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Abstract: The development of new solutions in craniofacial surgery brings the need to increase the
accuracy of 3D printing models. The accuracy of the manufactured models is most often verified
using optical coordinate measuring systems. However, so far, no decision has been taken regarding
which type of system would allow for a reliable estimation of the geometrical accuracy of the
anatomical models. Three types of optical measurement systems (Atos III Triple Scan, articulated
arm (MCA-II) with a laser head (MMD × 100), and Benchtop CT160Xi) were used to verify the
accuracy of 12 polymer anatomical models of the left side of the mandible. The models were
manufactured using fused deposition modeling (FDM), melted and extruded modeling (MEM), and
fused filament fabrication (FFF) techniques. The obtained results indicate that the Atos III Triple
Scan allows for the most accurate estimation of errors in model manufacturing. Using the FDM
technique obtained the best accuracy in models manufactured (0.008 ± 0.118 mm for ABS0-M30 and
0.016 ± 0.178 mm for PC-10 material). A very similar value of the standard deviation of PLA and PET
material was observed (about 0.180 mm). The worst results were observed in the MEM technique
(0.012 mm ± 0.308 mm). The knowledge regarding the precisely evaluated errors in manufactured
models within the mandibular area will help in the controlled preparation of templates regarding the
expected accuracy of surgical operations.

Keywords: polymer models; optical systems; material extrusion methods; additive manufacturing;
accuracy; mandible

1. Introduction

Traditional modeling of machine elements and parts is carried out using computer-
aided design (CAD) systems [1], which are also commonly used in the design process of
industrial products using reverse engineering (RE) methods [2–6]. The designer’s concept
becomes a reality due to creating a model using computer numerical control (CNC) tech-
niques [7–9]. However, to minimize costs and increase the efficiency of the prototyping
process and testing of new solutions, additive manufacturing (AM) [10–14] and hybrid
methods, e.g., rapid tooling (RT), are used [15–18]. In the process of manufacturing final
models, metallic materials are still the most often used. However, it has now been ob-
served that due to the continuous improvement of mechanical and functional properties,
polymeric materials are also used in processes including injection molding [19], machin-
ing [20,21], electrical discharge machining [22,23], and plastic working [24]. The demand
for polymers materials results from their many advantages, including low density, high
chemical resistance, easy forming of complex shapes and large sizes, good strength, and
low production costs. Due to the improvement of mechanical and functional properties,
polymeric materials are also used in additive manufacturing. In the process of manu-
facturing models using 3D printing methods, polymeric materials can take the form of
solid [25,26], liquid [27,28], or semi-liquid [29–31]. The manufactured polymeric models
are mainly used in the automotive [32], aviation [33,34], and medical industries [35–37].
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In recent years, there has been a rapid increase in 3D printing techniques in man-
ufacturing anatomical structures of the mandible in planning operations, including the
reconstruction of continuity of the mandible geometry. Without a precise fixation of the
mandible sections after the bone resection process, it may lead to breathing, speech, and
swallowing problems. Thanks to the use of 3D printing methods, the procedures signifi-
cantly improved. Manufactured models are most often used to pre-bend a reconstructive
titanium plate before surgery or plan places where the resection process of a bone will
be carried out. It is assumed that the accuracy of manufactured anatomical models in
the mandible area should be in a range ±0.25 mm [38,39]. In the process of manufac-
turing surgical templates of the anatomical structures of the mandible, polyamide and
acrylic materials were often used [40–43]. Due to the high cost of powder bed fusion,
vat polymerization, and material jetting processes, new technologies were analyzed that
would minimize the cost of surgery preparation. In recent years, there has been an in-
crease in the use of thermoplastic polymer materials such as acrylonitrile butadiene styrene
(ABS), polycarbonate (PC), polylactic acid (PLA), polyethylene terephthalate (PET), and
polyetheretherketone (PEEK) in the process of planning surgical procedures within the
mandibular area [44–47]. These are a group of thermoplastic materials used in the melted
and extruded methods.

