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Abstract

This work demonstrates a new method for the generation of mechanical shear wave during

magnetic resonance elastography (MRE) that creates greater forces at higher vibrational

frequencies as opposed to conventionally used pneumatic transducers. We developed an

MR-compatible pneumatic turbine with an eccentric mass that creates a sinusoidal centrifu-

gal force. The turbine was assessed with respect to its technical parameters and evaluated

for MRE on a custom-made anthropomorphic prostate phantom. The silicone-based tissue-

mimicking materials of the phantom were selected with regard to their complex shear moduli

examined by rheometric testing. The tissue-mimicking materials closely matched human

soft tissue elasticity values with a complex shear modulus ranging from 3.21 kPa to 7.29

kPa. We acquired MRE images on this phantom at 3 T with actuation frequencies of 50, 60

Hz, 70 Hz, and 80 Hz. The turbine generated vibrational wave amplitudes sufficiently large

to entirely penetrate the phantoms during the feasibility study. Increased wave length in the

stiffer inclusions compared to softer background material were detected. Our initial results

suggest that silicone-based phantoms are useful for the evaluation of elasticities during

MRE. Furthermore, our turbine seems suitable for the mechanical assessment of soft tissue

during MRE.

Introduction

Magnetic resonance elastography (MRE) is a non-invasive imaging technique used for the

quantification of spatial stiffness of soft tissues during MR examinations [1–8]. It can serve as

an estimator of the mechanical properties of living tissue and may be used as a discriminator

for benign or cancerous tissue [9].

During an MRE examination, a dynamic harmonic mechanical excitation is applied to the

body, generating shear waves, which propagate through the tissue. The mechanical response of
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the tissue can be measured using phase-contrast MRE sequences synchronized to the applied

vibrations [10]. These acquired displacement fields are then mathematically converted into

spatial stiffness maps [11,12].

In general, the quantification of tissue stiffness can be performed most efficiently in organs

close to the body surface, due to the propagation characteristics of mechanical shear waves. In

the case of isotropic, homogeneous materials such as the liver, an estimation of the elasticity

modulus can easily be derived from the wave speed [13]. Hence, MRE is widely used in the

assessment of liver fibrosis and it may replace tissue biopsy [14].

One of the main obstacles remains a reliable wave induction for other clinical applications

such as the prostate, pancreas and kidney, as well as heart and lung for MRE [15–19]. Overall,

high actuation frequencies (> 150 Hz) are beneficial to resolve small lesions. However, wave

attenuation in soft tissue is also stronger at higher actuation frequencies, a dilemma particu-

larly in deep-lying tissues. Compared to lower excitation frequencies, the problem of wave

attenuation leads to a reduced signal to noise ratio [20].

Several methods currently exist for dynamic harmonic mechanical excitation. The most

commonly used systems in earlier MRE studies are acoustic driving systems. Here, shear

waves are generated using pneumatic cushions powered by varying acoustic pressure levels.

These sinusoidal sound waves are generated by an active audio device located outside the scan-

ner room [21,22,23] at frequencies in the range of 40 Hz to 200 Hz [24]. The pneumatic drum

drivers operate well in the lower frequency regime (� 60 Hz). At higher frequencies, however,

sustaining sufficiently large wave amplitudes becomes problematic and additional power

amplification is necessary to maintain an adequately large displacement range [18,25].

Other application-specific drivers have been proposed that use electromechanical coils [26]

or piezoelectric drivers [27], although these electromechanical actuators can generate image

artifacts, create a heat build-up typical for electromechanical drivers [21], or need to be actively

shielded [28].

A further transducer concept, the gravitational transducer, is also driven by a rotational

eccentric mass based on a similar approach as the herein presented driver [29]. Yet, it is pow-

ered by a stepper motor that is attached to the gravitational transducer via a rotating rod mak-

ing the set-up in the scanner room cumbersome and limiting the accessible surfaces.

