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Ultrasound elastography enables in vivo measurement
of the mechanical properties of living soft tissues in
a non-destructive and non-invasive manner and has
attracted considerable interest for clinical use in recent
years. Continuum mechanics plays an essential role
in understanding and improving ultrasound-based
elastography methods and is the main focus of this
review. In particular, the mechanics theories involved
in both static and dynamic elastography methods are
surveyed. They may help understand the challenges
in and opportunities for the practical applications
of various ultrasound elastography methods to
characterize the linear elastic, viscoelastic, anisotropic
elastic and hyperelastic properties of both bulk and
thin-walled soft materials, especially the in vivo
characterization of biological soft tissues.

1. Introduction
The elastography method, which was proposed in
the 1990s, enables probing the elastic properties of
living soft tissues and has found wide medical
applications in the past two decades [1–7]. The key
steps involved in an elastography method can be
summarized as in figure 1 [8]. (1) An external or
internal stimulus is imposed onto a target soft tissue.
(2) The responses of the soft tissue, including its
static and/or dynamic deformation behaviours are
monitored using a medical imaging technique, such
as ultrasound or nuclear magnetic resonance imaging
(MRI) methods. (3) The mechanical properties of the soft
tissue can then be inferred from the measured responses
based on inverse analysis. (4) It has been recognized
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Figure 1. An illustration of the key steps involved in elastography [8]. (Online version in colour.)

that many diseases, such as cancer [9,10], liver fibrosis [11,12], cardiovascular diseases [13] and
thyroid nodules [14], are accompanied by variations in the tissue mechanical properties; therefore,
in vivo and quantitative measurements of the elastic properties of soft tissues via elastography
methods provide valuable information for the diagnosis and therapy of these diseases.

The vast studies published in the literature regarding the development and practical
applications of elastography methods may be classified by considering the four key steps in
figure 1. In step (1), different stimuli can be adopted to deform a soft tissue. In the literature,
static loads [15], external vibrators [16,17] and acoustic radiation forces (ARFs) [18–21] have
been applied to generate diverse responses in a soft tissue, leading to different static and
dynamic elastography methods. Accurately tracking the mechanical responses of target soft
tissues generated by various stimuli (step (2)) is a key step in an elastography method. To this
end, different medical imaging methods have been used, giving rise to ultrasound elastography,
magnetic resonance elastography, optical elastography and so on [18,22–24]. Also driven by
this need, some dedicated imaging techniques have been introduced. For instance, besides the
measurement of axial displacements, techniques based on the ultrasound imaging have been
presented to obtain the lateral displacements and strains [25]. Another example is that taking
advantage of ultrafast ultrasound imaging techniques (the frame rate can be up to 6000 Hz or
even higher), the method to image two-dimensional motion vectors has been developed [24].
With the known responses of soft tissues under given stimuli tracked with various medical
imaging methods, it is possible to infer the mechanical properties of soft tissues (step (3) in
figure 1), which has received considerable attention from different disciplines. Besides linear
elastic parameters, it has been demonstrated that hyperelastic [8,26–28], viscoelastic [29–32] and
anisotropic elastic [33–36] parameters of soft tissues may be inferred using different inverse
methods reported in recent years. The mechanical properties of living soft tissues inferred
from their responses to imposed stimuli may provide valuable information for the diagnosis
and therapy of some diseases (step (4)). This step is the main interest of clinicians who use
elastography, and most publications from clinical research focus on this aspect. Over the past
years, numerous valuable clinical data have been reported in the literature, which indeed help
identify the extent to which elastography methods are useful in clinics [10,12,37].

This review focuses on ultrasound elastography for which quite a few review papers [1–7]
and guidelines for its clinical use [38,39] have been published. It can be seen from figure 1 that
continuum mechanics plays an essential role in both steps (1) and (3). In particular, the questions
of how to understand the responses of living soft tissues to various external/internal stimuli
in ultrasound elastography and how to establish robust inverse approaches to infer different
material parameters of soft tissues have come under the spotlight of the mechanics and applied
mathematics research communities. Bearing this issue in mind, distinct from previous review
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papers, this review focuses on the mechanics principles underpinning elastography methods
to highlight the limitations, challenges and opportunities of these methods from the viewpoint
of continuum mechanics. To this end, we divide the commonly used ultrasound elastography
methods into three categories based on the loads or stimuli imposed on the soft tissue and its
responses: static elastography, dynamic elastography with harmonic stimuli (DEHS) and dynamic
elastography with transient stimuli (DETS). From the viewpoint of continuum mechanics, the
governing equations and boundary conditions (BCs) characterizing the responses of soft tissues
involved in these three types of methods differ.

This review paper is organized as follows. In §2, a brief introduction to the commonly used
ultrasound elastography methods and their applications is presented. Section 3 describes the
mechanics theories involved in elastography methods. In §4, particular attention is given to
some limitations of the current data analysis methods and future prospects for developing novel
inverse analysis methods within the framework of continuum mechanics. Section 5 provides
the concluding remarks.

2. Ultrasound-based elastography methods
Ultrasound imaging is a low-cost, safe and mobile imaging modality that can generate real-time
images and has found broad applications in clinical radiology. Safety is one of its major strengths;
indeed, this technique does not involve ionizing radiations. Ultrasound-based elastography
methods use ultrasound imaging to track the deformation behaviours of soft tissues and further
infer the elastic properties of both healthy and diseased soft tissues. Depending on the features
of the stimuli used to deform the soft tissue, the ultrasound-based elastography methods can be
divided into three categories: static elastography, DEHS and DETS. This section gives an overview
of different ultrasound-based elastography techniques and their applications for the mechanical
characterization of soft tissues and diagnosis of some diseases.

(a) Static elastography methods
Static elastography, which was proposed in the early 1990s, has been widely used in clinics in
the past two decades [2,15,25,40–44]. When using this method, static compression is typically
imposed onto a targeted soft tissue (figure 2a). The resulting displacement field (mainly the axial
displacement in the early use of static elastography) generated by the compressive load can be
directly measured via the ultrasound imaging method. The strain field can then be calculated
according to the measured displacement. Furthermore, dedicated inverse approaches can be used
to extract the elastic properties of the target soft tissues according to the strain field [2,6,41,48].
Briefly, harder tissues have lower strains, whereas softer tissues have higher strains under
compression, as shown in figure 2a. In principle, it is possible to quantitatively infer the elastic
properties of soft tissues using a static elastography method; however, this is challenging because
of the complexity of the associated inverse problem, as discussed in detail in §3. Therefore, the
static elastography method is usually regarded as a qualitative method that reveals the contrast
between hard and soft tissues.

Although the limitations of the static elastography method in quantitatively measuring the
mechanical properties of soft tissues have been recognized, this method is simple and easy
to realize and allows us at least to qualitatively distinguish between regions with different
stiffnesses; therefore, it has been widely used in clinics. For example, static elastography finds
important applications in the classification of breast lesions [45,49]. A low-echogenic region
emerges in the B-mode image when a lesion exists, as shown in figure 2b. Traditionally, such
a low-echogenic region (the region indicated by arrows in figure 2b) in the B-mode image may
be suspected to correspond to a breast lesion. Now with the help of the static elastography
method, the position and size of a lesion may be detected more accurately than using the result
estimated solely based on the B-mode image [45]. Moreover, the mechanical properties of thermal
lesions induced by high-intensity focused ultrasound (HIFU) have been demonstrated to differ
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Figure 2. (a) Illustration of the basic principle underlying static elastography. (b) Detection of a breast lesion, which appears
as the low-strain region in the image. Compared with the B-mode image, the elastographymethodmay providemore accurate
information with respect to both the size and the position of a lesion [45]. (c) Application of static elastography to image a
thermal lesion induced by HIFU, revealing that this technique may be useful to guide HIFU treatment [46]. (d) Measurement of
the elastic properties of skeletal muscles using the static elastography method. To quantitatively infer the elastic properties of
themuscle, two soft layers with knownmechanical properties are used [47]. Reprinted from references [45], [46], and [47] with
permission. (Online version in colour.)

from those of the surrounding soft tissues; therefore, the static elastography method can be a
useful tool to guide HIFU treatment when the lesions are not too deep [46,50]. The dark region in
figure 2c denotes the low-strain region (i.e. the location of the thermal lesion). In addition to lesion
detection, static elastography can also be used to characterize other soft tissues. For instance, in a
recent work, Chino et al. [47] used two referenced layers with known elastic moduli to cover the
skin and measured the compressive strains in both the referenced layers and the skeletal muscles.
Although the anisotropy of the skeletal muscles was ignored in their study, by comparing the
strains in the referenced layers and skeletal muscles, the elastic properties of the skeletal muscles
were evaluated, as shown in figure 2d [47]. Other applications of static elastography in predicting
malignancies in thyroid nodules can be found in [14,51].

In the clinical use of static elastography methods, the quality of the examination depends
significantly on the experience and technique of the sonographer clinicians. For instance, an
appropriate compressive amount should be imposed onto the soft tissue to improve the image
quality. The appropriate pre-compression of the soft tissues before the imaging process may help
increase the contrast and reduce the decorrelation noise [3,46]. However, determining the amount
of pre-compression required is by no means trivial because a small pre-compression may not
increase the imaging contrast, whereas a large pre-compression may lead to hardening of the soft
tissue. This issue will be discussed in detail in §3.

(b) Dynamic elastography with harmonic stimuli
DEHS are elastography techniques that use external or internal harmonic stimuli to generate
dynamic responses in biological soft tissues. Here, we focus on cases in which external vibrators
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Figure 3. (a) Schematic of the ARF in biological soft tissues induced by a focused ultrasound beam. (b) The isocontours of the
ARF distribution from a focused linear array in a soft medium; here the acoustic attenuation coefficient is 0.7 dB cm−1 MHz [52].
Reprinted from reference [52] with permission. (Online version in colour.)

or ARFs generated by focused ultrasound beams are used as stimuli. The ARF (figure 3) produced
by the momentum transfer from acoustic waves to the medium is determined by

f = 2αI
cL

, (2.1)

where α (dB/m) and cL (m s−1) denote the acoustic absorption and sound speed in the target
biological soft tissues, respectively, and I (W m−2) is the temporal average intensity of the acoustic
beam [18,52,53]. f (N m−3) is a type of body force, and its direction is along the acoustic wave
propagation direction. Sarvazyan et al. [18] argued that the ARF provides physicians with a
‘virtual finger’ that helps them to touch the internal regions of human bodies.

