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ABSTRACT: In this work, we report the engineering of sub-30
nm nanocomposites of CuO/ZnO/NiO by using Dodonaea viscosa
leaf extract. Zinc sulfate, nickel chloride, and copper sulfate were
used as salt precursors, and isopropyl alcohol and water were used
as solvents. The growth of nanocomposites was investigated by
varying the concentrations of precursors and surfactants at pH 12.
The as-prepared composites were characterized by XRD analysis
and found to have CuO (monoclinic), ZnO (hexagonal primitive),
and NiO (cubic) phases with an average size of 29 nm. FTIR
analysis was performed to investigate the mode of fundamental
bonding vibrations of the as-prepared nanocomposites. The
vibrations of the prepared CuO/ZnO/NiO nanocomposite were
detected at 760 and 628 cm−1, respectively. The optical bandgap energy of the CuO/NiO/ZnO nanocomposite was 3.08 eV.
Ultraviolet−visible spectroscopy was performed to calculate the band gap by the Tauc approach. Antimicrobial and antioxidant
activities of the synthesized CuO/NiO/ZnO nanocomposite were investigated. It was found that the antimicrobial activity of the
synthesized nanocomposite increases with an increase in the concentration. The antioxidant activity of the synthesized
nanocomposite was examined by using both ABTS and DPPH assays. The obtained results show an IC50 value of 0.110 for the
synthesized nanocomposite compared to DPPH and ABTS (0.512), which is smaller than that of ascorbic acid (IC50 = 1.047). Such
a low IC50 value ensures that the antioxidant potential of the nanocomposite is higher than that of ascorbic acid, which in turn shows
their excellent antioxidant activity against both DPPH and ABTS.

1. INTRODUCTION
Nanoparticles as well as multifunctional nanomaterials have
diverse applications in various fields such as catalysis,1,2

wastewater treatment, bioimaging, cancer therapy, etc.
Trimetallic NPs have enhanced applications as well as
selectivities compared to bi- and monometallic nanoparticles.
Because of their wide range of applications, a wide range of
preparation routes such as physical,3−5 chemical,6−14 and
biological15 methods have all been used to synthesize NPs,
with the biological method being recognized as the most
environmentally friendly and the other methods having serious
drawbacks.16 Drug-resistant bacteria have recently been a main
cause of various infectious diseases and death around the
world.17 Free radicals of various chemical origins are highly
unstable; removal of electrons from other molecules to achieve
equilibrium resulted in molecular breakdown. Such extremely
reactive species continuously develop inside the human body,
and they can damage short-lived chemicals and cellular
components such as DNA, lipids, and protein.18 When an
electron or hydrogen ion is accepted, ABTS•+ becomes a stable
free radical, which forms stable molecules. The adverse effects

of free radicals include heart diseases, cancer, and neurological
illnesses. This can be reduced by scavenging these radicals.19

As a result, there is an urgent need to come up with some
practical solutions to this major global issue. Because of their
unique physicochemical features, nanomaterials have gained
considerable attention from researchers. Because of their wide
range of applications, the commercial uprising resulted in the
manufacture of hundreds of nanomaterials.20 The electronic,
optical, and magnetic properties of multimetallic NPs are
diverse. The properties of multimetallic NPs, such as their large
surface area, size, shape, and ζ potential, allow them to interact
efficiently with bacterial cell membranes, causing disruption,
ROS production, protein destruction, DNA damage, and
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eventually death, which is aided by the host immune
system.21,22

Plant extracts and bacteria are utilized in biological
techniques to synthesize nanoparticles.23 Photonanotechnol-
ogy is a new cost-effective, environmentally friendly, and easy
process to synthesize nanoparticles.24 Plant parts such as
leaves,25 roots,26 fruits,27 and seeds28 are used to synthesize
nanoparticles in this technology. Second, metabolites found in
plants, such as polysaccharides, heterocyclic compounds,
terpenoids, various types of organic acids, alkaloids, vitamins,
and proteins, are combined to synthesize nanoparticles.29