This study set out to investigate the feasibility of a novel method for sinusoidal mechanical

wave generation based on the principle of centrifugal force. Our design is similar to that of the

industrially used compressed air vibrators, which are common in the bulk material handling

sector. There, an eccentric weight within these pneumatic turbines, also called unbalance, gen-

erates a dynamic harmonic vibration. This results in a centrifugal force with its amplitude

depending on the driving frequency of the turbine as well as on the weight and dimensions of

the unbalance. The frequency itself can be freely selected according to the applied air pressure

level. However, due to the turbine material and centrifugal force range, commercial com-

pressed air vibrators cannot be operated safely within high magnetic fields (> 1 T) nor are in

the required range of mechanical wave actuation force.

We have developed a new 3D printed pneumatic vibrator that is MR-safe and cor-

responds to the range of wave amplitudes needed to generate suitable shear waves in human

tissue for MRE. One purpose of this study was to assess the technical parameters of the

actuator. Furthermore, it describes the manufacturing process of tissue-elasticity-mimicking

phantoms. Finally, this paper presents results an MRE study on our in-house developed

phantom at 3 T with the novel actuator. A preliminary version of this work has been reported

before [30] describing the fundamental design of the pneumatic vibrator for generating shear

waves.

A mechanical actuator using centrifugal force for magnetic resonance elastography
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Methods

The first two sections discuss the design and implementation of the actuator divided into the

passive pneumatic turbine located in the scanner room and the active driver controlling the

pressure of the compressed air located in the control room. The other sections describe the

methodology of evaluating technical parameters and phantom studies on tissue-mimicking

material. The generation of shear waves with a frequency of 60 Hz is the most widely used

actuation frequency in clinical applications at present [31,32] and the reason this work focused

on this particular actuation frequency of 60 Hz.

Design of pneumatic turbine

The passive part of the actuator consisted of a compressed air turbine that was placed on the

volume under investigation (Fig 1). The turbine was 3D printed and created a centrifugal force

during rotation due to an unbalance within the turbine.

In general, the generated force F depends on the weight of the unbalance mecc, the distance

recc between the mass center of gravity of the unbalance and the rotation center of the turbine,

as well as the angular velocity ω of the turbine and can be calculated via F = meccreccω2.

Consequently, a greater force can be generated by: (1) use of materials with higher densities

for the unbalance, (2) change in geometry so that the distance of the center of gravity of the

unbalances increases to the center of rotation, (3) increase in the volume of the unbalance, or

(4) increase in the frequency of the turbine.

Two turbines were designed and built for this study. Turbine A is distinguishable to turbine

B mainly due to a smaller overall geometry, higher maximum actuation frequency and varying

weight of the unbalances.

Magnetic components cannot be used because the turbine is located within the scanner

room and therefore exposed to high magnetic fields (up to 3 T in our study). Hence, we chose

polyamide (PA 12) for all 3D printed parts. The material had a tensile strength of 48MPa ± 3

MPa (according to DIN EN ISO 527) and a heat deflection temperature of 86˚C (according to

ASTM D648 (1.82 MPa)). The components were designed with CAD software and produced

by selective laser sintering. The rolling-element bearings were made of the thermoplastic poly-

oxymethylene and glass (according to DIN 625–626). The sound damper was composed of

plastic. The valve, which served as the inlet for compressed air into the turbine, was the only

metallic component. However, it was made of non-magnetic brass and was not subject to any

forces during MR measurements.

Fig 1. The components of the pneumatic turbines. a) CAD schematic of turbine A. b) CAD schematic of turbine B.

c) Photograph of turbine A. Compressed air is supplied to the turbine via the air inlet (top left). The inserted unbalance

causes a dynamic harmonic excitation. The compressed air exits the turbine through the sound damper (top right).