In DEHS, the steady-state responses of the target soft tissues are typically used to infer their
mechanical properties. DEHS may include sonoelastography [16,19,54–58], shear wave-induced
resonance elastography (SWIRE) [59–61], vibro-acoustography (VA) [62–67], harmonic motion
imaging (HMI) [68–73] and shear wave dispersion ultrasound vibrometry (SDUV) methods
[74–79]. The first two methods use external vibrators, while the last three use the ARFs as
harmonic stimuli. A brief overview of these methods is given below.

(i) Sonoelastography

The sonoelastography imaging method uses an external harmonic vibrator to generate harmonic
vibrations within target soft tissues [5,16,56,58,80]. A schematic of the sonoelastography method
is shown in figure 4a. The steady-state responses (e.g. the map of the vibration amplitude [55,56]
and phase [16]) of the tissues are then measured using the Doppler spectrum of the reflected
signals [82,83]. Accordingly, different inverse approaches are established to obtain the elastogram
of the tissues. Based on the distribution of the vibration amplitude, local lesions, which may be
harder or softer than surrounding tissues, can be distinguished [55,80]. According to the map
of the phase, the phase velocity c of the shear wave can be measured using a phase gradient
algorithm, i.e.

c = ω

�ϕ/�r
, (2.2)

where the phase gradient is calculated by the phase shift �ϕ over a distance �r and ω denotes
the angular frequency. Therefore, the elastic properties of the tissues may be determined [16,58].
The two approaches mentioned above are named vibration amplitude sonoelastography and
vibration-phase gradient sonoelastography, respectively [5]. In general, vibration amplitude
sonoelastography is a qualitative method that mainly provides information about the positions of
local lesions, whereas vibration-phase gradient sonoelastography may be used to quantitatively
measure the elastic and viscous properties of soft tissues. Figure 4b shows the B-mode image and
vibration amplitude map of a porcine liver with a thermal lesion. This figure shows that the lesion
can be clearly distinguished from the vibration amplitude map obtained via sonoelastography.
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Figure 4. (a) Schematic of sonoelastography. (b) The B-mode image (i) and vibration amplitude map (ii) obtained via
sonoelastography of a porcine liver with a thermal lesion [5]. (c) Schematic of crawlingwave imaging. (d) The B-mode image (i)
and a frame showing the crawling waves (ii) in a phantom consisting of a hard layer (left) and soft layer (right) [81]. Reprinted
from references [5] and [81] with permission. (Online version in colour.)

Indeed, using vibration-phase gradient sonoelastography, the in vivo elastic properties of skeletal
muscles [58] and livers [54] of healthy volunteers have been determined.

Later on, an improved method based on the sonoelastography, named crawling wave imaging,
was developed by Wu et al. [57,81]. The key concept is presented in figure 4c. Two vibrators
with frequencies of ω1 and ω2, respectively, are used to generate shear waves: ω1 =ω+ δω/2
and ω2 =ω− δω/2, where δω/ω≈ 0.01 and ω is typically hundreds of hertz. The shear waves
generated by the two vibrators form an interference pattern that propagates with velocity
(δω/2ω)c, where c is the phase velocity of the shear wave at frequency ω in the soft tissue. Because
δω/ω≈ 0.01, the velocity of the travelling interference pattern, which is named the ‘crawling
wave’, is much smaller than c [57,81]. The slow crawling wave can be visualized and tracked
by a conventional ultrasonic scanner modified for sonoelastography [84]. The crawling waves in
a phantom consisting of a hard layer (left part in (i) and (ii)) and soft layer (right part in (i) and (ii))
are shown in figure 4d. Clearly, the wavelength of the crawling wave in the harder region is larger.
Initial ex vivo experiments on livers and prostates and in vivo experiments on skeletal muscles
indicate that crawling wave imaging is a promising method for quantitatively characterizing the
mechanical properties of biological soft tissues [85–88].

(ii) Shear wave-induced resonance elastography

A recently developed method named SWIRE adopts an external vibrator to generate shear waves
with frequencies in the range of 45–205 Hz within soft materials, as shown in figure 5a. The
propagation of the shear waves is monitored by an ultrafast ultrasound scanner. Then, Fourier
transformation is conducted for the time-domain displacement at each point in the region-
of-interest (ROI) to obtain the frequency-domain displacement. The resonance frequencies of the
soft inclusion, which correspond to the low-order eigenmodes of a soft inclusion–hard matrix
system, can be identified from the peak values of the frequency-domain displacement curve
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Figure 5. (a) Schematic of the SWIRE. (b) Typical frequency-domain displacement curves at a point within the soft inclusion,
from which the resonance frequency can be determined from the peaks in the curves. The stationary shear wave displacement
field in the ROI at the resonance frequency is also presented [61]. Reprinted from reference [61] with permission. (Online version
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[59–61]. Additionally, a finite-element (FE) model is used to simulate the experiments and
calculate the theoretical resonance frequencies of soft inclusions with different elastic parameters.
When the theoretical results match the experimental ones, the corresponding elastic parameters
are supposed to be those of the practical soft inclusion. Typical frequency-domain displacement
curves for a point within the soft inclusion are shown in figure 5b, and from these curves, the
resonance frequency may be determined. The stationary shear wave displacement field in the ROI
at the resonance frequency is also presented. Clearly, the resonance response of the soft inclusion
distinguishes itself from the surrounding harder tissues [59,61]. It should be pointed out that the
limitation of SWIRE lies in that it can be only used for the characterization of soft inclusions.

(iii) Vibro-acoustography

In the VA technique [62–64,89], confocal transducers with centre frequencies ω1 and ω2, as shown
in figure 6a, are applied to a target soft material. ω1 and ω2 are on the order of megahertz, whereas
δω=ω2 −ω1 is on the order of kilohertz. Thus, the low-frequency (kHz) harmonic ARF can be
imposed onto a focused point within the target soft tissue [62]. The resulting vibration, which
is determined by the local elastic properties of the tissue at the focused point, will induce an
acoustic emission field. Both the magnitude and phase of the acoustic emission can be detected
by a hydrophone. When the two focused ultrasound beams sweep through the whole object,
images based on either the magnitude or phase of the acoustic emission can be obtained as
shown in figure 6a. These images are the so-called magnitude and phase acoustic spectrograms;
their resolutions are determined by the ultrasound resolution and the point-spread function of
the system, and are roughly hundreds of micrometres [62,63]. Figure 6b shows the amplitude
and phase images of normal and calcified excised human iliac arteries obtained with δω= 6 kHz.
Subsequent studies using this technique have demonstrated its promising use in imaging of
breast [89,90] and prostate tissues [65,67]. In principle, VA is an interesting imaging technique
and has a resolution similar to that of X-ray images when used to measure calcified arteries
(figure 6b). However, interpreting the acoustic spectrogram to quantitatively determine the
mechanical properties of soft tissues is challenging, as recently addressed by Brigham et al. [66].

(iv) Harmonic motion imaging

To identify the local mechanical properties of soft tissues, Konofagou et al. [68–70] modified the
experimental set-up of the VA method and proposed the HMI method. In the HMI method,
an additional ultrasound beam, as shown in figure 6c, is used to monitor the harmonic motion
induced by confocal transducers. The amplitude of the harmonic motion of soft tissues is
determined by both the local elastic properties at the focus and the magnitude of the ARF.
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Figure 6. (a) Schematic of VA. (b) The amplitude and phase acoustic spectrograms of normal and calcified excised human
iliac arteries obtained using the VA method [62]. (c) Schematic of HMI. (d) The HMI displacement variation and corresponding
pathology images of liver tissue for 30 s of sonication [71]. Reprinted from references [62] and [71] with permission. (Online
version in colour.)

Equation (2.1) shows that the ARF relies on the intensity of the acoustic beam and the acoustical
properties of the medium at the focal region; both of them may vary from site to site. Therefore,
the magnitude of the ARF is difficult to control, and quantitatively measuring the local elastic
modulus is challenging. However, the highly localized harmonic ARF provides a useful way
to probe the relative variation of the mechanical properties within biological tissues [69].
Accordingly, the HMI method has been successfully used to monitor HIFU treatment [71,73,91].
Figure 6d shows the HMI displacement variation and corresponding pathology images of liver
tissue for 30 s of sonication.

In a recent study, Vappou et al. [72] developed a two-step inverse approach to quantitatively
probe the viscoelastic properties of a soft solid based on HMI. Briefly, the phase velocity of the
propagating shear wave induced by the harmonic motion at the focus is measured, and then, the
phase shift between the stress (i.e. the harmonic ARF) and the strain (i.e. the monitored harmonic
motion) is measured to determine the loss tangent [92]. Hence, the quantitative viscoelastic
properties of a soft tissue may be determined. Experiments on phantoms have validated the
effectiveness of the inverse approach.

(v) Shear wave dispersion ultrasound vibrometry

The SDUV technique, which was developed by Chen et al. [74,75], uses the harmonic ARF
generated by an amplitude-modulated ultrasound beam to induce low-frequency shear waves
(typically ranging from 300 to 900 Hz) within target soft tissues (figure 7a). The shear waves are
detected at different locations along the propagation direction, and then the phase velocities can
be determined via the phase gradient method. For a viscoelastic solid, the phase velocities depend
on the frequencies of the shear waves, and the relationship between the phase velocities and
the frequencies is the so-called dispersion relation. By controlling the modulation frequency,
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the frequency of the generated shear wave can approximately vary from 300 to 900 Hz and the
dispersion curve can be obtained.

Assuming that the viscoelastic properties of a solid can be described by a Voigt model [92], the
theoretical dispersion relation can be derived. Then, by fitting the experimental dispersion curve
with the theoretical solution, the elasticity and viscosity parameters can be obtained. A typical
experimental dispersion curve for a viscoelastic phantom is shown in figure 7b. The elasticity and
viscosity parameters of the phantom identified using the SDUV method agree well with those
obtained via an independent measurement [74]. Experiments on in vitro porcine muscles and
human prostates have been conducted to validate the effectiveness of this method [76,93].

A common feature of the aforementioned methods is their reliance on the use of harmonic
stimuli to deform soft tissue. By determining the phase velocities of the shear waves, the elastic
or viscous parameters of soft tissues may be quantitatively determined. However, when the
wavelength of the shear wave is comparable to the dimension of the soft tissue, the phase
velocities may depend not only on the physical properties of the soft tissues, but also on the
geometrical parameters of the system. In this case, caution should be taken when inferring the
tissue parameters based on the shear wave velocities. The SWIRE method uses the resonance
frequency information of soft tissues to determine their mechanical properties (e.g. the elastic
properties of an inclusion). However, this method relies on the use of a numerical method (e.g.
the FE method (FEM)) to simulate the experiments and further evaluate the elastic parameters of
an inclusion. This reliance complicates the use of this method in clinics.