Researchers have long been interested in the biological
applications of metal oxide nanoparticles such as copper
oxide, zinc oxide, and nickel oxide.30 Sudha et al. studied the
effects of a copper device on three different bacterial strains,
including E. coli, Vibrio cholerae, and Salmonella typhi.31 The
cytotoxic and antioxidant effects of ZnO nanoparticles made
from Mangifera indica leaves were tested on lung cancer cells.
When the amount of ZnO nanoparticles was increased, the
antioxidant activity of the particles increased. The DPPH
technique was employed to investigate the antioxidant activity
of ZnO nanoparticles, and the antioxidant activity of ZnO was
shown to be comparable to that of ascorbic acid.32

Pure nanoparticles of various metal oxides, such as ZnO,
CuO, and Fe2O3, were fabricated using the sol−gel
method.33−37 Moreover, the antibacterial activity of these
three metal oxide nanoparticles was investigated using a range
of bacteria. The antibacterial activities of these three metal
oxide nanoparticles vary as the surface-to-volume ratio
changes. The results revealed that ZnO nanoparticles had
the highest bacterial activity among the three metal oxide
nanoparticles tested.38

In the current study, Dodonaea viscosa leaf extracts were
employed to synthesize CuO/ZnO/NiO nanoparticles due to
their diverse catalytic, food-packing, wastewater treatment, and
biological applications. Dodonaea comprises one of the largest
genera in the Sapindaceae family, which contains 70 species
widely distributed in continental Australia. Among these,
Dodonaea viscosa is considered to be one of the world’s most
widely disseminated transoceanic plants.39 It was traditionally
used to treat skin infections as well as hepatic and spleen pain.
Its leaves are used to cure fractures and as an anti-
inflammatory, antioxidant, antibacterial, and antifungal
agent.40 Photochemical research on Dodonaea viscosa revealed
that it is a rich source of phenolic compounds, saponins,
ascorbic acid, and steroids. These chemicals exhibit a high level
of antioxidant activity.41 The D. viscosa leaf extract is used by
researchers to synthesize nanocomposites due to its traditional

medicinal properties,41 potential for green synthesis,26 and
unique phytochemical profile.27 We are interested in exploring
a novel and unexplored avenue for nanocomposite synthesis.
The antioxidant and antibacterial properties of the synthesized
nanocomposite were investigated in the current study. To the
best of our knowledge, this is the first report in which a ZnO/
CuO/NiO ternary metal oxide nanocomposite has been
synthesized by using the said plant, with enhanced biological
applications.

2. EXPERIMENTAL SECTION
2.1. Materials. Zinc sulfate, nickel chloride, and copper

sulfate were used as salt precursors. Sodium hydroxide was
used to maintain the pH of the solutions. Distilled water was
utilized to prepare solutions. DPPH and ABTS were used to
determine the antioxidant activity of the nanocomposite. All
chemicals were purchased from Sigma-Aldrich. Dodonaea
viscosa leaf extract was used as the stabilizing agent.
Furthermore, bacterial strains such as GPB (S. aureus) and
GNB (E. coli) were obtained from the Department of
Biotechnology, AJK University, Muzaffarabad, Pakistan.

2.2. Preparation of Plant Leaf Extract. Dodonaea viscosa
leaves were collected from AJK (Muzaffarabad city). Figure
1a,b shows images of the Dodonaea viscosa plant. For the
preparation of the leaf extract of D. viscosa, the leaves were
rinsed with tap water and washed with distilled water. Then,
the leaves were shade dried for 7 days. After that, the dried
leaves were ground into a fine powder. 5 g of leaves were
added into 100 mL of distilled water and boiled at 80 °C for 3
h to prepare the leaf extract.

Then, the extract was filtered by Whatman filter paper 1, the
filtrate was centrifuged, and the upper clear layer was used. The
leaf extract was stored at 4 °C until further use. This method
has been used for the extraction of essential oil,42−44 seed
oil,45,46 and nanoparticle formation.47−53

2.3. Synthesis of the Ternary Metal (Cu−Ni−Zn)
Oxide Nanocomposite. 50 mM solutions of zinc sulfate,
copper sulfate, and nickel chloride were prepared. Only 80 mL
was taken from each solution. After that, 20 mL of Dodoanea
viscosa leaf extract was added to these three solutions and
stirred constantly at 700 rpm and 80 °C. 2 M sodium
hydroxide solution was added into each beaker to maintain the
pH at 13. Reactions were carried out till precipitates appeared
in the three beakers. Precipitate formation indicates the
formation of zinc oxide, copper oxide, and NiO nanoparticles.
Then, these three reactions were mixed and stirred constantly
at 700 rpm and 80 °C for 5 h. A 2 M solution of sodium
hydroxide was added every 20 min to maintain the pH at 13.

