%) NM 5873 (17.4) 5477
(18.7) 396 (9.1) <0.001

Vent, n (%) M 27828
(82.6)

23886
(81.3) 3942 (90.9)

PaO2, mean (SD) 130.3
(85.2)

130.1
(83.7)

131.1
(94.5) 0.526

FiO2, mean (SD) 59.3 (26.3) 57.1 (25.5) 74.4 (26.3) <0.001
SaO2, mean (SD) 95.4 (7.4) 96.0 (5.8) 91.6 (13.4) <0.001

Gender, n (%) m 18991
(56.4)

16534
(56.3) 2457 (56.6) 0.695

Gender, n (%) f 14710
(43.6)

12829
(43.7) 1881 (43.4)

APACHE, mean
(SD) 74.4 (29.7) 69.6 (26.1) 107.0

(32.0) <0.001

P/F, mean (SD) 239.3
(124.3)

246.1
(122.3)

193.8
(128.4) <0.001

S/F, mean (SD) 197.3
(91.5)

204.1
(91.8)

150.6
(73.7) <0.001

n: total number of individuals; SD: standard deviation; NM: non-
mechanically ventilated patients; M: mechanically ventilated patients; PaO2:
partial pressure of oxygen; FiO2: fraction of inspired oxygen; SaO2: oxygen
saturation; m: male; f: female; APACHE: Acute Physiology and Chronic
Health Evaluation score; P/F: PaO2 and FiO2 ratio; S/F: SaO2 and FiO2 ratio.
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Table 2: Results from the cross-validation folds from the hyperparameter tuned training set.

Accuracy AUC Recall Prec.
0 0.8817 0.8507 0.1815 0.6395
1 0.8847 0.8493 0.1947 0.6782
2 0.8847 0.8459 0.2013 0.6703
3 0.8788 0.8325 0.1842 0.5957
4 0.8851 0.8334 0.2072 0.6774
5 0.8847 0.8472 0.2336 0.6455
6 0.8809 0.8398 0.2237 0.6018
7 0.8788 0.8445 0.1612 0.6125
8 0.8800 0.8305 0.1809 0.6180
9 0.8898 0.8532 0.2500 0.7037
Mean 0.8829 0.8427 0.2018 0.6443
SD 0.0033 0.0077 0.0259 0.0351
AUC: area under the curve; SD: standard deviation; Prec.: precision. Final scores are means of the ten folds.
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Figure 3: SHAP table demonstrating feature importance ranked in descending order on y-axis. x-axis with the SHAP values. Negative SHAP
value predicts a low probability of death at a high or low value of that feature value (blue� low value; red� high value). Positive SHAP value
demonstrates a high probability of mortality at that feature value. Low S/F values (blue) predict a high likelihood of death, whereas high
values (red) predict a low likelihood. PaO2: partial pressure of oxygen; FiO2: fraction of inspired oxygen; SaO2: oxygen saturation; P/F: PaO2
and FiO2 ratio; S/F: SaO2 and FiO2 ratio; S/F: SaO2/FiO2, P/F: PaO2/FiO2; Vent: mechanical ventilation.

Weight Feature 
0.2192 ± 0.0165 Admit diagnosis 
0.0304 ± 0.0026 S/F 
0.0085 ± 0.0022 SaO2 
0.0079 ± 0.0021 Age 
0.0069 ± 0.0016 P/F
0.0035 ± 0.0019 Vent
0.0002 ± 0.0004 PaO2
0.0002 ± 0.0006 FiO2
0.0000 ± 0.0000 Gender 

Figure 4: Feature importance ranked using permutation importance in a descending order. *e weight reflects quantitative reduction in
model performance with reshuffling of that column. PaO2: partial pressure of oxygen; FiO2: fraction of inspired oxygen; SaO2: oxygen
saturation; P/F: PaO2 and FiO2 ratio; S/F: SaO2 and FiO2 ratio; Vent: mechanical ventilation.
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*e study has some limitations. *e initial dataset had
many missing values that were dropped, possibly intro-
ducing bias, though this coincided with assessing higher
severity patients. *e analysis is retrospective, hence war-
ranting a prospective comparison of S/F and P/F. Also,
feature importance evaluations should be interpreted with
caution, but the present study’s findings are only hypothesis-
generating. Only one model was used to perform analysis,
which could be strengthened by performing the same

analysis on other models. Our study population is hetero-
geneous with the inclusion of all levels of oxygen and
mechanical support, limiting our inferences’ strength; for
example, it is difficult to ascertain whether our conclusions
would be valid for ECMO patients.