(c) Dynamic elastography with transient stimuli
In this section, we discuss the dynamic elastography methods that use transient stimuli to deform
a soft tissue. In these methods, the responses of soft tissues (e.g. the shear wave velocities) are
measured to extract the local elastic properties [17,18,20,94–98]. Note that in this method, the
frame rate of the scanner is usually high enough to acquire the propagation process of the shear
waves. A key merit of DETS is that it is not so sensitive to the BCs. The reflected waves are
separated from the incident wave in the time domain and can be filtered out [17]. Therefore, DETS
enables the quantitative determination of elastic properties. Similar to DEHS, various external and
internal stimuli may be used to generate transient shear waves within soft tissues. In recent years,
DETS, in which the ARF is used to generate a transient shear wave, has attracted considerable
attention [4,7,18,20,95,96,99,100]. This method, which generates remotely transient shear waves
within biological tissues, permits us to probe the mechanical properties of biological tissues and
is relatively suitable for clinical use. Here, we focus on the following methods.
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(i) Transient elastography

Transient elastography (TE), which was proposed by Sandrin and colleagues [17,24,101,102], uses
an external vibrator to introduce a low-frequency transient wave in biological tissues and tracks
the propagation of this transient wave along the axis of the vibrator (figure 8a), with a frame rate
of approximately 4000 Hz. The velocity of the transient wave is measured, and the elastic modulus
of the soft tissue can be quantitatively determined by assuming that the tested material is elastic
and its dimension is larger than the wavelength. The TE technique forms the basis of Fibroscan®

(Fibroscan, Echosens™, France), which is an effective approach for staging liver fibrosis [103,104].
Figure 8b shows the in vivo experimental results obtained from three livers with different degrees
of fibrosis (F0 to F4 denote the degree of fibrosis). Clearly, for a liver with a higher degree of
fibrosis (e.g. F4), the velocity of the transient wave in the ROI is greater.

(ii) Shear wave elasticity imaging and ARF impulse

Sarvazyan et al. [18] proposed the shear wave elasticity imaging (SWEI) method, which uses the
ARF to generate shear waves within soft tissues (figure 9a). The magnitude of the ARF is fairly
small, and, thus, the displacement induced by the acoustic force within the soft biological tissue
is usually on the order of micrometre. However, Sarvazyan et al. [18] demonstrated that using an
additional system (e.g. MRI or optical imaging) facilitates recording the shear waves, as shown
in figure 9b. Subsequently, Nightingale et al. [94] and Palmeri et al. [98] used ultrasound imaging
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Figure 9. (a) Schematic of the SWEI method [18]. (b) The shear waves recorded by the MRI [18]. (c) The shear waves recorded
via the AFRI-based SWEI method, showing the displacements along the lateral direction at different times. Clearly, the
displacements are attenuated along the propagation direction [94]. (d) Normalized displacementmap obtained from (c); based
on the slope of the bright line, the shear wave velocities can be evaluated [94]. Reprinted from references [18] and [94] with
permission.

to track the propagation of shear waves in in vivo and ex vivo experiments. The experimental
set-up used by Nightingale et al. [94] is based on their previously developed ARF impulse
(ARFI) technique, which has been implemented commercially by Siemens Medical Solutions on
their ACUSON S2000TM [21,99]. The ARFI technique imposes the impulse radiation force onto
local regions of the tissues, and information, such as the displacements immediately after the
excitation, the peak displacement, the time to reach the peak displacement and the recovery time
of the deformed region after the force is removed, can be used to determine the local elastic
properties of soft tissues based on dedicated inverse approaches [21,105]. Typically, the map of the
peak displacement, which is assumed to be inversely proportional to the elastic modulus of the
local tissue, is provided to indicate the stiffness distribution within the target soft tissue. Here,
the method in which ultrasound imaging is used to track the shear waves induced by ARFI is
named the AFRI-based SWEI method [35,94,106]. Figure 9c and d shows the displacement induced
by the AFRI and the normalized displacement used to evaluate the velocity of the shear wave,
respectively.

AFRI-based SWEI method [35,94,106] is a promising strategy for quantitatively probing
the local elastic properties of biological soft tissues. Both generating the ARF and monitoring
the propagation of the shear waves can be realized using a single ultrasound probe, unlike
in experimental systems that require an extra vibrator to generate shear waves. Subsequent
studies of ARFI-based SWEI have demonstrated its usefulness for in vivo characterization of the
mechanical properties of various soft biological tissues [35,98,106].



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160841

...................................................

(a)

moving shear
source

mach cone

(b)

(c)

c (m s–1)

9 Z3 Z4

6

3

0

u
0 0.5

(arbitrary scale)
1.0

(d)

Figure 10. (a) The displacement field given by FEA, indicating the formation of the shear-wave Mach cone. In this case, the
moving velocity of the vibration source is three times the velocity of the shear wave in the target material. (b) The propagation
process of the interfered wavefronts within 14 ms after applying the ARF recorded during an experiment on a phantom [20].
(c) The in vivo elastogram obtained via SSI for breast tissues [95]. (d) A photograph of the Aixplorer� ultrasound instrument
(Supersonic Imagine, Aix-en-Provence, France). Reprinted from references [20] and [95] with permission. (Online version in
colour.)

(iii) Supersonic shear imaging

The supersonic shear imaging (SSI) technique uses ultrasound beams focused at different depths
within biological tissues to create a moving ARF [20,95]. The ARF moves at a high speed in the
soft material; thus, the resulting displacement field is confined within a Mach cone, as shown
in figure 10a. In this case, two quasi-plane shear wavefronts interfere along the Mach cone and
propagate in opposite directions. This phenomenon is known as the elastic Cherenkov effect
(ECE) [20,34,107]. In the SSI technique, the propagation of the interfered front is monitored using
an ultrafast imaging technique. The fast acquisition reduces the risk of artefacts resulting from the
movements of patients or investigators. Typical experimental results for a homogeneous phantom
are shown in figure 10b, which illustrates the propagating process of the interfered wavefronts
within 14 ms after imposing the moving ARF. Furthermore, the shear wave velocity is measured
using the time-of-flight algorithm [95,108], and the elastic moduli of the target soft tissues can be
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determined. Figure 10c shows an in vivo elastogram obtained in breast tissues. The central region
of the ROI (the red region), in which Young’s modulus is higher than in the surrounding tissues,
is suspected to be a lesion. The SSI technique has now been commercialized (figure 10d) and used
in clinics. Applications of this technique to detect breast lesions [95,109] and thyroid nodules [110]
and stage liver fibrosis [111] have been explored.

Moreover, determination of the nonlinear elastic properties of soft tissues using the SSI
technique has attracted considerable attention in recent years [8,26–28,33,34]. In these studies,
the tested soft materials are pre-deformed, and then the shear wave velocities in the deformed
materials are measured. According to the relationship between the velocities of shear waves and
the pre-deformation and material parameters, the nonlinear elastic properties can be determined.
The nonlinear elastic properties for human breasts, heel fat pads and skeletal muscles have been
measured in vivo [8,33] in this way. To evaluate nonlinear elastic properties using these methods,
the pre-deformation must be determined with a reasonable accuracy. Li and colleagues [8,27,33]
evaluated the pre-deformation based on B-mode images. In a recent study, Bernal et al. [28]
developed an experimental system in which the pre-deformation is evaluated using the static
elastography method, and the shear wave velocities are measured using the SSI technique. Thus,
the two-dimensional images of the nonlinear elastic properties can be obtained. They argued that
the map of the nonlinear elastic properties might produce better contrast between lesions and
normal soft tissues [28].

(iv) Comb-push ultrasound shear elastography

Song et al. developed the comb-push ultrasound shear elastography (CUSE) method [96,112–114].
In this method, several unfocused (or focused) ultrasound beams as shown in figure 11a, are
used as multi-stimuli to generate shear waves in the whole field-of-view (FOV). Additionally,
the elastic properties in the whole FOV can be identified with one acquisition. Figure 11b shows
the shear waves generated by the CUSE in a homogeneous phantom. Both homogeneous and
inclusion phantom experiments have been performed to validate the effectiveness of this method,
as shown in figure 11c and d. In vivo experiments to detect breast masses and evaluate thyroid
nodules have also been conducted, and the results show that this technique is promising [115,116].
In the subsequent study, Song et al. further developed the time-aligned sequential tracking (TAST)
method, which enables the CUSE being realized on traditional ultrasound scanner [113].

(v) Guided wave elastography

When using the dynamic elastography methods mentioned above, body wave theories are
typically used to relate the shear wave velocities to the material parameters of soft issues.
However, when dynamic elastography methods are used to characterize thin-walled soft tissues,
the waves are guided, and, therefore, the guided wave theory should be used to interpret the
experimental data [100,117–122]. Guided wave elastography (GWE) methods have attracted
increasing interest in recent years, although they have not been commercialized yet. For thin-
walled soft tissues, the wall thickness may be smaller than or comparable to the wavelength of
the elastic waves generated in soft tissues; in this case, the waves are guided within the wall
and are strongly dispersive [123,124]. The dispersion relation is crucial for inferring the material
parameters from the measured experimental responses.

The general steps involved in GWE using the ARF as stimuli may be summarized as follows.

(1) The focused ARF is used to generate the broad-band guided waves in the walls of soft
tissues.

(2) The propagation of the guided shear waves is tracked along the propagation direction.
(3) Two-dimensional Fourier transformation can be applied to analyse the spatio-temporal

imaging of the guided waves and extract the dispersion relation [125].
(4) A guided wave model (e.g. the Lamb wave model [123]) can be used to fit the

experimental dispersion curve and identify the elastic properties of the thin-walled soft
tissues.
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Figure 11. (a) ARFs generated by multi unfocused ultrasound beams. (b) Shear waves generated by CUSE in a homogeneous
phantom. Panels (c) and (d) give the shear wave velocity maps in the whole FOV for a homogeneous phantom and a phantom
with a hard inclusion, respectively [96]. Reprinted from reference [96] with permission. (Online version in colour.)

Typical experimental results of a vessel-mimicking phantom are shown in figure 12, in which
the wave propagates along the axial direction of the vessel. From the dispersion curve given
in figure 12f, the elastic properties of the vessel-mimicking phantom can be determined by
using the guided wave model. Ex vivo and in vivo experiments performed on arteries [117,118],
bladders [126], tendons [120] and heart wall [121] demonstrate that the GWE method is a
promising tool for measuring the elastic properties of thin-walled biological tissues.