The frontal side housing of the pneumatic turbine is removed for a clearer representation.

https://doi.org/10.1371/journal.pone.0205442.g001
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Design of active driver

All MR-unsafe and active electronic components were located outside the scanner room and

comprised the active part of the actuator (Fig 2). The active driver regulated the pressure of the

compressed air that drove the turbine to achieve a certain rotational frequency. A proportional

pressure regulator was connected to the in-house pressure hose. The pressure hose is installed

in all scanner rooms in the clinic (DIN 13260–2 compliant) and supplies compressed air with

a nominal pressure of phose = 5 bar. The proportional pressure regulator set the output air pres-

sure by adjusting the control voltage in a range from 0 V to 10 V corresponding to the minimal

and maximum pressure output.

The probe of an MR-safe fiber optic sensor was mounted on the side housing of the turbine

and provided feedback on the rotational frequency of the turbine. During one full rotation of

the turbine, the fiber optic sensor detected two signals (low and high). An 8-bit microcontrol-

ler (PIC16F1719, Microchip Technology Inc., Germany) on a development board (Explorer 8,

Microchip Technology Inc., Germany) evaluated these signals for a time interval of one second

and updated the rotational frequency of the turbine. The determined rotational frequency fed

into a control loop that regulated the control voltage, i.e. the output pressure, of the propor-

tional pressure regulator. Thus, the output pressure of the compressed air was increased in

order to obtain a higher rotational frequency and, vice versa, decreased for a lower rotational

frequency. During our work, the maximum output voltage was limited to 4.6 V due to hard-

ware restrictions of the development board resulting in the maximum output pressure of pmax

� 2.1 bar.

In order to ensure controlled compressed air output, various safety features were imple-

mented. Firstly, the pressure regulator was designed to be normally closed, i.e. if no control

voltage was applied to the system or in the event of a power failure, the valve of the pressure

regulator closed and no compressed air was fed into the turbine. Secondly, the control voltage,

i.e. the output pressure, increased gradually (Vstep = 45 mV corresponding to pstep� 20.25

mbar) during start-up, so that a constant communication with the patient could be maintained

Fig 2. The configuration of the actuator and control unit. Compressed air is supplied via a pressure hose, which is available in all scanner rooms in the clinic (left). All

magnetic and active electronic parts are located in the control room (right) and comprise the active driver system. The compressed air is fed to the proportional pressure

regulator. The output pressure is regulated by a control voltage. During start-up, the control voltage, i.e. the output pressure, is increased until the nominal frequency of

the pneumatic turbine is reached. A fiber optic probe attached to the housing of the turbine provides feedback over the current frequency.

https://doi.org/10.1371/journal.pone.0205442.g002
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to ensure that the induced vibration level is acceptable to the patient. Thirdly, an emergency

stop button was implemented at the user interface of the active driver, which instantly set the

control voltage to 0 V and stopped the outflow of compressed air. Finally, a manual shut-off

valve was installed between the in-house pressure hose and the pressure regulator. This

allowed the operator to manually stop the compressed air entry into the driver’s system.

Technical evaluation of mechanical actuator

For each turbine, three unbalances with different weights (mA1 = 1.2 g, mA2 = 2.3 g, and mA3 =

4.5 g (turbine A) and mB1 = 3.0 g, mB2 = 4.3 g, and mB3 = 8.6 g (turbine B)) were constructed

from polyamide to investigate their influence on the generated acceleration. The unbalances

were 3D printed, had a semi-cylindrical shape and could be interchangeably inserted into the

turbine.

Following Runge et al. [29], we recorded the vibration frequency response spectrum of one

turbine at frequencies ranging from 20 Hz to 90 Hz with a step width of 10 Hz using a digital

accelerometer. The acceleration sensor was attached to the side housing of the turbine. The

pneumatic turbine itself was placed on a silicone gel-based phantom during measurement.