Along with modern manufacturing methods, more demands are placed on coor-
dinate metrology, which concerns assessing the accuracy of manufacturing 3D mod-
els [48–51]. Most often, in the process of determining the accuracy of a geometry, coordinate
measuring machines (CMM) [52–54] or articulated arm coordinate measuring machines
(AACMM) [55] are used. However, in models with very complex geometry (such as
anatomical structures), the measurement using tactile methods is very time-consuming or
impossible to carry out. Therefore, in such cases, optical coordinate measuring systems such
as structure light (SL) [56–58], laser scanner (LS) [59,60], or micro computed tomography
(µCT) [61–63] are used. Accuracy tests of optical measurement systems are mainly carried
out by VDI/VDE 2634, ASME B89.4.22, and VDI/VDE 2630 Blatt 1.3 standards [64–66]. In
assessing the accuracy of optical coordinate measuring systems, traditional standards such
as ball bar or flat plane are used. Currently, there are no present studies of new solutions
of measures that would allow the preparation of measurement procedures to check the
optical measurement errors in terms of a specific type of geometry (such as anatomical
structures) and the material used. Moreover, no comparative research has been undertaken
to select which of the optical systems allows to obtain the most reliable results assessing the
mandible’s accuracy of 3D printing models. The knowledge regarding estimating manu-
facturing errors of melted and extruded methods can help with the controlled preparation
of templates and surgical instruments regarding the accuracy expected during operations.
It can also provide significant support in the procedures to restore the continuity of the
mandible geometry.

2. Materials and Methods

To develop a methodology of estimating the optical systems’ accuracy, a template
geometrically similar to the left side of the mandible was used. The template model
was designed (Figure 1a) and manufactured from aluminum alloy AW-7075 on the DMU
100monoBLOCK. In the research process, three optical coordinate measuring systems
were tested. In the process of reconstructing anatomical models of the 12 left sides of the
mandible (Figure 1b), the Digital Imaging and Communications in Medicine (DICOM)
data from the Siemens Somatom Sensation Open 40 scanner was used. A traditional “Head
Routine” scanning protocol was used during the measurement process, intended for the
craniofacial area. In the stage of the segmentation process, the threshold value was set
above 200 HU. To visualize the 3D models of the left side of the mandible, the isosurface
method was used. This method is based on the marching cube (MC) algorithm. The final
models were saved to the STereoLitography (STL) format. The reconstructed body and
angle of the left side of the mandible were used in the research because it is the most
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frequently affected by tumors. To this surface, they pre-bend a reconstructive titanium
plate before the surgery.
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Figure 1. The final models representing: (a) template; (b) anatomical models of the left side of the mandible.

The process of verifying the accuracy of the manufacture of the mandibular template
was carried out on a coordinate measuring machine (CMM). As a result of the measurement
of the model manufactured on the five-axis machining center, the template errors were
estimated. The next step was to measure the template on three types of optical measurement
systems: Atos III Triple Scan structure light (SL) system; articulated arm (AA) MCA-II
with a laser scanner (LS) MMD × 100; and micro-tomography system (µCT) Benchtop
CT160Xi. This process aimed to develop a methodology for estimating manufacturing
errors of the mandible anatomical models using these systems. The Atos III Triple Scan
system comprises a stand holding the measuring head, fitted with a projector and two
cameras. The measuring system also includes a rotating table and a computer workstation
for processing the measured data. Evaluating the Atos III Triple Scan system performance
was carried out by the VDI/VDE 2634 standards requirements and represents three tests.
During the probing error shape (Ps) measurement, the deviation between the measured
diameter sphere and the calibrated value was determined using the least-squares fit method
by Equation (1):

Ps = Dmeasured − Dcalibrated (1)

The sphere distance error (SD) determines the difference between the estimated and
calibrated distance between the centers of the two spheres. The measured distance is derived
from the measured values obtained from multiple area-based probing by Equation (2):

SD = Lmeasured − Lcalibrated (2)

The flatness measurement error (F) was made on the standard plate and is the range of
the signed distances of the measurement point from the best-fit plane calculated according
to the least-squares method. In the next stage, tests are performed on the system’s template
measurement geometry (Figure 2a). In the first step, the outer part of the template was
measured (Figure 2b); in the second step, the internal part was measured (Figure 2c).
The Atos III Triple Scan measured each piece every 30 degrees (12 counting steps). The
resolution of the data during the measurement was 0.050 mm, and the process was fully
automated. Then, two measured geometries representing a cloud point were fitted in
GOM Professional software using the best-fit algorithm to present the final template model.
To assess the repeatability of the measurement process, it was repeated five times. The
difference between the maximum (0.002 mm) and minimum (0.001 mm) value of the
standard deviation was around 0.001 mm.
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Figure 2. The measurement procedure performed on the Atos III Triple Scan system: (a) the measurement system;
(b) measurement of the outer part; (c) measurement of the internal part.