Figure 1. Pictorial illustration of the plant Dodonaea viscosa: (a) side view and (b) top view.
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After 5 h, the turbid reaction mixture was then aged for 24 h
and then purified by centrifuging for 15 min at 3000 rpm.
Then, the product obtained was washed with deionized water.
Precipitates were dried and then converted into a fine powder
with the help of a mortar and pestle. The powder was washed
again using distilled water 3−4 times. Calcination was carried
out at 350 °C.54

2.4. Antioxidant Activity. 2.4.1. Analytical Procedure
(ABTS Assay). The antioxidant activity of the CuO/ZnO/NiO
nanocomposite was assessed via the ABTS radical-scavenging
assay, which was slightly modified. The reduction of the radical
cation ABTS•+ to ABTS (2,2-azinobis-(3-ethylbenzothiazoline-
6-sulfonic) diammonium salt) causes the first decolonization. 7

mM ABTS and 2.5 mM potassium persulfate were stirred
together and maintained in darkness for 16 h to form the
ABTS•+ free radical for the preparation of the ABTS stock
solution. The absorbance of this solution was evaluated at 734
nm (A0) using a UV−visible double-beam spectrophotometer.
Different concentrations of biologically synthesized nano-
composites (1, 3, 5, and 7 mg/mL) were analyzed against
ABTS radical scavenging. The absorbance (Ai) was recorded,
and the percentage scavenging potential was calculated using
the formula given below. During the study, a standard
(ascorbic acid) was employed.41

A A A%RSA ( / ) 100i0 0= [ + ] × (1)

Figure 2. (a) FT-IR spectra, (b) XRD pattern, (c) SEM image, (d) UV−visible absorbance spectra, and (e) bandgap energy of the prepared
nanocomposite.
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2.4.2. Analytical Procedure (DPPH Radical Assay). Differ-
ent concentrations of biologically synthesized nanocomposites
(1, 3, 5, and 7 mg/mL) were analyzed against DPPH in the
radical-scavenging assay. A solution (0.2 mM) of DPPH was
prepared in distilled methanol and incubated for 30 min in
dark.42 One milliliter of this solution was taken, and the
absorbance was measured at 517 nm to serve as the blank (A0).
The absorbance (Ai) was recorded, and the percentage
scavenging potential was calculated using the following
formula:43

A A A%RSA ( / ) 100i0 0= [ + ] × (2)

2.5. Antibacterial Activity. The synthesized CuO/NiO/
ZnO nanocomposite was used to determine the antimicrobial
activity. The bacteria used were obtained from the Department
of Biotechnology, AJK University, Muzaffarabad, Pakistan.
GPB (S. aureus) and GNB (E. coli) were used for this analysis.
Nutrient agar was used to culture bacteria. The overnight
bacterial culture was combined with fresh sterilized agar media
and deposited into sterilized Petri plates, where it was solidified
under a laminar flow. Each plate had 5 mm diameter wells. An
ultrasonic dispersion was used to prepare several suspensions
of the CuO/NiO/ZnO nanocomposite in distilled water, and
then this ultrasonic suspension was placed into each well and
incubated overnight. After 24 h, the activity of the NiO/CuO/
ZnO nanocomposite was measured in millimeters surrounding
each well to determine its activity. A standard reported method
was used for testing.