Furthermore, the acceleration at frequencies ranging from 30 Hz to 80 Hz with a step width

of 10 Hz for both turbine A and turbine B with all unbalances were measured using a digital

accelerometer (ADXL345, Analog Devices, MA, USA) with a 13-bit measurement at up to

±14.95 m/s2. The acceleration sensor was attached to the side housing of the turbine and the

peak linear acceleration of the housing was recorded. The pneumatic turbine itself was placed

on a silicone gel-based phantom during measurement.

Phantom study

MRE was performed on a custom-made tissue-mimicking prostate phantom as a proof-of-

principle. Prior studies have evaluated silicone compositions with a physiologically realistic

storage modulus, e.g. for breast phantoms [33], a heart-simulating phantom [34], and evalua-

tion of normal and cancerous prostate tissue [35]. Based on those studies and our experiences

in design and manufacturing of anthropomorphic phantoms [36], we chose silicone as the

main tissue-mimicking material. We examined 11 silicone samples (Table 1) on their visco-

elastic parameters prior to the fabrication of the tissue-imitating phantom. Silicone rubbers

with a Shore hardness of 0 ShA and 13 ShA were selected as the base material due to its suitable

properties in terms of a simple and reproducible manufacturing process and its long-term sta-

bility. To adjust elasticity parameters, different concentrations of silicone oil were added. The

silicone base and oil were mixed at room temperature, then the catalyst was added and the

sample was degassed in a vacuum chamber.

The complex shear modulus G� was tested using a strain controlled rheometer with a linear

frequency sweep ranging from 30 Hz to 100 Hz (step width 2 Hz) and 25 mm parallel plates of

Invar (a nickel-iron alloy). Further parameters were: pre-strain of 0.5%, axial force of Fa = 1 N,

sample diameter d = 25 mm, sample height h = 3 mm and a fixed temperature of T = 26˚C. In

order to assess the standard deviation σ regarding test-retest deviations, sample # 7 was tested

five times. For this purpose, the sample was placed in the rheometer, measured and removed

from the test set up repeatedly.

The elasticity parameters of the custom-made prostate phantom were matched to literature

elasticity values of human bladder [37] and prostate [38–41]. Following the results of G� of the

tested samples (Table 1), the concentrations of sample # 5, # 7, and # 9 corresponding to 41%,

47%, and 57% silicone oil were chosen for the manufacturing of inclusions A (bladder) and B

(prostate) and the background material, respectively, of the tissue-mimicking phantom. Three
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small spheres (d = 10 mm with concentrations of 13%, 20%, and 41% silicone oil) were embed-

ded in inclusion B, resembling possible pathologies due to their increased stiffness.

The phantom was then placed in a 3 T MR scanner (Magnetom Trio, Siemens Healthineers,

Germany). MRE was performed at actuation frequencies of 50 Hz, 60 Hz, 70 Hz, and 80 Hz

employing a motion-encoding spin-echo echo-planar-imaging (SE-EPI) based sequence with

an echo time (TE) and repetition time (TR) of TE/TR = 88/3000 ms, a field of view (FoV) of

FoV = 200 mm × 200 mm, an acquisition matrix of 96 × 96, and a slice thickness of 5 mm. An

elastogram was obtained at a frequency of 80 Hz using the software MRE/Wave (Version

10.01.07, Rochester, MN, USA).

Results

Technical evaluation of mechanical actuator

The vibration frequency response spectrum increased with increasing frequency (Fig 3) as pre-

dicted for such system. An outlier was observed at 70 Hz. Here, the maximum acceleration

was larger than it was at 80 Hz. No upper harmonics were present.

Acceleration values were aA1 = 1.04 ± 0.23 m/s2, aA2 = 2.38 ± 0.30 m/s2, and aA3 =

3.84 ± 0.48 m/s2 for turbine A and aB1 = 7.31 ± 1.01m/s2, aB2 = 9.55 ± 1.83m/s2, and aB3 >

14.95 m/s2 for turbine B at an actuation frequency of 60 Hz during this feasibility study (Fig 4).