Measurements of the template model were also performed with the Metris MCA II
articulated arm with a laser head MMD × 100. Firstly, the accuracy of the arm against the
ASME B89.4.22 standard was checked. Under the procedure, three tests were performed
to check the arm and one for the laser head. The effective diameter performance (EDP)
test was carried out by probing nine points around specific areas of a mounted gage ball.
The routine was completed three times, and the maximum absolute deviation from the
certified value of the ball was recorded as the test result. The final deviation between the
measured diameter sphere and the calibrated value was determined using the least-squares
fit method by Equation (3):

EDP = Dmeasured − Dcalibrated (3)

In the single point articulation (SPA) test, the probe is placed within a conical socket.
Individual points are measured from multiple approach angles with the maximum artic-
ulation of all of the principal joints. Each point measurement is analyzed as a range of
deviations about the average value for the point locations by Equation (4):

SPA = Range/2 (4)

The volumetric length accuracy (VLA) test is the most appropriate test for determining
machine accuracy and repeatability. It involves measuring a certified length standard many
times in several locations and orientations and compares the resultant measurements to
the actual length—Equation (5):

VLA = Lmeasured − Lcalibrated (5)

In the case of a laser scanner, an accuracy test is determined by scanning a plane
from various directions. The result is the maximum standard deviation of the scan data
to fitted plane features. The best-fit plane is calculated according to the least-squares
method. The measurement procedure of the template used three measuring steps. The
first step focused on measuring the outer part (Figure 3a) and the second on the internal
part (Figure 3b). The third step was to measure the places on the external and internal
surfaces that could not be measured in the first and second steps (Figure 3c). The resolution
of the data during the measurement of the template model was 0.050 mm. Then, three
measured geometries representing a cloud point were fitted in Focus Inspection software
using the best-fit algorithm to present the final template model. The measurement process
was repeated five times to assess the repeatability. The difference between the maximum
(0.020 mm) and minimum (0.015 mm) value of the standard deviation was approximately
0.005 mm.
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Figure 3. The measurement procedure performed on the articulated arm (MCA-II) with laser head (MMD × 100) system:
(a) measurement of the outer part; (b) measurement of the internal part; (c) measurement of the outer and internal surface,
which could not be measured in the first and second step.

The Benchtop CT160Xi (Nikon) tomography used in the research is not calibrated
and does not have a maximum permissible error (MPE). Before each measurement, one
must check it separately. This scanning error process is mainly carried out on the ball-
bar standard. The probing error of size (PS) is calculated as the difference between the
measured diameter and the calibrated diameter by Equation (6):

PS = Dmeasured − Dcalibrated (6)

The length measurement (E) error were performed on reference standards (ball plates).
During the procedure, the deviation between the measured length and the calibrated value
was determined by Equation (7):

E = Lmeasured − Lcalibrated (7)

The template of the mandibular (Figure 4) also verified the Benchtop CT160Xi (Nikon)
system. The structure of the iso-voxel during measurements was characterized by the size
of the pixel 0.050 mm × 0.050 mm and the layer thickness 0.050 mm. The geometry of the
model was reconstructed using ITK-Snap software. The segmentation process was carried
out using the region growing method. The 3D model was visualized using the isosurface
method. Measurement of the template was carried out five times while maintaining the
repeatability conditions. The difference between the maximum (0.050 mm) and minimum
(0.030 mm) value of the standard deviation was approximately 0.020 mm.
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In the next step, the template and the 12 anatomical models of the left side of the
mandible were manufactured using fused deposition modeling (FDM), melted and ex-
truded modeling (MEM), and fused filament fabrication (FFF) techniques. During the
manufacture of the models, comparable layer thickness was used (Table 1). Addition-
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ally, each model during the manufacturing process was oriented in the same way in the
3D printer space (Figure 5a). This procedure aimed to ensure that the side surface of
the mandible models was as accurately manufactured as possible. This is because these
surfaces are most often pre-bended surgical plates before the operation. Based on the
development of measurement procedures, it was implemented in the perspective of the
template and the 12 anatomical models of the left side of the mandible, manufactured using
melted and extruded methods (Figure 5b,c).