Additionally, pulse oximetry is not without limitations.
Pulse oximetry is affected by many factors, including shock
states, skin pigmentation, oximeter location, and anemia.
Finally, we should avoid the common cognitive bias of false
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Admitdiagnosis

Feature importance from XGBoost

Figure 5: Feature importance ranking via the XGBoost built-in method. PaO2: partial pressure of oxygen; FiO2: fraction of inspired oxygen;
SaO2: oxygen saturation; P/F: PaO2 and FiO2 ratio; S/F: SaO2 and FiO2 ratio; Vent: mechanical ventilation.
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Figure 6: S/F partial dependence plot. *e y-axis reflects the probability of death as a positive value denotes a higher probability. *e x-axis
demonstrates the S/F value. As S/F decreases, the probability of death increases. *e probability of death appears to rise significantly below
an S/F value of 150. S/F : SaO2/FiO2.
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dichotomization and use S/F within the clinical scenario,
which may require a blood gas for corroboration [25].

5. Conclusion

We hypothesized that using a noninvasive means for hyp-
oxia evaluation through the S/F ratio would be noninferior
to more invasive methods. *is study demonstrates that, in
the eICU database, S/F ratio appears to be a better predictor
of ICU mortality than P/F. Combined with prior studies
comparing S/F and P/F ratios, we believe that these findings
could be potential practice-changers on a large scale.

Data Availability

Data are available online in the eICU Collaborative Research
Database.
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Supplementary Materials

Supplemental Figure 1: violin plot distribution of FiO2
plotted by mortality. *e median FiO2 of survivors was
approximately 50%, whereas expired patients had a median
FiO2 of 80%. *e thick gray bar in the middle of each plot
represents the interquartile ranges above and below the
median. Here we see that the 75% quartile of patient in the
ALIVE group still had a lower FiO2 than the median in the
expired group. FiO2: fraction of oxygen in inspired air.
Supplemental Figure 2: violin plot distribution of SaO2