The key issue affecting the use of the GWE method is the development of robust inverse
approaches based on the dispersion relations given by appropriate guided wave models. The
dispersion relation is generally sensitive to the BCs, geometrical parameters and pre-stresses in
the soft tissues [100,117–119,127,128], which should be addressed during the development of a
robust inverse method.

3. Mechanics underpinning ultrasound-based elastography
Continuum mechanics plays an essential role in the development, evaluation and improvement
of both static elastography and dynamic elastography methods. From the viewpoint of direct
analysis, continuum mechanics enables the prediction of the responses of a biological soft tissue
under either a static load or a dynamic stimulus. For instance, in static elastography, continuum
mechanics predicts that the softer part will undergo larger deformation than the stiffer part.
Therefore, measuring the deformation of soft tissues using a medical imaging method enables
differentiating the parts with different elastic moduli. In dynamic elastography, understanding
the correlation between the dynamic responses of soft tissues and their mechanical properties
under either harmonic or transient stimuli within the framework of continuum mechanics forms
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Figure 12. (a–c) The axial components of the partical velocities in a vessel-mimicking phantom overlaid on the B-mode image
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phantom are 2 mm and 1 mm, respectively. (d) The solid line along which the spatio-temporal imaging of the shear wave
propagation occurred is shown in (e). (f ) The dispersion curve derived from spatio-temporal imaging via a two-dimensional
Fourier transformation [119]. (Online version in colour.)

the basis of developing data analysis methods to infer the material parameters of soft tissues.
Moreover, inferring the mechanical properties of a biological soft tissue based on the responses of
the soft tissue to an external or internal stimulus represents an inverse problem in elasticity. Unlike
direct problems, many important inverse problems in engineering and science are ill-posed [129].
An inverse problem is ill-posed if one of the following properties is not respected. (1) A solution
to the problem exists (existence). (2) There is, at most, one solution to the problem (uniqueness).
(3) The solution depends continuously on the data (stability). To identify the extent to which the
material parameters of a soft tissue can be effectively inferred using an elastography method,
the properties of the inverse problem (i.e. the existence, uniqueness and stability of the solution)
should be addressed by invoking the mathematical theory of inverse problems. In this section, we
first summarize the governing equations involved in the use of the aforementioned elastography
methods to characterize the mechanical properties of soft tissues. Then, the specific mechanics
models for different types of elastography methods are discussed. Particular attention is paid to
the theoretical solutions that describe the correlations between the experimental responses and
material parameters, and their limitations are emphasized.

(a) Governing equations
(i) Equilibrium equations

The equilibrium equation describing the conservation of momentum [130,131] is given by

d
dt

∫
V
ρ

du
dt

dV =
∮

S
TdS +

∫
V
ρbdV. (3.1)

In the above equation, u denotes the displacement of the elastic solid, t denotes time, ρ denotes
the mass density and b is the body force. T is the surface traction force and is related to the Cauchy
stress σ by

T = σ · n, (3.2)

where n denotes the outer unit normal. Using the divergence theorem, we can obtain the
differential form of equation (3.1)

ρ
d2u
dt2 = ∇ · σ + ρb. (3.3)
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The above equation represents the conservation of linear momentum, and the conservation of
the angular momentum further leads to the symmetry of σ ; i.e. σ = σT [132].

(ii) Kinematic equations

Here, we use Br and B to denote the reference (undeformed) and current (deformed)
configurations, respectively; the points related to Br and B are labelled using vectors X =
XαEα and x = xiei (α, i ∈ {1, 2, 3}, respectively, where the Roman and Greek indices refer to the
configurations B and Br, respectively. The displacement u is u = x − X, and the deformation
gradient tensor F is defined as

F = ∂x
∂X

= ∂u
∂X

+ I. (3.4)

The determinant of F, which is denoted as J, gives the local volume ratio between the deformed
and undeformed configurations. The soft biological tissues considered in this study are typically
assumed to be incompressible in the literature (i.e. J = 1). Furthermore, the Green strain tensor can
be defined as

E = 1
2 (C − I), (3.5)

where C is the right Cauchy–Green deformation tensor

C = FT · F. (3.6)

Inserting equations (3.4) and (3.6) into equation (3.5) gives

E = 1
2 [∇ru + (∇ru)T + (∇ru) · (∇ru)T], (3.7)

where ∇r() stands for the gradient operator in Br.
When the deformation is infinitesimal, the difference between Br and B can be ignored, and

the Green strain tensor can reduces to the small-strain tensor

ε = 1
2 (∇u + u∇). (3.8)

The amplitudes of the shear waves used in the elastography techniques are much smaller
than the feature size of the tissues [4]. Moreover, the static strain used in the static elastography
technique is small, and typically, the axial strain is of the order of 2% [6,15]. However, in many
cases, the target soft tissues may be pre-loaded (say by the ultrasound probe) before the imaging
process, and finite deformations may occur (e.g. the strain may reach 10–20%). Such a pre-load
is necessary and can help to increase the contrast, reduce the decorrelation noise [3,46], and
measure the nonlinear elastic properties of soft biological tissues [8,26–28]. In all of these cases, the
problem can be summarized as ‘small on large’, that is, the small deformation caused by the shear
wave or the static compression is superimposed on the finite deformation caused by the pre-load.
To address the effect of the pre-deformation, the finite elasticity and incremental theory should
be applied [131,133,134].

(iii) Constitutive laws

For a linear elastic and isotropic solid, the linear constitutive law is given by

σ = Cε, (3.9)

where C is the fourth-order elasticity tensor. Inserting equation (3.8) into equation (3.9), we can
obtain the linear constitutive law in component form as

σij = Cijkluk,l, (3.10)

where i, j, k, l ∈ {1, 2, 3}. In the most general case, C has 21 independent components [130]. For an
isotropic elastic solid, the number of independent components of C reduces to 2, and in this case,
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using the kinematic relations given by equation (3.8), equation (3.9) reduces to

σ =μ(∇u + u∇) + λ(∇ · u)I, (3.11)

where λ and μ are the Lamé constants and are related to the elastic modulus E and Poisson ratio
ν through μ= E/[2(1 + ν)] and λ= νE/[(1 + ν)(1−2ν)]. For most soft biological tissues, ν is close
to 0.5, and thus λ�μ and μ≈ E/3.

For the elastography of anisotropic soft tissues, here, we mainly concentrate on the
transversely isotropic (TI) model, which is typically used to model anisotropic biological
tissues, such as skeletal muscles and tendons [135,136]. In the TI model, C has five
independent components, and this number further reduces to three with the constraint of
incompressibility [137]. Usually, the three elastic parameters, namely μT, μL and EL, can be used
as three independent parameters to fully describe the mechanical properties of incompressible
TI materials [34]. In general, μT and μL denote the transverse and longitudinal shear moduli,
respectively, and EL is the longitudinal elastic modulus. Details about the relationships between
μT, μL and EL and the components of C can be found in [34,35].

To describe the nonlinear elastic deformation of soft tissues, constitutive laws are usually
defined using the strain energy function W, which is a scalar function of the strain
invariants [131,138]. Then, the nominal stress S, which is defined as S = JF−1 · σ , can be
determined by

S = ∂W
∂F

− pF−1, (3.12)

where p is a Lagrange multiplier used to ensure the incompressibility constraint [131,133].
For an isotropic solid, the first two principal invariants of C, which are denoted as I1 and I2,

are
I1 = tr( C) , I2 = 1

2 [I2
1 − tr(C2) ]. (3.13)

Because of the constraint of incompressibility, the third invariant I3 = 1, and W = W(I1,I2).
Here, we list several hyperelastic models that have been widely used in the literature.

The neo-Hookean model is a simple and broadly used hyperelastic model, and its strain energy
density function is given by

W = μ0

2
(I1 − 3), (3.14)

whereμ0 is the initial shear modulus. In acoustoelasticity theory, the following fourth-order strain
energy function has been used by many authors [26,139]

W =μ0 tr(E2) + A
3

tr(E3) + D(tr(E2) )2, (3.15)

where A and D are the third- and fourth-order Landau constants, respectively, describing the
nonlinear elastic deformation behaviours of soft materials.

To describe the nonlinear elastic deformation of a soft tissue, Demiray [140] and Fung et al.
[141] proposed a strain energy density function in the following form:

W = μ0

2b
(eb(I1−3) − 1), (3.16)

where the parameter b> 0 is linked to the hardening effect [8,27].
For an anisotropic material, the material characteristic directions in the reference configuration

can be denoted by the unit vectors Aα (α= 1, 2, . . . , N)). These characteristic directions may be
caused by fibre-reinforced effects, such as spatially oriented collagen fibres [138,142]. In this case,
some other invariants must be introduced to define W. Following the definitions used in the
literature and commercial FE software [143], the following invariants, denoted as I4(αα) and I5(αα)
(no sum on α), are defined:

I4(αα) = Aα · C · Aα and I5(αα) = Aα · C2 · Aα . (3.17)

The Holzapfel–Gasser–Ogden model has been widely used to model the nonlinear elastic
deformation behaviour of arterial walls [138,142,143], for which the strain energy density
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function is

W = C10(I1 − 3) + k1

2k2

N∑
α=1

{exp[k2(κ(I1 − 3) + (1 − 3κ)(I4(αα) − 1))2] − 1}, (3.18)

where C10, k1 and k2 are material constants, and κ is defined as

κ = 1
4

∫π
0
ρ(Θ)sin3ΘdΘ , (3.19)

where ρ(Θ) is the orientation density function which characterizes the distribution of the fibres.
In particular, for TI hyperelastic materials (i.e. those in which the fibres run along only one

direction), N = 1. In this case, Murphy [144] noted that W should include both I4(11) and I5(11) to
ensure compatibility between the linear elastic and nonlinear elastic models, and suggested that
W may be written as

W =F (I1, I4(11)) + μT − μL

2
(2I4(11) − I5(11) − 1). (3.20)

Furthermore, the following function, which generalizes the Humphrey–Yin model [145], has
also been suggested [144]

W = μT

2c2
[ec2(I1−3) − 1] + EL + μT − 4μL

2c4
[e

c4(I1/2
4(11)

−1)2

− 1] + μT − μL

2
(2I4(11) − I5(11) − 1), (3.21)

where c2> 0 and c4> 0 are the isotropic and anisotropic strain-hardening parameters,
respectively.

(iv) Incremental theory

Here, we give a brief overview of the incremental deformation theory, which is involved in finite
deformation analysis. The finite deformation from the referenced (undeformed) configuration Br

to the current (deformed) configuration B is described by the deformation gradient tensor F, and
the small incremental deformation from the deformed configuration B to Ḃ is denoted as Ḟ, where
(˙) denotes the small increment from B to Ḃ. As mentioned above, the deformation from B to Ḃ
is assumed to be infinitesimal, and, thus, the two configurations B and Ḃ are very close to each
other.