Table 1. AM technologies used in the research.

AM Technology 3D Printer Commercial
Material Name Generic Name Layer

Thickness

Fused Deposition
Modeling (FDM) Fortus 360-mc ABS-M30

Acrylonitrile
0.178 mmButadiene

Styrene
PC-10 Polycarbonate 0.178 mm

Fused Filament
Fabrication (FFF) Prusa MK3s

PLA Polylactic acid 0.150 mm

PET
Polyethylene

0.150 mmterephthalate

Melted and Extruded
Modeling (MEM) UP Box ABS plus

Acrylonitrile
0.150 mmButadiene

Styrene
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model in the 3D printer space; (b) the measurement procedure performed on the Atos III Triple Scan; (c) the measurement
procedure performed on the articulated arm (MCA-II) with laser head (MMD × 100) system.

The process of verifying the accuracy of manufacturing models was carried out in
the Focus Inspection software. The fitting process of the nominal model obtained at the
RE/CAD design stage and the reference model created at the measurement stage using the
optical systems were carried out using the best-fit algorithm with an accuracy of 0.001 mm.
Evaluation of the quality of manufacture geometry was carried out using:

• Calculate the arithmetic mean (mean deviation) by Equation (8):

y =
1
n

n

∑
i=1

xi (8)

• Sample standard deviation—sigma (σ) by Equation (9):

σ =
1

(n − 1)

√
n

∑
i=1

(xi − x)2 (9)

• Calculate the skewness value by Equation (10):
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skewness =

n
∑

i=1
(xi − x)3

σ3 (10)

• Calculate the kurtosis value by Equation (11):

kurtosis =

n
∑

i=1
(xi − x)4

σ4 (11)

where n—the number of measurements, xi—i-th measured value, x—mean value.

3. Results

The obtained results of verification of the optical systems by the standards included in
VDI/VDE 2634, ASME B89.4.22, and VDI/VDE 2630 Blatt 1.3 are presented in Table 2. The
values do not exceed the allowable limit errors. The measurement was performed on a coordi-
nate measuring machine to estimate the procedure errors of the optical systems. The obtained
result precisely estimated the template’s manufacturing error (−0.002 mm ± 0.015 mm). Com-
paring the results obtained on the coordinate measuring machine can conclude that the
procedure performed on Atos III Triple Scan is more accurate compared to the Metris MCA
II articulated arm with a laser head MMD × 100 and Benchtop CT160Xi (Nikon) system. In
the case of Atos III Triple Scan, the measurement result was 0.008 mm ± 0.035 mm. In the
articulated arm with a laser head and Benchtop CT160Xi (Nikon) system, the results were
comparable to about ± 0.100 mm (Table 3).

Table 2. The results of verification optical systems using the standard procedure.

Atos III Triple Scan

Acceptance test according to VDI/VDE 2634 Measured value/Maximum permission error (2σ)
Probing error ±0.003 mm/±0.006 mm

Sphere—spacing error ±0.007 mm/±0.020 mm
Maximum error (2σ)

Flatness measurement error ±0.020 mm
Articulated arm coordinate measuring machine (MCA II) with a laser head (MMD × 100)

Acceptance test according to ASME B89.4.22 Measured value/Maximum permission error (2σ)
Effective diameter test ±0.004 mm/±0.008 mm

Single point articulation test ±0.022 mm/±0.024 mm
Volumetric performance test ±0.032 mm/±0.035 mm

Laser head test (flat plate) ±0.020 mm
Benchtop (Nikon) CT160Xi

Acceptance test according to VDI/VDE 2630 Blatt 1.3 Measured value
Length measuring error ±0.006 mm

Probing error of size (Scanning error) ±0.006 mm

Table 3. Statistical parameters representing values of mean deviation +/− 2 × sigma of the template model.