plotted by mortality. As expected, this violin plot shows that
the patients who survived had higher oxygen saturations,
with a greater number of patients with saturations closer to
their median as compared to the EXPIRED group. SaO2:
oxygen saturation. Supplemental Figure 3: violin plot dis-
tribution of S/F ratio plotted by mortality. *e interquartile
range extends over a wider range of S/F ratios in the patients
who survived. *e difference in the FiO2 ratios between the
two groups in Figure 1 alone does not account for the
median that is nearly double in the ALIVE versus the
EXPIRED group. To further support this point, the number
of patients with S/F ratios close to the median is greater than
that in the FiO2 violin plot. S/F: ratio of oxygen saturation
and fraction of oxygen in inspired air. Supplemental Fig-
ure 4: violin plot distribution of age plotted bymortality. Age
was not a particularly important feature in predicting risk for
ICU mortality in the patients included. *ough the medians
are different, there is a similar density of patients of the same
age range in both groups. Supplemental Figure 5: violin plot
distribution of P/F ratio plotted by mortality. Although P/F
ratios span over a wider range of values than S/F ratios do
based on the S/F’s ratio’s numerator being a percentage, P/F
was less predictive of ICU mortality in a narrow range of
values. P/F: ratio of partial pressure of oxygen and fraction of
oxygen in inspired air. Supplemental Figure 6: distribution
of admission diagnoses. Our inclusion criteria allowed for a
wide range of ICU admission diagnoses in order to assess
applicability in a variety of clinical situations. *ough sepsis
due to pulmonary etiologies and emphysema ranked high in
a number of patients, cardiac etiologies were just as prev-
alent. Of course, any number of these patients could have
had progression to ARDS. S-CABG� coronary artery bypass
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Figure 7: P/F partial dependence plot. *e y-axis on the left reflects the probability of death as a positive value denotes a higher probability.
*e y-axis on the right shows the color scale of the value of S/F, which is superimposed upon the P/F plot. *e x-axis demonstrates the S/F
value. As P/F decreases, the probability of death increases. Probability of death appears to rise significantly below a P/F value of 200. S/F and
P/F demonstrate a strong correlation, with both the quantitative value and changes in the probability of death. P/F: PaO2 and FiO2 ratio; S/F:
SaO2 and FiO2 ratio.
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graft; SEPSISPULM� sepsis due to pulmonary etiology;
CARDARREST�cardiac arrest; EMPHYS-
BRONC� emphysematous bronchitis; CHF� congestive
heart failure; S�VALVAO� aortic valve replacement;
RESPARREST�respiratory arrest; PNEUMBACT� bacte-
rial pneumonia; M-RESOTHER� other diagnoses; SEP-
SISUTI� urinary tract infection due to sepsis;
SEPSISGI� sepsis due to a gastrointestinal cause; CVAS-
TROKE� cerebral vascular accident; SEPSISUNK� sepsis
due to unknown cause; DKA � diabetic ketoacidosis;
AMI� acute myocardial infarction; SCABGAOV� coronary
artery bypass graft and arctic valve replacement;
IC� intraparenchymal hemorrhage; PNEUMASPIR� aspi-
ration pneumonia; S-GIPERFR� gastrointestinal perfora-
tion. Supplemental Figure 7: proportion of missing values
amongst parameters. *e relative number of missing data
points is illustrated in this bar chart. PaO2, FiO2, P/F ratios,
and S/F ratios are all absent in equal numbers. *e
remaining patients’ data points were utilized in our statis-
tical analyses. S/F� SaO2/FiO2; P/F�PaO2/FiO2. Supple-
mental Figure 8: missing values bar chart prior to dropped
PaO2 and FiO2. *e percentage of missing value for each
feature is shown in this bar graph. *ere were nearly equal
numbers of missing data points for PaO2, FiO2, P/F ratio,
and S/F ratio. Supplemental Figure 9: Precision, Recall, F1,
and Accuracy for the hold-out test set from the hyper-
parameter optimized model. Performance was stratified by
mortality with the mean as the final result. 0 � alive and
1� expired. Supplemental Figure 10: partial dependence
plot.*is describes the relationship between a feature and its
target. It includes a secondary feature that the primary
featuremost interacts with. Here the primary feature is the S/
F ratio and the secondary feature is FiO2. *e x-axis denotes
the value of the primary feature, here the S/F ratio. *e y
value on the right is FiO2. An indirect sigmoid relationship is
demonstrated here between the two. *e fact that the values
are dispersed close to one another to form this negative
sigmoid curve denotes close feature interaction and just as
the previous SHAP value bar graph, Figure 11, which
demonstrated a large uptick in higher likelihood of mor-
tality, particularly with S/F ratios less than 200, approxi-
mating the lower inflection point. FiO2 percentages greater
than approximately 50% correspond to the lower inflection
point as well. S/F� SaO2/FiO2. s (Supplementary Materials)

References

[1] V. M. Ranieri, G. D. Rubenfeld, B. T. *ompson et al., “Acute
respiratory distress syndrome,” Jama, vol. 307, no. 23,
pp. 2526–2533, 2012.

[2] L. Papazian, C. Aubron, L. Brochard et al., “Formal guidelines:
management of acute respiratory distress syndrome,” Annals
of Intensive Care, vol. 9, no. 1, p. 69, 2019.

[3] M. D. Howell and A. M. Davis, “Management of ARDS in
adults,” Jama, vol. 319, no. 7, pp. 711-712, 2018.
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