The incompressible constraint J = det(F) = 1 in the incremental form is

tr(Ḟ0) = 0, (3.22)

where Ḟ0 = Ḟ · F−1 = ∂u̇/∂x, u̇ denotes the incremental displacement.
Inserting S into the equilibrium equation (3.3) and noticing that ∇r · (JF−1) = 0 [131], we obtain

ρ
∂2u
∂t2 = ∇r · S + ρb. (3.23)

The incremental form of equation (3.23) is

ρ
∂2u̇
∂t2 = ∇r · Ṡ, (3.24)

where we assume that ḃ = 0. From equation (3.12), we obtain

Ṡ = A · ·Ḟ − ṗF−1 + pF−1 · Ḟ · F−1, (3.25)

where A = ∂2W/∂F∂F or, in component form, Aαiβj = ∂2W/∂Fiα∂Fjβ . To push Ṡ into configuration
B, we further define the update incremental stress S0 = J−1FṠ. Then, we have

∇r · Ṡ = J−1∇ · S0. (3.26)

Equation (3.25) can be rewritten as

S0 = A0 · ·Ḟ0 − ṗI + pḞ0, (3.27)



19

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160841

...................................................

where
A0piqj = J−1FpαFqβAαiβj. (3.28)

Inserting equation (3.27) into (3.26) and recalling the incompressible constraint given by
tr(Ḟ0) = 0, the updated form of equation (3.24) can be obtained

ρ
∂2u̇
∂t2 = ∇ · (A0 · ·Ḟ0) − ∇ṗ + ∇p · Ḟ0. (3.29)

The above equation together with the incremental incompressible constraint given by equation
(3.22), is the governing equation for the incremental motion.

(b) Mechanics of static elastography
In static elastography, the deformation and strains are assumed to be small, and the linear
elasticity theory is typically used. The specific mechanical model is briefly introduced here based
on the governing equations in §3a. Inserting equation (3.11) into equation (3.3) and ignoring the
body force and inertia force, we obtain

(λ+ μ)∇(∇ · u) + μ∇2u = 0. (3.30)

As shown in figure 13a, here, we take an inclusion buried in surrounding soft tissues as an
example. For simplicity, we consider a plane strain problem (i.e. the materials cannot deform
in the x3-direction) [48]. The Lamé constants of the surrounding tissue and the inclusion are λ(1),
μ(1), and λ(2),μ(2), respectively, where the superscripts ‘(1)’ and ‘(2)’ denote the surrounding tissue
and the inclusion, respectively. When the tissue is slightly compressed relative to the undeformed
configuration Br, the normal displacement at the contact region (−a< x1< a, 2a is the width of
the ultrasound probe) between the probe and the skin is described as u̇2, whereas the tangential
displacement is not constrained. Therefore, the BCs on x2 = 0 are

u(1)
2 = u̇2, σ (1)

12 = 0, (−a< x1 < a)

and σ
(1)
11 = 0, σ (1)

12 = 0, (x1 <−a or a< x1).

⎫⎬
⎭ (3.31)

The boundary ∂Br is assumed to be fixed, i.e.

u(1)
1 = 0, u(1)

2 = 0, on ∂Br. (3.32)

At the interface Γ between the inclusion and the surrounding tissue, the two materials are
assumed to be tied together; therefore, the interfacial conditions (ICs) are

u(1)
1 = u(2)

1 , u(1)
2 = u(2)

2 ,

σ
(1)
12 = σ

(2)
12 , σ (1)

22 = σ
(2)
22 ,

⎫⎬
⎭ , on Γ . (3.33)

With the BCs and the ICs, the direct problem given by equation (3.30) can be solved either
theoretically or numerically, such as via FE. In figure 13a, the map of ε22 within the ROI is
calculated for illustration. The distribution of the axial strain within the biological tissues/organs
provides physicians with useful information regarding the homogeneity of the tissues/organs.
As shown in figure 13a, the strain contrast (i.e. the low compression strain within the elliptical
area) obviously indicates the existence of a hard inclusion. The use of elastography to obtain axial
strain maps has found wide applications in clinical diagnosis [14,42,45,47].

Although the axial strain can reflect the stiffness distribution in soft tissues, quantitatively
measuring the elastic properties of soft tissues using static elastography by solving the inverse
problem remains challenging [6,41,48]. This is because, in static elastography, the strain field in
the soft tissue depends not only on the physical parameters of the system, but also on the BCs
and ICs, which are difficult to accurately determine in most cases. In the literature, methods for
obtaining maps of the relative elastic moduli (e.g. the shear moduli ratio μ(2)/μ(1)) have been
investigated [41,43,44,48,146–148], and readers can refer to the review paper by Doyley for more
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in the experiment of Shiina et al. [39]. Reprinted from reference [39] with permission. (Online version in colour.)

details [6] regarding the challenges and usefulness of determining μ(2)/μ(1). Assuming that the
inclusion is a small cylinder embedded in an infinite matrix and that the composite is compressed,
Kallel et al. [48] obtained

1
P

=
[

(1 − 2ν)
Q + (1 − 2ν)

+ 2
1 + Q(3 − 4ν)

]
, (3.34)

where Q =μ(2)/μ(1), P = ε̄
(1)
22 /ε̄

(2)
22 , and ν is the Poisson ratio of both the inclusion and the matrix.

Note that ε̄(1)
22 and ε̄

(2)
22 denote the axial strain far from the inclusion and the axial strain at the

centre of the cylinder [48], respectively. Using this simple relation, the moduli ratio μ(2)/μ(1) can
be determined from the measured axial strain ratio [147].
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Another important issue affecting the practical use of static elastography is the effect of
nonlinear elasticity. Indeed, in many cases, the pre-compressions were used to improve the image
contrast [3,46]. To illustrate this issue, here, we use static incremental theory to analyse the
deformation of a soft tissue. In this case, the incremental motion, which is used to compress the
pre-deformed tissue and obtain the axial strain image, is quasi-static; i.e. ∂2u̇/∂t2 = 0. We consider
a homogeneous tissue modelled using the Demiray–Fung model [140,141] and pre-compressed
along the x2-direction (figure 13b). The deformation gradient tensor is homogeneous and denoted
as F = diag(λ−1,λ,1), where λ is the stretch ratio along the x2-axis (i.e. the axial direction). In this
case, the incremental stress can be determined using equation (3.27) and is given by

S022 =μ0λeb(λ2+λ−2−2)[2b(λ− λ−3)2 + (1 + 3λ−4)]λ̇, (3.35)

where λ̇ denotes the incremental stretch ratio (figure 13b). When λ= 1 (i.e. there is no pre-
compression), equation (3.35) reduces to S022 = 4μ0λ̇. However, when pre-compression is applied,
it stiffens the tissues. For illustration, the variation of the dimensionless stiffness S022/(4μ0λ̇) with
the hardening parameter b in the Demiray–Fung model [140,141] for different amounts of pre-
compression is plotted in figure 13b. Clearly, the pre-compression results in the overestimation of
the tissues stiffness, especially for larger b. For different biological tissues, such as brain, liver and
breast, b varies over a wide range (e.g. from 0.2 to 4.5) [8,27]. In the static elastography of breast
tissues, whose hardening parameter b is approximately 3.0, the pre-compression strain used in the
measurement may be as high as 10% [149]. According to figure 13b, in this case, Young’s modulus
may be overestimated by approximately 60%. To reduce the risk of misdiagnosis [39,150],
choosing a proper level of pre-compression is crucial, which requires knowledge of the nonlinear
elastic parameters of soft tissues (e.g. the hardening parameter b in the Demiray–Fung model).

To further illustrate the effects of pre-compression on the axial strain image contrast, we
consider a simple multi-layered model, as shown in figure 13c. In this model, a stiff layer is
embedded in two soft layers. The initial shear modulus of the stiff layer is denoted as μ(2)

0 , and

μ
(1)
0 is the initial shear modulus of the soft layers. The hardening parameters of the stiff layer and

softer layers are denoted as b(2) and b(1), respectively. For illustration, we take b(1) = b(2) = 3. When
an overall pre-compression is applied to the composite, the compression strain in the soft layers
is greater than that in the stiff layer because μ(2)

0 >μ
(1)
0 . For example, when μ(2)

0 = 3μ(1)
0 , and the

overall pre-compression is 10%, the compression strain in the softer layers is 12.3%, whereas that
in the stiff layer is 5.5%. According to figure 13b, the hardening effect in the softer layers is more
significant, indicating that the hardening effects within these layers are different. As shown in
figure 13c, the axial strain ratio will drop to 1.7 instead of 3.0 when a pre-compression of 10% is
applied (i.e. the contrast of the axial strain image will decrease). This issue has also been discussed
by Shiina et al. [39] (figure 13d).

(c) Mechanics of dynamic elastography with harmonic stimuli
For elastography methods with harmonic stimuli, the steady responses of the target tissues are
typically used to determine the tissue mechanical properties. Then the inverse problem involved
in this case may be divided into two categories: the modal analysis method and the shear wave
analysis method.

Modal analysis methods include the vibration amplitude sonoelastography and SWIRE [55,61].
Taking a homogeneous medium with a hard/soft inclusion as an example, when the target soft
material is forced to vibrate, a state-steady pattern that relies on the mechanical properties of
the inclusion is formed. For example, a softer inclusion may yield larger local displacement.
Thus, lesions within the tissues can be identified [56]. Moreover, when the frequency of the
excitation reaches the resonance frequency of the soft inclusion, the amplitude of the displacement
within the inclusion will reach the peak value. Therefore, the contrast between the inclusion
and the surrounding tissue also increases. Under the condition that the inclusion is softer than
the surrounding matrix, the uniqueness of the resonance mode can be guaranteed; therefore, the
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resonance frequency can also be used to quantitatively measure the mechanical properties of the
inclusion, assisted by an FE model [61]. One challenge in modal analysis methods is that the
modal shape relies strongly on the BCs [151]. For example, Gao et al. [55] used fixed BCs, whereas
Schmitt et al. [61] used the so-called perfectly matched layer to avoid reflection of the shear
waves [152]. Moreover, quantitatively inferring the material parameters from the experimental
responses via modal analysis methods requires the use of the FEM, which might complicate the
use of this technique by clinicians.

Most other DEHS methods, including vibration-phase gradient sonoelastography, CWI, HMI
and SDUV, use the shear wave analysis method to extract the mechanical properties of soft tissues.
The wave motion equation can be obtained by inserting equation (3.11) into equation (3.3)

μ∇2u + ( λ+ μ) ∇(∇ · u) + ρb = ρ
∂2u
∂t2 . (3.36)

When considering the steady state of plane wave propagation, the body force ρb may be
assumed to be zero.