3. RESULTS AND DISCUSSION
3.1. FT-IR Spectroscopy. Figure 2a depicts the FT-IR

spectrum of the synthesized nanocomposite, which possesses a
broad peak between 3568 and 3343 cm−1 possibly due to
lattice water or atmospheric water.55−57 The band at 2941
cm−1 is due to C−H stretching.58 The peak at 1595 cm−1 is
because of the aromatic C�C stretch. The peak at 1377 cm−1

shows that the compound is purely aromatic. The band at
1122 cm−1 demonstrates the C−O stretching vibrations.47 The
band for the M−O bond lies in the range of 1000−400 cm−1,
which is related to the CuO/NiO/ZnO nanocomposite.
Therefore, the merged band at 760 and 628 cm−1 can be
assigned to stretching and bending vibrations of the CuO/
ZnO/NiO nanocomposite.48

3.2. X-ray Diffraction (XRD) Analysis. XRD was
performed to determine the crystallite structure as well as
the crystallite size of the synthesized nanocomposite. Figure 2b
shows the XRD pattern of the synthesized nanocomposite of
CuO/NiO/ZnO. The XRD pattern obtained has sharp and
intense peaks, which confirm the highly crystalline nature of
the synthesized nanocomposite.49 The peaks with hkl values of
(111) and (200) indicate a cubic geometry of the synthesized
nickel oxide nanoparticles (JCPDS: 73-1523). The peaks at 2θ
= 37.2, 63.5, and 68.1° indicate the hexagonal primitive phase
of ZnO nanoparticles, having good agreement with JCPDS:
01-1136. The peaks at 2θ = 33.23, 48.9, and 56.8°, with hkl
values of (111), (202), and (021), in good agreement with
JCPDS: 65-2309, indicate the monoclinic geometry of CuO
nanoparticles. The additional peaks at 2θ = 75.1 and 58.2° with
hkl values of (311) and (220) were due to cubic phase CuO−
NiO (JCPDS: 78-0648) and NiO−ZnO (JCPDS: 75-0270).50

The average crystallite size of the synthesized CuO/ZnO/NiO
nanocomposite was calculated by using the Debye Scherer
formula59−62

D 0.9 / cos= (3)

where λ is the X-ray wavelength, β is the full width at half-
maximum of the peaks, and 0.9 is the value of the Scherer
constant. The average crystallite size of the synthesized
nanocomposites was found to be 29 nm by using the Scherer
formula.

3.3. Scanning Electron Microscopy (SEM). Figure 2c
shows the morphology of the synthesized CuO/NiO/ZnO
nanocomposite. The SEM micrograph shows that the back-
ground was highly agglomerated, where cavities were also
observed at certain points. At the surface of the complex
structure, a few particles with visible boundaries were also seen.
These individual particles were also irregular in shape.63

3.4. UV−Visible Spectroscopy. Figure 2d shows the
absorption spectra of the CuO/NiO/ZnO nanocomposite.
The UV−visible absorption spectra of the synthesized CuO/
ZnO/NiO nanocomposite exhibited two absorption bands at
279 and 362 nm.64 Figure 2e represents the Tauc plot of the
CuO/ZnO/NiO nanocomposite. To determine the bandgap
energy of the nanocomposite, a graph is plotted between
(αhv)2 and hv.65−67 The energy band gap of the synthesized
nanocomposite was 3.8 eV.68−76

3.5. Biological Applications. 3.5.1. Antibacterial Activ-
ity. Trimetallic nanocomposites have enhanced antibacterial
activity compared with monometallic and bimetallic nano-
particles. As an example, the green synthesized Au−Pt−Ag
nanocomposite exhibits efficient antimicrobial activity against
E. coli and S. aureus.77−79

The antimicrobial activity of the synthesized CuO/NiO/
ZnO nanoparticles against GPB (S. aureus) and GNB (E. coli)
was tested using the agar well diffusion technique.80−84 The
antibacterial action of NPs is mediated by a variety of
mechanisms. The production of reactive oxygen species (ROS)
is the most significant. Then, these reactive species cause cell
death by disturbing the respiratory cycle, the protein cycle,
preventing or modifying DNA replication, and the food
metabolism cycle.57

Table 1 shows the zone of inhibition against GPB, and GNB
was evaluated via the agar well diffusion technique in

millimeters around each well. PC represents the positive
control (clindamycin), and NC represents the negative control
(distilled water).