Material Coordinate Measuring
Machine Atos III Triple Scan MCA II with

Laser Head MMD × 100
Benchtop

(Nikon) CT160Xi

AW 7075 −0.002 mm ± 0.015 mm −0.008 mm ± 0.035 mm 0.010 mm ± 0.102 mm 0.012 mm ± 0.100 mm

ABS-M30 −0.002 mm ± 0.056 mm −0.009 mm ± 0.084 mm 0.010 mm ± 0.208 mm −0.032 mm ± 0.240 mm

PC-10 0.010 mm ± 0.056 mm 0.026 mm ± 0.102 mm 0.032 mm ± 0.220 mm −0.020 mm ± 0.218 mm

PLA −0.001 mm ± 0.084 mm 0.010 mm ± 0.134 mm 0.032 mm ± 0.210 mm −0.015 mm ± 0.214 mm

PET −0.010 mm ± 0.102 mm 0.008 mm ± 0.144 mm 0.028 mm ± 0.216 mm −0.012 mm ± 0.250 mm

ABS-plus −0.005 mm ± 0.212 mm 0.017 mm ± 0.270 mm 0.025 mm ± 0.204 mm −0.008 mm ± 0.236 mm

In the next step, the template model was manufactured using fused deposition model-
ing (FDM), melted and extruded modeling (MEM), and fused filament fabrication (FFF)
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techniques. The same measurement procedure was used in the template model manufac-
tured using 100 DMU MonoBlock. The obtained results of the template are presented in
Figure 6 and Tables 3 and 4. The Atos III Triple Scan—(SL) obtained the most similar results
to the coordinate measuring machine (CMM) results. This fact makes the Atos III Triple
Scan the most precise optical system in the diagnostic process of geometry dimensional
similar to the mandible, manufactured using melted and extruded methods (Table 3 and
Figure 6). In the case of the Metris MCA II articulated arm with a laser head MMD × 100—
(AA-LS) and Benchtop CT160Xi (Nikon) systems—(µCT), the standard deviation value
is much higher than the Atos III Triple Scan. It is 0.1 mm for each thermoplastic material
used (Table 3 and Figure 6). The obtained results are characterized by small and medium
positive and negative skew (Table 4). In the kurtosis values, it can be analyzed that most
data distributions are mainly leptokurtic (Table 4).
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Table 4. Statistical parameters representing values of skewness and kurtosis of the template model.

Coordinate Measuring Machine Atos III Triple Scan

Material ABS-M30 PC-10 PLA PET ABS-plus ABS-M30 PC-10 PLA PET ABS-plus
Skewness 0.202 −0.252 0.152 −0.336 0.342 0.416 −0.694 0.342 −0.235 −0.235
Kurtosis 2.900 2.997 2.844 3.154 3.349 3.715 3.156 3.508 3.432 3.432

MCA II with laser head MMD × 100 Benchtop (Nikon) CT160Xi

Material ABS-M30 PC-10 PLA PET ABS-plus ABS-M30 PC-10 PLA PET ABS-plus
Skewness 0.235 −0.250 −0.289 −0.329 −0.326 0.532 0.345 0.225 0.463 0.254
Kurtosis 3.023 3.424 3.201 3.326 3.230 1.980 2.967 3.324 3.043 3.245

The final stage of the research was to estimate the accuracy of 12 anatomical models
of the left side of the mandible, manufactured using five types of polymer materials: ABS-
M30, PC-10, PLA, PET, and ABS-plus. The average results are presented in Tables 5 and 6
and Figures 7–9. The procedure used three optical systems to assess the accuracy of the
manufacture of anatomical models. The same measurement procedure was used as in
the case of the template model. In the process of assessing the normality of the data,
the Shapiro-Wilk test was used. The evaluated values for all distributions (Figures 7–9)
are higher than the critical value; as a result, we did not reject the hypothesis of normal
distribution. Accordingly, all obtained distributions were treated as usual.

Table 5. Statistical parameters representing values of mean deviation ±2 × sigma of the 12 parts of the mandible model.

Material Atos III Triple Scan MCA II with Laser Head MMD × 100 Benchtop (Nikon) CT160Xi

ABS-M30 −0.008 mm ± 0.118 mm 0.018 mm ± 0.184 mm 0.038 mm ± 0.304 mm
PC-10 0.016 mm ± 0.188 mm 0.016 mm ± 0.290 mm −0.067 mm ± 0.204 mm
PLA 0.015 mm ± 0.174 mm 0.050 mm ± 0.286 mm −0.028 mm ± 0.210 mm
PET 0.012 mm ± 0.182 mm 0.056 mm ± 0.240 mm −0.040 mm ± 0.264 mm

ABS-plus 0.012 mm ± 0.308 mm 0.040 mm ± 0.246 mm −0.019 mm ± 0.260 mm
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Table 6. Statistical parameters representing average values of skewness and kurtosis of the 12 parts of the mandible models.