To consider the dispersion of the shear wave resulting from the viscoelastic deformation of soft
tissues, the viscosity of biological tissue must be considered by assuming that the stress depends
on the derivatives of the strain components and the strain components themselves [153]. Thus, in
equation (3.11), the Lamé constants should be written as

λ= λ1 + λ2
∂()
∂t

and μ=μ1 + μ2
∂()
∂t

, (3.37)

where μ2 and λ2 are the coefficient of shear and the volume viscosity, respectively.
For the plane shear wave considered here, without loss of generality, we suppose that u2 =

u20ei(kx1−ωt) and that other displacement components are zero, where ω and k are the angular
frequency and wavenumber, respectively. Thus, the transverse (shear) wave propagates along the
x1-axis. Inserting u2 and equation (3.37) into equation (3.36), we obtain

k =
√

ρω2

μ1 − iωμ2
, (3.38)

where i denotes the imaginary unit. Because k is a complex number, its real part determines the
phase velocity of the shear wave

c = ω

Re(k)
, (3.39)

whereas its imaginary part determines the attenuation of the wave [153,154]. Inserting equation
(3.38) into equation (3.39), we obtain

c =
√√√√√√

2(μ2
1 + ω2μ2

2)

ρ

(
μ1 +

√
μ2

1 + ω2μ2
2

) . (3.40)

The above equation has been used to describe the dispersion of low-frequency shear waves
in biological tissues [16,29,36,74,75]. By fitting the experimental dispersion curve, both μ1 and μ2
can be obtained.

Based on shear wave elastography methods using harmonic stimuli, in theory, we can
quantitatively measure both the elasticity and viscosity parameters of a homogeneous soft tissue.
However, a drawback of this type of method is that the resolutions of the methods are limited by
the low frequency of the shear waves which corresponds to a relatively large wavelength. When
the typical dimension of a soft tissue (e.g. the size of a lesion) is comparable to or even smaller
than the wavelength, the mechanical properties cannot be simply determined using an analytical
solution such as the one given by equation (3.40).
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(d) Mechanics of dynamic elastography with transient stimuli
The mechanics of DETS is presented in this subsection. Considering that in many soft tissues
are clearly anisotropic and that the effects of pre-stresses may come into play, elastography of
anisotropic soft tissues and pre-deformed soft tissues is also discussed here. It should be pointed
out that the mechanics models discussed here focus on the elastic medium. In this case, the plane
wave assumption can be used to derive the correlation between the velocities of elastic waves
and material parameters. However, if the medium is modelled as a viscoelastic material and the
attenuation of the shear wave is used to infer the viscoelastic parameters, attenuation caused by
both the geometry of the wavefront and the viscosity of the medium should be considered.

(i) Mechanical model for the transient elastography method

The mechanical model underlying the TE method may be simplified as the transient motion of an
elastic half-space induced by a local vibrator imposed on the surface. The theoretical analysis of
this issue dates back to the classical works of Lamb [155] and Pekeris [156]. The key results have
been summarized in detail in the textbook [123] and are briefly presented here.

To consider the transient shear wave induced in TE, we first consider the motion of a half-
space induced by a concentrated force perpendicular to the surface of the half-space, as shown in
figure 14a. The BCs at x3 = 0 are

σ13 = 0, σ23 = 0 and σ33 = F0δ(x1)δ(x2), (3.41)

and the initial conditions (ICs) are

ui = 0 and
∂ui

∂t
= 0, when t< 0. (3.42)

It is convenient to solve equation (3.36) with the above BCs and the ICs in cylindrical
coordinates because this problem is axisymmetric. Achenbach solved this problem by using the
integral transformation method [123]. Once this problem is solved, the displacement field in the
TE induced by a local distribution force can be obtained using the superposition principle [151].
To demonstrate the key mechanics underlying the TE method, FE analysis (FEA) is performed
here, and the results are shown in figure 14.

Figure 14b indicates the displacement field at a typical time revealed by FEA after the push
by the vibrator. Clearly, the shear waves mainly propagate along the direction corresponding to
an angle of approximately 45° relative to the vertical direction. The problem is axisymmetric;
therefore, the displacements of the material points along the axis of symmetry (i.e. their polarized
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directions) are parallel to the loading direction. Because the propagation direction of the wave is
also along the loading direction, the wave along the loading direction appears to be a longitudinal
wave. By tracking the propagation velocity of this wave (i.e. the arrival time of the peak
displacement at different points), as shown in figure 14c, the velocity of the wave is ct instead
of c1, where ct and c1 are the bulk transverse (shear) and bulk longitudinal (compression) wave
velocities, respectively, which are defined as [123]

cT =
√
μ

ρ
and cL =

√
λ+ 2μ
ρ

. (3.43)

Sandrin et al. explained this phenomenon in terms of the diffraction effect [101]. In their
recent work, Catheline & Benech [157] discussed this longitudinal shear wave in detail [157]. The
longitudinal shear wave is shown to quickly decay when the wave propagates away; however, it
can be monitored and tracked in TE because of its long wavelength in soft tissues.

By tracking the propagation of the longitudinal shear wave along the loading direction, the
shear velocity cT can be measured. Then, according to equation (3.43), the elastic modulus of the
incompressible soft tissue can be determined as

E ≈ 3μ= 3ρc2
T, (3.44)

assuming that the mass density of the soft biological tissue is known. Equation (3.44) is used
in most transient shear wave elastography methods (e.g. TE, ARFI-based SWEI, SSI and CUSE)
although these methods involve different mechanical models.

(ii) Mechanical model involved in ARFI-based shear wave elasticity imaging

Here, we consider the initial value problem involved in the ARFI-based SWEI method, which
uses the focused ARF to induce shear waves in soft tissues. This issue may be modelled as the
action of the focused ARF at an internal point in an infinite solid. The body force is determined
by equation (2.1) and is given by

f = δ(x)δ(t)f̂. (3.45)

Note that the amplitude of f in equation (3.45) can be arbitrary. Without loss of generality, f̂ is
parallel to the xm-axis (m = 1,2,3); therefore, f̂ = δimei, where δim is the Kronecker delta. Using the
f given by equation (3.45) to replace ρb in equation (3.36), we can obtain the equilibrium equation
in the following component form:

μui,jj + ( λ+ μ) uj,ij + δ(x)δ(t)δim = ρ
∂2ui

∂t2 . (3.46)

The above equation and the initial condition given by equation (3.42) form the initial value
problem involved in SWEI. The solution to this problem is referred to as solution of the Green
function [123,158,159], and that can be tracked with ultrasound elastography in soft tissues
reads [34]

uIso
im (x, t) ≈ 1

4πρc2
T

(δim − γiγm)
1
r
δ

(
t − r

cT

)
, (3.47)

where r = |x|, γi = xi/r = ∂r/∂xi. The superscript of uIso
im (x, t) indicates that the solid is isotropic,

and the subscript m indicates that f is applied along the xm-axis. Equation (3.47) indicates that the
shear wave has a spherical wavefront in space. The propagation velocity of the wavefront is ct.

Note that according to the elastodynamic representation theorem [123], for any body force
f(x,t) which may vary with time and coordinates, the solution to equation (3.36) can be obtained
from the Green function solution by

ui(x, t) =
∫∫

fm(ξ , τ )uIso
im (x − ξ , t − τ ) dτ dξ . (3.48)

For example, various ultrasound push beams have been applied to induce shear waves within
soft tissues in CUSE [96,112]. In this case, the distribution of the ARF may be diverse, and the
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resulting displacement field can be determined by solving equation (3.48) when the distribution
of the body force is given.

(iii) Mechanics underlying supersonic shear imaging

In the SSI technique, the ultrasound beams are successively focused at different depths within the
soft tissue (i.e. the ARF moves with a given velocity). In this case, the body force induced by the
ultrasound beam can be simplified as

f = δ(x − vftf̂)f̂, (3.49)

where vf is the moving velocity of the focused ARF. It should be noted that the ARF is discrete in a
practical use and applied at different points instead of a continuous function as given in equation
(3.49); however, such a simplification indeed can retain the physical nature of the problem and
brings great ease for theoretical and computational modelling. Studying the elastodynamic fields
produced by moving loads is a classical issue in mechanics, and many relevant works exist in the
literature [160–162]. Here, the moving direction of the force is along f̂. Without loss of generality,
let f̂ = (0, 0, 1), which indicates that the force is moving along x3.

We consider the case in which the moving velocity vf is substantially greater than the velocity
of the shear wave in the soft tissue. In practical applications of the SSI technique, the velocity of the
moving ARF is essentially the velocity of the ultrasound wave, which is hundreds of times larger
than the shear wave velocity in soft tissues. Inserting equations (3.49) and (3.47) into equation
(3.48), the resulting displacement field induced by the moving force has been obtained as [34,107]

ui(x, t) = 1√
1 − M2

Isosin2Θ(t)
FIso(x, t, τ Iso

1 , τ Iso
2 ), (3.50)

where MIso = vf/ct is defined as the Mach number,

τ Iso
1,2 = t + R(t)

cT(MIso
2 − 1)

(
MIso cosΘ(t) ±

√
1 − M2

Isosin2Θ(t)
)

, (3.51)

FIso(x, t, τ Iso
1 , τ Iso

2 ) =
2∑

k=1

1
4πμR(t)

(
δi3 − ∂R(τ Iso

k )
∂xi

∂R(τ Iso
k )

∂x3

)
(3.52)

and R(t) = x − vfta,Θ(t) = arccos
(

R · a
R

)
. (3.53)

The solution given by equation (3.50) forms the basis of the SSI technique [20,107]. According to
equation (3.50), MIso> 1 confines the displacement within a circular cone (i.e. |sinΘ(t)|< 1/MIso),
indicating the formation of the shear-wave Mach cones. This phenomenon is the so-called
ECE [107]. The Mach cone of the elastic wave within the elastic solid can also be induced by
other stimuli, such as the movement of a dislocation. In this case, the formation of shear-wave
Mach cones is also referred to as the elastodynamic Tamm problem, which has recently been
studied by Lazar & Pellegrini [162]. In the SSI technique, the Mach number is large, and the angle
of the Mach cone is very small. Therefore, quasi-plane waves form and the interfered wavefronts
basically propagate in opposite directions. The moving velocity of interfered wavefronts can be
measured to further determine the local elastic properties of soft tissues.