At different concentrations, 10, 20, 30, 40 μg/mL, the
antibacterial activities of the produced CuO/ZnO/NiO
nanocomposite were investigated. The antibacterial efficiency
of the nanocomposite against two separate bacterial strains
improved as its concentration was increased. This could be
because of an increased number of reactive species capable of
inhibiting bacterial growth.58 Images of the antimicrobial
activity of the CuO/ZnO/NiO nanocomposite are shown in
Figure 3b. The results indicate that the synthesized nano-
composite had excellent antibacterial activity. The greatest

Table 1. Inhibition Zones In Millimeters of
Nanocomposites against S. aureus and E. coli

ZnO/CuO/NiO conc.

bacteria 10 μg 20 μg 30 μg 40 μg PC NC

S. aureus 14 18 22 25 28 00
Escherichia coli 11 16 20 23 00 26
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zone of inhibition was observed against GPB at 40 μg/mL
concentration.

The antimicrobial activity of the CuO/ZnO/NiO nano-
composite studied in this article was compared with previously
reported data, which are presented in Table 2. It shows that

the synthesized nanocomposite has higher antibacterial activity
than previously reported single and bimetallic nanoparticles.
Moreover, the CuO/ZnO/NiO nanocomposites reported
earlier were tested only for antimicrobial activity, whereas
the currently reported nanocomposite was tested for
antimicrobial as well as antioxidant activities.85−91

Figure 3a indicates that the synthesized nanocomposite has
better antibacterial activity against GPB (S. aureus) than GNB
(E. coli). The reason is that the peptidoglycan layer of gram-
positive bacteria is thick. As a result, attacking and damaging
the bacterial cell wall is easier. The outer layer of gram-negative
bacteria has excess lipopolysaccharides. As a result, strains have
a higher charge as compared to GPB. Therefore, the mixed

metal oxide CuO/NiO/ZnO is found to have a greater
inhibitory impact against gram-positive bacteria.92−98

Gram-positive and gram-negative bacteria adopt different
mechanisms to allow the CuO/ZnO/NiO nanocomposite
inside the cell, which could be because of membrane
composition differences. The attachment of the CuO/ZnO/
NiO nanocomposite and its transport inside the bacterial cell
membrane depend on the membrane composition.

3.5.2. Antioxidant Activity. Free radicals harm and mutate
cells, which has an impact on human health. In order to
eliminate ROS, antioxidants are necessary. The antioxidant
activity of nanocomposites in vitro indicates their pharmaco-
logical function.103−106 A recent study showed that the
antioxidant activity of synthesized nanocomposites can be
analyzed by various methods, but the ABTS assay and the
DPPH radical assay are considered to be the most reliable
methods.107−109 The antioxidant activity of the biogenically
synthesized nanocomposite against ABTS free radical cations
was analyzed, and ascorbic acid was used as the standard.
Initially, ABTS•+ free radical cations are formed due to the
removal of electrons from nitrogen. ABTS is oxidized to create
ABTS•+ by a variety of oxidizing agents such as potassium
persulfate or manganese dioxide. After reacting with
antioxidants, ABTS•+ decolorizes the solution.16

On the other hand, in the case of the DPPH assay, the
DPPH radical is reduced by accepting an electron or hydrogen
from the antioxidant species, resulting in a light yellow color
and a substantial drop in the absorbance maximum.

The phytochemical analysis of Dodonaea viscosa revealed
that it is a rich source of phenolic compounds, saponins,
ascorbic acid, and steroids. These chemicals have outstanding
antioxidant properties. Hence, the compounds present in the
leaf extract enhanced the antioxidant activity of the synthesized
nanocomposite.28 The percentage radical-scavenging activity of
the synthesized nanocomposite was investigated at different
concentrations of 1, 3, 5, and 7 mg/mL. Tables 3 and 4 show
that with an increase in concentration, the percentage
scavenging of the synthesized nanocomposite against DPPH

Figure 3. (a) Images of antibacterial activity. (b) Comparison of the antibacterial activity of the nanocomposite against different strains.

Table 2. Comparison of Antibacterial Activities of the
Synthesized Nanocomposite With Data from Previously
Reported Studies

sr.
no. NPs synthesis method

inhibition
zone

diameter
(mm) refs

1 NiO green synthesis via
Stevia leaf extract

14 99

2 CuO green synthesis via
Aerva javanica
extract

9 100

3 ZnO green synthesis via
Cassia fistula
extract

14 101

4 CuO−ZnO green synthesis via
Mentha longifolia
leaf extract

17 102

5 CuO−ZnO−NiO green synthesis via
Dodonaea viscosa
extract

25 present
study
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as well as ABTS increases. In general, the test sample exhibited
more %RSA of the DPPH radical than ABTS•+.