The maximum measurable acceleration with our current set up was limited to amax < 14.95 m/

s2 due to the range of the accelerometer and thus no greater values were recorded. The tempo-

ral stability of the system, i.e. frequency shifts over an MRE experiement, was σA1 = 1.0 Hz, σA2

= 1.8 Hz, and σA3 = 1.8 Hz for turbine A and σB1 = 2.9 Hz, σB2 = 2.6 Hz, and σB3 = 0.5 Hz for

turbine B at 60 Hz and in the same range for all other tested frequencies.

We were able to infinitively variable the actuation frequencies between 20 Hz to 100 Hz and

30 Hz to 180 Hz for the presented turbines A and B during our experiments. A lower mini-

mum actuation frequency was not possible, as a certain minimum air pressure needed to be

maintained to overcome the turbine inertia. The maximum applicable frequency is only theo-

retically limited by the available in-house air pressure of phose = 5 bar. During our evaluation,

Table 1. Complex shear modulus of tested silicone samples.

Concentration Shear modulus at 60 Hz (kPa)

Sample number SF 13 SF 00 Silicone oil G� G’ G”

1 1.00 0.00 0.00 209.50 207.64 27.84

2 0.50 0.50 0.00 108.25 107.05 16.09

3 0.00 1.00 0.00 25.95 25.02 6.89

4 0.00 0.63 0.38 8.64 8.34 2.26

5� 0.00 0.59 0.41 7.29 7.02 1.97

6 0.00 0.56 0.44 6.20 5.91 1.87

7�� 0.00 0.53 0.47 5.17 4.93 1.56

8 0.00 0.48 0.52 3.95 3.75 1.24

9��� 0.00 0.43 0.57 3.21 3.06 0.98

10 0.00 0.40 0.60 2.72 2.65 0.60

11 0.00 0.31 0.69 1.47 1.47 0.11

�chosen as inclusion A (Bladder)

��chosen as inclusion B (Prostate)

���chosen as background material of the phantom

https://doi.org/10.1371/journal.pone.0205442.t001

A mechanical actuator using centrifugal force for magnetic resonance elastography

PLOS ONE | https://doi.org/10.1371/journal.pone.0205442 October 8, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0205442.t001
https://doi.org/10.1371/journal.pone.0205442


we did not exceed an air pressure level of pinput = 2.1 bar but were still well within the range of

currently applied wave actuation frequencies for MRE imaging.

Phantom study

The first set of analyses examined the complex shear modulus G� of the silicone samples at fre-

quencies ranging from 30 Hz to 100 Hz with the strain controlled rheometer (Fig 5). The

determined shear moduli of the tested samples were in the range of 1.47 kPa (SF00 silicone

rubber diluted with 69% silicone oil) to 209.50 kPa (SF13 silicone rubber without silicone oil)

at a frequency of 60 Hz (Table 1). The standard deviation of sample # 7 was determined to be σ
= 0.06 kPa. The phantom was built using silicone rubber SF00 with 41%, 47%, and 57% sili-

cone oil, corresponding to G� of 7.29 kPa, 5.17 kPa, and 3.21 kPa at 60 Hz.

We obtained MRE magnitude and phase images at actuation frequencies of 50 Hz, 60 Hz,

70 Hz, and 80 Hz at 3 T. The elastograms obtained for a transverse and coronal slice at 80 Hz

showed an increased shear modulus within the inclusions compared to the background mate-

rial (Fig 6).

Fig 3. The vibration frequency response of the pneumatic vibrator housing. The vibration frequency response spectrum (in m/s2)

for frequencies ranging from 20 Hz to 90 Hz with a step width of 10 Hz were evaluated. The acceleration increased with increasing

frequency.

https://doi.org/10.1371/journal.pone.0205442.g003
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Shear waves generated by our proposed pneumatic turbine propagated through the entire

volume of the phantom. The passive driver did not generate any significant artifacts in the

acquired MR images. The inclusions A and B, being 2.3 and 1.6 times stiffer than the back-

ground material, were clearly visually detectable at 3 T (Fig 7). The manually measured wave

lengths in inclusion A was 1.5 times longer compared to the wave lengths in the background

material.