Atos III Triple Scan MCA II with Laser Head MMD × 100

Material ABS-M30 PC-10 PLA PET ABS-plus ABS-M30 PC-10 PLA PET ABS-plus
Skewness 0.201 −0.405 0.150 −0.402 0.323 0.391 −0.405 −0.321 −0.453 −0.487
Kurtosis 3.432 3.125 4.089 3.772 2.585 2.853 3.125 3.437 3.743 3.315

Benchtop (Nikon) CT160Xi

Material ABS-
M30 PC-10 PLA PET ABS-

plus
Skewness 0.421 0.610 0.402 0.501 0.327
Kurtosis 2.341 3.921 3.502 3.324 3.497
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Considering the results obtained from the Atos III Triple Scan system, they are similar
to the measurements carried out on a template using a coordinate measuring machine.
This fact makes the Atos III Triple Scan the most precise optical system in the diagnostic
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process of the mandible geometry. In each analyzed result obtained on Atos III Triple
Scan, unimodal distribution was observed (Figures 8 and 9). The models manufactured
using the FDM technique (0.008 ± 0.118 mm for ABS-M30 and 0.016 ± 0.188 mm for PC-10
material) obtained the best accuracy. A very similar value of the standard deviation of
PLA and PET material was observed (about 0.180 mm). The worst results were observed
in the MEM technique (0.012 mm ± 0.308 mm) (Table 5 and Figure 7). The obtained
results are characterized by small and medium positive (ABS-M30, PLA, and ABS-plus
material) and negative skew (PC-10 and PET material) (Figures 8 and 9 and Table 6). In
the kurtosis values, it can be analyzed that most data distributions are mainly leptokurtic
(Figures 8 and 9 and Table 6).
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Figure 9. Histograms representing average results of the accuracy of the 12 parts of the mandible manufactured using
ABS-plus material.

In the case of a Metris MCA II articulated arm with a laser head MMD × 100, signif-
icantly overestimated noticed values of the standard deviation about the Atos III Triple
Scan. The models manufactured using the ABS-M30 material (0.018 ± 0.184 mm) obtained
the best accuracy. The worst was PC-10 and PLA material (Table 5 and Figure 7). The
obtained results are characterized mainly by small and medium negative skew, except the
models manufactured using the ABS-M30 material (Figures 8 and 9 and Table 6). It can
analyze that most data distributions are mainly leptokurtic (Figures 8 and 9 and Table 6).
In each analyzed result obtained on a Metris MCA II articulated arm with a laser head,
MMD × 100 unimodal distribution was observed (Figures 8 and 9).

In the Benchtop CT160Xi, it was noticed that models manufactured using the PLA
material (−0.028 mm ± 0.210 mm) obtained the best accuracy results; the worst were ob-
tained in the case of ABS-M30 material (Table 5 and Figure 7). The results are characterized
by small and medium positive skew (Figures 8 and 9 and Table 6). It can be observed that
most data distributions are mainly leptokurtic, except the models manufactured using the
ABS-M30 material (Figures 8 and 9 and Table 6). In each analyzed result obtained on the
Benchtop CT160Xi (Nikon), unimodal distribution was observed (Figures 8 and 9).

4. Discussion

Designing and manufacturing an anatomical model or surgical template is not a sim-
ple task. It is especially true for the craniofacial area, which consists of bone tissues with
very complex geometry. Therefore, it is necessary to know the accuracy of manufacturing
models of anatomical structures. Currently, 3D printing methods are used in the process
of manufacturing models of anatomical structures. In manufacturing, surgical templates
or the anatomical structures of the mandible, polyamide, and acrylic materials were often
used [40–43]. In recent years, there has been an increase in thermoplastic polymer materials
such as ABS and PLA to plan surgical procedures within the mandibular area [44–47]. The
accuracy of the manufactured anatomical models is most often verified using optical coor-
dinate systems. It is assumed that the accuracy of these models should be approximately
+/−0.25 mm [38,39]. However, the current research on the accuracy of manufacturing
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of the mandible using 3D printing methods does not include measuring errors [67–71].
Thanks to the design and implementation of a standard similar to the mandible geometry
in this research, it was possible to estimate errors at the digitalization stage accurately
and obtain the most reliable results assessing the accuracy of 3D printing models of the
mandible manufactured using melted and extruded methods.