(iv) Mechanics of guided wave elastography

The aforementioned methods (i.e. the TE, ARFI-based SWEI and SSI methods) use wave theories
in infinite media to interpret experimental data and infer the material parameters by assuming
that the wavelength of the shear wave is much smaller than the dimension of bulk tissues such
as liver and breast. However, elastic waves in a thin-walled structure with thickness smaller than
or comparable to the wavelength are guided. The guided waves are strongly dispersive as shown
in figure 15a, and in this case, guided wave theory should be used. A typical guided wave is
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the so-called Lamb wave [123,124] (figure 15a). According to Lamb wave theory, only the wave
modes of which the angular frequency ω and the wavenumber k satisfy the following dispersion
equation:

(k2 − q2)2 tan
(

p
h
2

)
+ 4k2pq tan

(
q

h
2

)
= 0, for antisymmetric mode

and (k2 − q2)2 cot
(

p
h
2

)
+ 4k2pq cot

(
q

h
2

)
= 0, for symmetric mode

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.54)

can propagate within the elastic plate. In equation (3.54), p =
√

k2
l − k2, and q =

√
k2

t − k2, where
k1 =ω/c1, and kt =ω/ct. h denotes the thickness of the plate. Equation (3.54) can be solved
numerically. As shown in figure 15b, both the antisymmetric and symmetric modes, denoted as An

and Sn (n = 0, 1, 2, . . . ), respectively, have countless branches. Guided waves such as Lamb waves
have been widely used in non-destructive testing [163,164] and the mechanical characterization
of engineering materials [165,166]. Unlike traditional engineering materials, elastic waves in
soft materials (e.g. biological soft tissues) have much lower frequencies (typically no more than
2000 Hz). Therefore, only the dispersion curve of the zero-order antisymmetric mode (i.e. the A0
mode) is adopted in GWE methods.

GWE has promising applications in the characterization of arterial stiffness, which may
potentially be used to diagnose some cardiovascular diseases [167,168]. Following previous
studies [117,118], the arterial wall has been considered to be an elastic hollow cylinder surrounded
by water both inside and outside. As shown in figure 15c, the inner radius and wall thickness of
the hollow cylinder are R and h, respectively. Furthermore, the curvature of the hollow cylinder is
ignored. This assumption will be discussed in detail later and is justified only when the frequency
is sufficiently high. Then, the model can be simplified as an elastic plate immersed in fluid as
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shown in figure 15c. In this case, the dispersion equation is [169]

(k2 − q2)2 tan
(

p
h
2

)
+ 4k2pq tan

(
q

h
2

)
+ i

ρFpω4

ρrc4
t

= 0, for antisymmetric mode,

and (k2 − q2)2 cot
(

p
h
2

)
+ 4k2pq cot

(
q

h
2

)
− i

ρFpω4

ρrc4
t

= 0, for symmetric mode,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.55)

where r =
√
ω2/c2

p − k2, cp = √
κ/ρF is the velocity of pressure wave in the fluid, and κ and ρF are

the bulk modulus and mass density of the fluid, respectively. Directly comparing equations (3.54)
and (3.55) shows that the effect of the surrounding fluid appears in the third term of equation
(3.55). When ρF is close to ρ, the surrounding fluid will significantly affect the dispersion relation,
as shown in figure 15d. In practice, the fluid is considered to be water, for which κ = 2.2 GPa and
ρF = 1000 kg m–3. The mass density of soft biological tissues is usually very close to that of water
and typically assumed to be 1000 kg m−3. For a plate immersed in water, the phase velocities of
the A0 mode are significantly smaller than those of a plate in vacuum within the frequency range
of 0–2000 Hz. Equation (3.55) can be used to fit the experimental dispersion curve to infer the
elastic modulus of the arterial wall.

Recently, vessel-mimicking phantom experiments have revealed that only the experimental
dispersion curve in the high-frequency range can be well approximated by equation
(3.55) [117,118]. Therefore, Maksuti et al. [170] adopted a frequency of 500 Hz as a critical
frequency and used only the data beyond this critical frequency in the curve fitting. As mentioned
above, this deviation stems from the assumption that the effect of curvature on the dispersion
relation is negligible. In fact, this assumption is only valid when the frequency is sufficiently
high [171]. The critical frequency, which is denoted as f c, and beyond which the Lamb wave
model given by equation (3.55) works in principle, depends on both R/h and the elastic modulus
of the cylinder. In a recent study, using dimensional analysis and systematic FE simulations,
the explicit expression of the critical frequency was obtained [119]

fc = 0.304
1
h

√
E
3ρ

(
R
h

)−0.934
. (3.56)

When the frequency exceeds f c, the relative error between the phase velocity given by equation
(3.55) and that of the guided axial wave is less than 5%. Furthermore, an inverse approach based
on equations (3.56) and (3.55) has been proposed to identify both the elastic modulus of an
artery and the critical frequency from the experimental dispersion curve [119]. Typical results
for vessel-mimicking phantoms with different elastic moduli are presented in figure 16.

(v) Shear wave elastography of anisotropic soft tissues

Many soft tissues such as skeletal muscles and tendons are anisotropic and may be described
using the TI model given by equation (3.10). In the following discussion, the fibre direction is
always along the x3-axis.

In anisotropic soft media, the velocities of shear waves are direction-dependent. The
displacement caused by the plane wave is assumed to be u = Uei(k·x−ωt), where k = kk̂ is the
wavevector, k = |k| denotes the wavenumber, and ω represents the angular frequency. The phase
velocity c is defined as c =ω/k, and U = Uiei, where ei denotes the base vector. Inserting u into
equation (3.10) to obtain the stress components, the equilibrium equation (3.3) can be written as

(k2Cijklk̂jk̂l − ρω2δik)Uk = 0. (3.57)

According to equation (3.57), the existence of a non-zero U requires

det(k2Cijklk̂jk̂l − ρω2δik) = 0. (3.58)
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From equation (3.58) and using the relationship between Cijkl and μT, μL and EL, the two bulk
shear wave speeds can be obtained from

ρc2
SH =μT(k̂2

1 + k̂2
2) + μLk̂2

3

and ρc2
qSV =μL + (EL + μT − 4μL)(1 − k̂2

3)k̂2
3.

⎫⎬
⎭ (3.59)

The subscripts ‘SH’ and ‘qSV’ denote the horizontally and quasi-vertically polarized shear
waves, respectively [172]. Here, we define C = (EL +μT−4μL)/2. Note C = 0 denotes a special
type of TI material; in this case, the phase velocity of the ‘qSV’ mode becomes isotropic, as shown
in figure 17. Besides, the group velocity, which is defined as cg = ∂ω/∂k (i.e. the velocity of a wave
packet) can be obtained according to equation (3.58).

When measuring the arrival time of the shear waves generated by a concentrated force, the
group velocity can be determined from the travelling distance of the wave divided by the arrival
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time [154,173]. In SWEI, the group velocities can be measured in this way, and the mechanical
parameters can be determined [35,106]. Figure 18 shows the shear waves in TI media generated
by a simulated ARF [35]. The force is applied along the Z-direction, which has an angle of 45°
with the x3-axis direction (fibre direction); therefore, both shear wave modes are induced. The
wavefront propagates away from the load point at the group velocity. Clearly, for materials with
different values of C, the shapes of wavefronts for the qSV mode are different, as predicted by
equation (3.59). Because the qSV mode, which is related to EL, can be induced in this way, Rouze
et al. [35] suggest using the ARFI-based SWEI with the experimental set-up described by their
FEA to fully characterize the elastic parameters of a TI material.

More conveniently, if the phase velocities can be measured, then equation (3.59) can be used
to determine the mechanical properties. The phase velocities are easy to measure for the plane
waves. Because of the ECE in the isotropic elastic medium, quasi-plane waves can be generated
within the soft tissue by the ARF moving at a high speed. Addressing the ECE in the anisotropic
elastic media is very important for the determination of the anisotropic elastic parameters of
soft tissues. Li et al. [34] recently studied and revealed the ECE in TI medium through both
theoretical analysis and numerical simulations. Figure 19a–f shows the displacement field when
the moving direction of the ARF has a 45° angle with the fibre direction. According to equation
(3.59), the phase velocity of the SH mode is only dependent on the two shear moduli μT and
μL [36,174]. However, the phase velocity qSV mode is highly dependent on parameter C (or EL).
For illustrative purposes, the normalized displacements of the qSV mode at two points located on
the X-axis (denoted as P1 and P2 respectively) are plotted in figure 19g–i. The shear wave velocity
can be determined from the arrival time of the peak displacement. In this case, the phase velocities

of the qSV mode with wavevector k̂ =
(√

2/2, 0,
√

2/2
)

can be determined [34]. Then, according
to equation (3.59), we have

EL = 4ρc2
qSV,45◦ − μT, (3.60)

where cqSV,45◦ denotes the velocity of the interfered wavefronts measured from figure 19g–i.

To fully determine the mechanical properties of the TI medium, the experimental set-up shown
in figure 20 has been proposed [33]. When the ultrasound probe is placed as shown in figure 20,
the qSV mode shear wave can be generated and used to measure EL if μT has been determined.
Such an experimental protocol can be easily realized using the SSI technique, and the three
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independent elastic parameters of skeletal muscles can be measured in vivo. Experiments have
been conducted on the biceps brachii and gastrocnemius muscles of volunteers [33], and the shear
moduli determined are in good agreement with previously reported data [36,47,175–177].

(vi) Shear wave elastography of pre-stressed soft tissues

In most ultrasound elastography measurements, the soft tissue it is assumed to be stress free.
However, in practical measurements, the contact between the probe and soft tissues may lead to
finite deformation. Moreover, analysing the propagation of the shear wave in a pre-stressed soft
tissue enables the determination of the tissue’s hyperelastic parameters. The effect of pre-stress
on wave propagation has been investigated previously [26,178–181]. Here, we use the incremental
dynamic theory described in §3a to address the effect of pre-stress on the propagation velocities
of shear waves in soft tissues [8,34,131,133,134,182].