Discussion

The main goal of the current study was to present a new method for controlled dynamic har-

monic wave actuation using centrifugal force for the quantification of mechanical properties

of soft tissues by MRE.

Our mechanical actuator is an alternative to the conventionally used pneumatic cushions.

By using centrifugal forces instead of sound pressure levels, the pneumatic vibrator offers an

elegant solution for sufficiently large wave actuation at higher frequencies compared to air

cushions where the amplitude of sound pressure waves decreases with increasing frequencies.

In comparison to our presented design, the gravitational transducer by [29] needs a stepper

motor connected by a rotating rod. The electric stepper motor needs to be at a certain distance

to the scanner. Thus the distance between the stepper motor and transducer yields an

increased length of the rod. As the rod transmits the rotation, it needs to be mechanically stable

Fig 4. Measured uniaxial acceleration of the pneumatic vibrator acquired by the accelerometer. Unbalances with a

weight of mA1 = 1.2 g, mA2 = 2.3 g, and mA3 = 4.5 g (turbine A) and mB1 = 3.0 g, mB2 = 4.3 g, and mB2 = 8.6 g (turbine

B) at frequencies ranging from 30 Hz to 100 Hz were evaluated. The maximum measurable acceleration with our

current set up was limited to amax < 14.95 m/s2 due to the range of the accelerometer and thus no greater values could

be recorded.

https://doi.org/10.1371/journal.pone.0205442.g004
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Fig 5. Complex shear modulus G� of selected silicone samples # 4 - # 11 at frequencies ranging from 30 Hz to 100

Hz measured with a strain controlled rheometer. Samples # 1 - # 3 are not shown in this graph as their elasticity is

more than three times higher than that of sample # 4. The standard deviation calculated from five re-tests of sample # 7

is also shown. Samples # 5, # 7 and # 9 (—) were chosen for the tissue-mimicking phantom, other samples are

displayed as—- -.

https://doi.org/10.1371/journal.pone.0205442.g005

Fig 6. Results of 3 T MRE measurements. Left: Schematic drawing of the phantom used for image acquisition at 3 T. Inclusion A, corresponding to the elasticity of a

bladder, is shown in dark blue. Inclusion B, corresponding to the elasticity of a prostate, is depicted in light blue. The actuator was placed on top of the phantom. Middle:

Magnitude and phase images. Some trapped air is visible between the inclusions and the background material yielding to artifacts. Phase images were obtained for

frequencies ranging between 50 Hz and 80 Hz. Right: Elastograms reconstructed at 80 Hz. Top row is a transverse slice showing inclusion A, Bottom row displays a

coronal slice with both inclusions.

https://doi.org/10.1371/journal.pone.0205442.g006
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and its rigidity limits the accessible surfaces. Compared to the gravitation transducer, our

design omits the need for a rotating rod, as the source of rotation is also the source of vibra-

tion. Thus, more surfaces are accessible with our transducer.

A major restriction of MR Elastography for a broader clinical impact is the additionally

required software and hardware. The simplicity of our driver configuration also allows other

clinics to implement this technology easily. We have demonstrated how the pneumatic vibra-

tor can readily be installed using the in-house compressed air system, 3D printing and a pro-

grammable microcontroller unit.

The experimentally determined maximum acceleration values was performed as described

by [29]. The evaluated frequencies ranging from 30 Hz to 100 Hz showed that the acceleration

increases with the square of frequency as expected as well as the mass of the inserted unbal-

ances. Especially at 60 Hz, the turbine provides accurate vibrational waves in absence of higher

harmonics. The frequency spectrum is broader at lower frequencies (40 Hz) and should be

improved in future designs.