Figure 4a shows the percentage scavenging activity of the
biosynthesized nanocomposite and control (ascorbic acid)
against ABTS. The straight line shows that with an increase in
the concentration of the synthesized nanocomposite as well as
ascorbic acid, the percentage scavenging activity increases, but
the synthesized nanocomposite has a higher percentage
scavenging activity than the control. The synthesized nano-
composite of CuO−ZnO and its antioxidant application were
reported by Vibitha et al. (2020).64 The reported nanoparticles
from Azadirachta indica, Ocimum tenuiflourm, and aloe vera
extract are examples that show the concentration dependence
of the antioxidant activity, consistent with previous research.62

Figure 4b shows the percentage scavenging activity of the
synthesized nanocomposite and ascorbic acid against DPPH.
The straight line confirms that with an increase in the
concentration of the synthesized nanocomposite as well as
control, the percentage scavenging activity increases, but the
nanocomposite exhibits a higher percentage scavenging activity
than the control.

The 50% inhibitory concentration is a measure of the
efficiency of a substance to inhibit a biological function. IC50 is

the medication concentration required for half (50%)
inhibition in vitro.65

The IC50 value of the synthesized nanocomposite (IC50 =
0.11) against DPPH and ABTS (0.512) was smaller than that
of ascorbic acid (IC50 = 1.047). The low IC50 value suggested
that the antioxidant potential of the synthesized nano-
composites was higher than that of ascorbic acid (IC50 =
1.04), which means that the synthesized nanocomposite
exhibits excellent antioxidant activity against both DPPH and
ABTS but higher in the case of DPPH than ABTS.49 The
current work proves the antioxidant activity of the synthesized
CuO/NiO/ZnO nanocomposite and further establishes the
fact that the CuO/ZnO/NiO nanocomposite has the potential
to become the best scavenger in future clinical trials.

4. CONCLUSIONS
The green synthesis method used for the formation of the
CuO/ZnO/NiO nanocomposite was proven to be one of the
most effective and nontoxic routes. The antibacterial and
antioxidant activities were found to be enhanced with an
increase in the concentration of the ZnO/CuO/NiO nano-
composite, which might be due to the larger number of
particles available to interact with free radicals and bacterial
species. The as-synthesized CuO/NiO/ZnO nanocomposite
was more effective against GPB (S. aureus) as compared to
GNB (E. coli). The difference in the activity of the CuO/NiO/
ZnO nanocomposite against both bacterial species is due to
the difference in the cell wall composition and surface charge.
Physiochemical properties of samples were examined through
different characterization techniques such as UV−visible
spectroscopy, SEM, FTIR spectroscopy, and XRD. The Tauc
plot showed that the observed energy band gap of the
synthesized nanocomposite was 3.8 eV. The XRD pattern
obtained has sharp and intense peaks, which confirm the highly
crystalline nature of the synthesized nanocomposite. The SEM
micrograph showed that the background was highly agglom-
erated, where cavities were also observed at certain points. This
is an indication that the Dodonaea viscosa leaf extract can be
used for the synthesis of multimetallic nanocomposites with
remarkable biological applications. The highest antioxidant

Table 3. Percentage Radical-Scavenging Activity of the
Nanocomposite against ABTS

concentration (mg/mL) A0 Ai %RSA IC50

1 0.208 0.097 50 0.512
3 0.208 0.064 69
5 0.208 0.043 79
7 0.208 0.02 90

Table 4. Percentage Scavenging Activity of the
Nanocomposite against DPPH

concentration (mg/mL) A0 Ai %RSA IC50

1 0.512 0.216 57 0.11
3 0.512 0.189 63
5 0.512 0.098 81
7 0.512 0.048 90

Figure 4. (a) ABTS assay and (b) DPPH assay showing the antioxidant activities of the synthesized CuO/ZnO/NiO nanocomposite and control
(ascorbic acid).
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efficiency may be attributed to the sub-30 nanometer size of
the crystals, which is responsible for the large surface area.
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