In determining errors in the optical measurement systems, the priority was checking
the procedures by the VDI/VDE 2634, ASME B89.4.22, and VDI/VDE 2630 Blatt 1.3. Many
items in the literature take the same steps [72,73]. The most time-consuming research was
to carry out the procedures verifying the accuracy of the measuring arm and the laser head.
It was necessary to carry out individual preparatory activities and demonstrate the arm and
later the laser head. In the case of the Benchtop CT160Xi (Nikon) system, the procedure was
the simplest. It was required to measure the geometry of the standard in the working space
of the measuring system without additional preparation. In the Atos III Triple Scan system,
the measuring table has significantly simplified the entire accuracy verification process.
The obtained values for all methods were within recommended tolerances, confirming the
correct functioning of the systems.

The first step estimated the procedure errors on a template geometrically similar to
the mandible. It was performed on a coordinate measuring machine. The result very
precisely estimated the manufacturing error of the template (−0.002 mm ± 0.015 mm). In
the case of the optical systems, problems were observed. The surface of the template model
manufactured from aluminum alloy was highly reflective. In the Atos III Triple Scan and
Metris MCA II articulated arm with a laser head, it was decided to use matting spray from
the titanium powder. Using this product yielded the thinnest layer (0.008 mm on average)
and is proven to have the least influence on measurement accuracy in terms of dimension
characteristics [74]. In the case of the Benchtop CT160Xi (Nikon), matting of the surface
was not required. Still, due to the high radiological density of the aluminum alloy, the
metal detection technique was used on the reconstruction stage of 2D images that allowed
for the removal of metal artifacts [75]. Thanks to this process, better-quality images were
obtained. Taking into account the obtained repeatability value, which consists of:

• In the case of the Atos III Triple Scan: system errors, the adopted measurement
procedure, and fitting errors of two-point clouds

• In the case of the Metris MCA II articulated arm with a laser head: system errors, the
adopted measurement procedure and fitting errors of three-point clouds

• In the case of the Benchtop CT160Xi (Nikon): system errors, the adopted measurement
procedure and the data processing stage (especially the segmentation and reconstruc-
tion process).

Atos III Triple Scan obtained the best results (the repeatability value was in the range
of 0.001 mm) compared to the Metris MCA II articulated arm with a laser head (0.005
mm) and Benchtop CT160Xi (Nikon) (0.020 mm). Despite the obtained results, the Metris
MCA II articulated arm with a laser head and Benchtop CT160Xi (Nikon) were included in
assessing the template’s accuracy, and 12 models of the mandible were manufactured of
thermoplastic materials. This procedure aimed to test all three optical systems for other
types of materials.

At the stage of assessing the accuracy of the template model manufactured of thermo-
plastic materials, a CMM was also used. The results obtained on the CMM informed that
the most accurate template model was manufactured on the Fortus 360-mc machine from
ABS-M30 and PC-10 material. The FDM technique, high repeatability of the 3D printer, and
materials used may have influenced the results. The template model manufactured using
the MEM technique obtained the worst accuracy results. The FFF technique for PLA and
PET materials obtained comparable results. It can be concluded that the results achieved on
the Atos III Triple Scan presented in Table 3 and Figure 6 are the most similar to the CMM.
In minimizing measurement errors, the automation of the head and the table played an im-
portant role. In two other optical systems, the results are not comparable to those obtained
on the CMM and Atos III Triple Scan. Only in the template model manufactured from
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ABS-M30 material can we see a certain analogy. The presented results for the Metris MCA
II articulated arm with a laser head and Benchtop CT160Xi (Nikon) are mainly influenced
by measurement errors, which do not allow for a reliable assessment. Manual geometry
measurement increases the value of the standard deviation in the case of a Metris MCA
II articulated arm with a laser head MMD × 100. Additionally, to obtain a complete 3D
geometry of the template, one more measurement was made than in the Atos III Triple Scan
system. In the Benchtop CT160Xi (Nikon) system, a significant increase in the value of the
standard deviation was also observed. Despite implementing one procedure for acquiring
DICOM data, the accuracy reports differ significantly from the Atos III Triple system and
the Metris MCA II articulated arm with a laser head MMD × 100. A different technique
of geometry measurement mainly influenced the presented results compared to the Atos
III Triple system and the Metris MCA II articulated arm with a laser head MMD × 100.
Additionally, the final effect of the geometry reconstruction could have the data processing
stage, especially the selection of threshold value at the segmentation stage [76–79].