There are further ways of improving the actuation setup. The influence of (1) possible fric-

tion within the turbine itself, (2) a delay between the adjusted pressure of compressed air at the

proportional pressure regulator and the turbine due to the long (> 5 m) pressure supply tubes,

(3) a decrease in acceleration at natural frequencies of the turbine on the stability of the operat-

ing actuation frequency, (4) an improved feedback loop of the light sensor signal to the pres-

sure regulator will be investigated in future studies.

The current turbine design allows a placement of the housing within the holes of a commer-

cially available 4-channel flex coil (Siemens healthineers). Design alterations of the actuator

should be considered for placement within the holes of a Body 18 coil. Modifications in the

CAD are feasible, e.g. to decrease the outer dimensions of the housing or to develop a more

flat design. The generated force could remain the same despite a decreased distance of the

Fig 7. Line profiles of phase signal at 50 Hz, 60 Hz, 70 Hz, and 80 Hz in Inclusion A. A 25-pixel-line was placed in

inclusion A and compared at four actuation frequencies. The wave length shortened with increasing frequencies as

indicated by arrows at the first maximum of each line profile.

https://doi.org/10.1371/journal.pone.0205442.g007
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unbalance to the rotational center, as the mass of the unbalance could simultaneously be

increased. Another solution is the application of intervention coils. The coil’s biopsy windows

offer sufficient space for placement of the actuator. Future alterations of the turbine design

might also explore the possibility of a multi frequency vibration. Another rotating mass filling

two opposing quarters can be placed besides the existing unbalance within the turbine. Thus, a

bi-frequency setup could be achieved.

Overall, our proposed pneumatic turbine generated vibration amplitudes sufficiently large

to entirely penetrate the phantom during our feasibility studies for frequencies ranging from

50 Hz to 80 Hz at 3 T. As seen in the phase images, the inclusion is clearly distinguishable

from the background material due to the larger wave length within the inclusion. A further

evaluation of different actuation frequencies and reconstruction of elasticity maps remains

future work. Further research could usefully explore an optimal ratio of the weight of unbal-

ance to turbine size for sufficiently large but tolerable wave actuation with respect to clinical

applications.

The second aim of the study was to determine, if silicone based materials can be used as

MR-compatible tissue-mimicking material for MRE evaluation. The measured shear moduli

of the silicone samples are in the range of human soft tissue values reported by literature MRE

measurements and ex vivo bio-mechanical tests [42–46]. It is possible, therefore, to manufac-

ture custom-built phantoms with known elasticities and arbitrary shapes. Since commercial

phantoms tend to dehydrate over time [14], their elasticities may be influenced and given elas-

ticity values can change, leaving room for uncertainties regarding the shear modulus. Here,

the silicone-based custom-made phantoms offer an excellent alternative. The manufacturing

process was kept simple and repeatable.

Additionally, silicone yields sufficient signal for MR imaging. It is possible to alter the phan-

tom for multimodal imaging, e.g. by introducing scatter particles in the material for ultrasound

(US) imaging. Future experimental work will determine the influence of scatter particles with

regard to elasticity values. Hence, a correlation of MR and US elastography may be performed

on such a multimodal phantom.

MRE is a unique technique for the identification of various pathologies, as viscoelastic char-

acteristics may vary between healthy and diseased tissue. The quantification of the shear mod-

ulus is therefore promising as a further independent parameter for MR diagnostics in a variety

of clinical applications. In conclusion, this work demonstrates the technical feasibility of a

novel MRI-compatible set up based on centrifugal force for the quantification of spatial stiff-

ness of soft tissues. We tested our design on an in–house developed anthropomorphic phan-

tom that closely match elasticity values of human tissues. The actuator is easy to set up, does

not interfere with the imaging procedure and can be integrated into existing clinic equipment.

The design is adaptable and reproducible through low-cost 3D printing. It has also been aimed

to meet clinical demands and can readily be used at a field strength of 3 T. However, our pre-

liminary results need to be further validated in volunteer studies.
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