In verifying the accuracy of the mandible geometry, no measurements were performed
on the CMM. This is due to the complexity of the geometry and thus the time-consuming
nature of the measure itself. An increase in statistical parameters observed in Table 5 and
Figure 7 was comparable to the template model. This is natural because the increase in
parameters results from the complexity of the geometry. However, between the results
presented in Tables 3 and 5, we can see an analogy. Mandible models manufactured using
the FDM technique from ABS-M30 material obtained the best accuracy results. Considering
the most accurately estimated results using the Atos III Triple Scan system, we can conclude
that the recommended tolerance of +/−0.25 mm is met by the mandible models made
of ABS-M30, PC, PET, and PLA material. In the case of the Metris MCA II articulated
arm with a laser head and Benchtop CT160Xi (Nikon), it is difficult to reliably assess the
accuracy of the models because measurement errors that were too large characterized
both systems. Based on the presented research, the Atos III Triple Scan system should be
recommended to verify the accuracy of the mandible geometry manufactured using melted
and extruded methods.

5. Conclusions

Thanks to using a standard similar to the mandible, it was possible to precisely
estimate the measurement errors of optical systems. This procedure allowed for selecting
the system generating the smallest measurement errors occurring during the digitization
of the mandible geometry. The research conducted in the article allowed for a reliable
estimation of errors of anatomical models of the mandible manufactured using the melted
and extruded methods.

The obtained results indicate that the Atos III Triple Scan allows for the most accurate
estimation of errors in model manufacturing against a Metris MCA II articulated arm
with a laser head MMD × 100 and Benchtop CT160Xi (Nikon) system. In minimizing
measurement errors, the automation of the head and the table played an important role. It
is possible to shorten the measuring time while reducing the number of measuring steps.
Manual geometry measurement increases the standard deviation value in the case of a
Metris MCA II articulated arm with a laser head MMD × 100. Additionally, to obtain a
complete 3D geometry of the mandible, one more measurement was made than in the Atos
III Triple Scan system. Considering the obtained value of standard deviation, one can make
additional changes in the applied measurement methodology. However, due to the manual
measurement process, it is difficult to maintain the high repeatability of the measurement.
In the Benchtop CT160Xi (Nikon) system, a significant increase in the standard deviation
value was observed. A different technique of geometry measurement mainly influenced
the presented results compared to the other systems. In the case of tomography, we did not
obtain a direct representation of the three-dimensional geometry of the digitized model.
The final effect of the accuracy of geometry reconstruction could have the data processing
stage, especially the selection of the threshold value at the segmentation stage.
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Changing the measurement system affects the distribution of data on the histogram.
Additionally, in the case of PC-10, PLA, PET, and ABS-plus materials, a significant change in
the value of the skewness parameter was observed and the value of kurtosis also changed.
However, leptokurtic distributions mainly dominated (this distribution is more peaked
than a Gaussian distribution). Using the FDM technique (ABS-M30 and PC-10 material)
obtained the best accuracy. A very similar value of the standard deviation of PLA and PET
material was observed in the FFF technique. The worst accuracy results were observed
in the case of the MEM technique. Considering the most accurately estimated results
using the Atos III Triple Scan system, we can conclude that the recommended tolerance of
+/−0.25 mm is met by the mandible models made of ABS-M30, PC, PET, and PLA material.

The knowledge regarding the procedures for estimating manufacturing errors can
help in the future in controlled preparation of templates and surgical instruments in terms
of the accuracy expected during operations. It can also provide significant support in the
procedures to restore the continuity of the mandible geometry. The results are the starting
point for further analyses related to developing measurement protocols that minimize
digitalization error with other human anatomical area models.
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