The deformation gradient (i.e. F) induced by the pre-deformation is assumed to be
homogeneous in the ROIs. In this case, equation (3.29) can be simplified as

A0piqjuj,pq − ṗ,i − ρ
∂2u̇i

∂t2 = 0. (3.61)

According to equation (3.22), tr(∂u̇/∂x) = u̇i,i = 0 by the incompressibility constraint.
Furthermore, the deformation gradient can be written as F = diag(λ1,λ2,λ3), where λi (i = 1,2,3)
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denotes the stretch ratio along the xi-axis (figure 21), and λ1λ2λ3 = 1 because of the
incompressibility constraint. Under these conditions, the fourth-order tensor A0piqj can be
determined according to equation (3.28)

First, we consider isotropic hyperelastic materials. For a plane wave propagating within the
plane of x1 − x2, i.e. u̇3 = 0, and we can define, u̇1 =ψ,2, and u̇2 = −ψ,1. ψ is a scalar function of
(x1,x2,t) and is assumed in the form

ψ =ψ0 exp[ik(x1 cos θ + x2 sin θ − ct)], (3.62)

where k and c denote the wavenumber and phase velocity, respectively, and θ denotes the wave
propagation direction, as shown in figure 21. Inserting the incremental displacement components
into equation (3.61) and eliminating ṗ, we can obtain the explicit expression for the phase
velocity [133,139]

(C1 + C3 − 2C2)cos4θ + 2(C2 − C3)cos2θ + C3 = ρc2, (3.63)

where
C1 =A01212, 2C2 =A01111 + A02222 − 2A01122 − 2A01221, C3 =A02121. (3.64)
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According to equation (3.63), the propagation velocity is direction-dependent and depends
on the choice of constitutive laws. For example, when the Demiray–Fung model is adopted and
θ = 90°, we obtain

ρc2 =μ0λ
2
2eb(λ2

1+λ2
2+λ2

3−3). (3.65)

In practice, we may compress the soft tissue along the x1-axis, i.e. λ1 = λ is prescribed. Then
we define λ2 = λ−ξ , where the parameter ξ is determined by the deformation state within the soft
solid; for example, ξ = 0.5 indicates uniaxial compression, whereas ξ = 1 represents the plane-
stain state. In practical measurements, ξ can be measured [8,27]. Using those notations, equation
(3.65) can be written as

ρc2 =μ0λ
−2ξeb(λ2+λ−2ξ+λ−2(1−ξ )−3). (3.66)

Figure 22a shows the dependence of the wave speed on parameter ξ for different λ when
b = 5. Clearly, when 0.1 ≤ ξ ≤ 0.8, the effect of ξ on the wave velocity is not significant. Equation
(3.66) provides the relationship between the pre-deformation and the shear wave velocities, from
which the effect of pre-deformation on the wave propagation can be quantitatively evaluated.
Moreover, based on equation (3.66), Jiang et al. established an inverse approach and measured
the hardening parameter b of human breast and human heel fat pad tissues in vivo and porcine
brains ex vivo [8,27]. Figure 22b,c shows the shear wave velocities measured before and after
compression. By fitting the shear wave velocities at different compression strains with equation
(3.66), the hardening parameter b can be obtained.

Effects of the pre-stress on wave propagation have been studied [26–28,182] for isotropic
hyperelastic materials described with the constitutive law given by equation (3.15). The following
analytical solution was derived:

ρc2 =μ0 − A
12μ0

σ11, (3.67)



33

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160841

...................................................

B-mode
kPa

25

*

0

kPa
25

0

kPa
0

–2000

kPa
25

*

0

kPa
25

0

kPa
0

–2000

kPa
25

*

0

kPa
25

0

kPa
0

–2000

su
bj

ec
t 1

pa
tie

nt
 1

pa
tie

nt
 6

shear modulus (m)

(e) ( f )

(b)(a) (c) nonlinear shear modulus (mNL)

(d )

(g) (h) (i)

Figure 23. Experimental results obtained for three patients: a healthy volunteer, a patient with a tumour and a patient with
a benign lesion. (a,d,g) B-mode images, (b,e,h) shear moduli and (c,f,i) nonlinear parameter A values [28]. Reprinted from
reference [28] with permission. (Online version in colour.)

assuming that the soft material is loaded with uniaxial pre-compression stress σ 11 along x1-axis
and that the shear wave is propagating along the x2-axis. Using equation (3.67), parameter A has
been measured for agar-gelatine and polyvinyl alcohol cryogel phantoms. In their recent work,
Bernal et al. [28] further adopted equation (3.67) to establish an inverse approach to measure
A. In their approach, the strain field is measured using static elastography, and, thus, the stress
field can be determined. By gradually increasing the compression and measuring the incremental
strain and shear wave velocities, the relationship between the stress and the shear wave velocity
can be obtained and used to determine A according to equation (3.67). The initial experiments,
as shown in figure 23, have demonstrated the potential of this method for enhancing the contrast
between a lesion and its surrounding tissues [28].

In addition to isotropic hyperelastic materials, the effects of pre-stress on shear wave
propagation in TI hyperelastic materials have also been studied [33,34,183–185]. For the
constitutive law given by equation (3.21), the phase velocity of the SH mode shear wave can
be obtained as

ρc2 =μTec2(I1−3)λ2
1sin2θ +

[
μTec2(I1−3) + 2(μT − μL) + (EL + μT − 4μL)ec4(λ3−1)2

(
1 − 1

λ3

)

− (μT − μL)(2λ2
3 + λ2

2)
]
λ2

3cos2θ , (3.68)

where I1 is defined in equation (3.13). When no pre-deformation exists (i.e. λ1 = λ2 = λ3 = 1),
equation (3.68) reduces to equation (3.59). The hardening parameter c2 can be measured by
using the inverse method proposed in [34]. The experiments conducted in [33] determined
the hardening parameter c2 of beef muscles ex vivo (figure 24).
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4. Discussion
This paper provides an overview of both static elastography and dynamic elastography with
focus on the mechanics principles underlying these methods. Static elastography is relatively easy
to realize and can qualitatively differentiate between soft tissues with different stiffnesses because
soft tissues with different elastic moduli will undergo different amounts of deformation under
external or internal stimuli. In addition to the compression strain along the loading direction,
other deformation information may be acquired in static elastography. For instance, the interfacial
bonding conditions between a benign tumour and the surrounding soft tissue and those between
a malignant tumour and surrounding soft tissue are usually different. Therefore, by tracking the
deformation at the interface (e.g. the shear strains at the interface), it is possible to differentiate
a malignant tumour from a benign one using the static elastography method [186], as illustrated
in figure 25. Here, the challenge is to accurately evaluate shear strains at the interface, which
deserves further efforts.

In DEHS, a vibration source with a given frequency can be used to stimulate the soft tissue.
Low-frequency (typically 100 Hz) shear waves generated in the soft tissue in the steady state
are relatively easy to track using ultrasound imaging methods. However, a low-frequency
shear wave corresponds to a relatively large wavelength. When the typical dimension of a
soft tissue (e.g. the size of a lesion or inclusion) is comparable to or even smaller than the
wavelength, its mechanical properties cannot be simply determined using an analytical solution
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such as equation (3.40). By contrast, shear waves generated in DETS are generally broad-
band, and include more information that can be used to infer the material parameters. The
centre frequency is typically 1000 Hz; therefore, the DETS in theory has better resolution than
DEHS. In this sense, the DETS methods may be more suitable for evaluating the mechanical
properties of soft tissues with finite dimensions. For instance, for a multilayer system, e.g.
human skin [187], when a harmonic vibrator is used to induce shear waves in the dermis layer,
the shear wave velocity depends not only on the material parameters of the dermis layer, but
also on the mechanical properties of the adjacent layers and the geometrical parameters of the
composites [187]. However, FEA shows that when a DETS method (e.g. the SSI technique) is used
in this case, the velocity of the interfered wavefronts mainly depends on the mechanical properties
of the dermis layer, and the effects of other parameters in the system are rather weak [187].
However, it should be noted that the viscosity of soft biological tissues may strongly attenuate
the high-frequency shear waves and can significantly reduce the signal-to-noise ratio during the
propagation of transient waves and affects the accuracy of wave velocities measured in a DETS
method.

Although previous studies have demonstrated the usefulness of dynamic elastography
methods for practical measurements, quantitatively measuring tissue mechanical properties
using these methods remains challenging in many cases. Here, we take the GWE of arteries
as an example. Real arterial walls have layered structures and GWE methods described in the
literature are only able to determine the effective elastic modulus of the arterial wall [122].
Second, real artery tissues are anisotropic and contain distributed collagen fibres [142]. Although
recent studies have demonstrated that determining the anisotropic and hyperelastic properties
of a bulk anisotropic soft tissue is possible [33,34], assessing the anisotropic parameters of
arterial walls using the shear wave elastography method is by no means trivial because the
wave in the arterial wall is guided. Third, the modelled arterial wall is usually assumed to be
a time-independent material, whereas a real artery may exhibit viscoelastic deformation. For
viscoelastic soft tissues, the wavenumber k is no longer a real number but could be a complex
number, reflecting the dissipation of the wave. Chan & Cawley [188] studied the dispersion
curve of a viscoelastic plate. Their results showed that the lowest mode (i.e. the mode adopted
in the inverse analysis) was essentially unaffected by the viscosity of the soft media. They also
demonstrated that the high-order modes suffered from viscoelastic effects. Therefore, caution
should be taken when adopting these higher-order modes. Fourth, in the literature, the outer
region of the arterial wall was simplified to a non-viscous fluid to derive the theoretical solution
in recent GWE methods. This assumption is only reasonable in some cases, such as carotid
arteries, in which the elastic moduli of the arterial walls can be much greater than those of
the perivascular tissues. Fifth, the effects of blood pressure in in vivo experiments cannot be
ignored. In this case, a robust GWE method should consider guided waves in a pre-stressed
soft tube.

Finally, note that identifying the material parameters using either static elastography or
dynamic elastography represents an inverse problem. As mentioned above, an inverse problem
may suffer from the issues of solution existence, uniqueness and stability. Among these issues, the
stability of the solution is usually the key because the lack of stability will make the solution of
an inverse problem have nothing to do with the real solution. Recently, Jiang et al. [8] introduced
the concept of the condition number in analysing the stability of nonlinear elastic parameter A
determined using the SSI technique via acoustoelasticity theory. For the strain energy density
function given by equation (3.15), the following condition number in closed-form was derived in
their study

Ψ = c
A
�A
�c

= 2 + 2Γ0μ0

Γ1A
, (4.1)

where Γ0 = (λ2−2ξ + λ−4ξ − λ−2ξ ), Γ1 = (−5λ−2ξ /4 + λ−2/4 + (λ2−2ξ + λ−4ξ )/2), and �c denotes
the measurement error of the shear wave velocity c in experiments, which leads to an error �A
in the identified A. Here λ and ξ are parameters describing the deformation of a soft tissue in
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the ROI [8]. Accordingly, the condition number measures the sensitivity of the identified solution
of an inverse problem to data errors. The larger the condition number is, the more sensitive the
identified solution to data errors will be. For example, when the condition number is 5, an error of
5% in the input data will lead to an error of 25% in the identified solution. Equation (4.1) reveals
that sufficient compression (e.g. λ< 0.75) should be imposed on the soft tissue to decrease the
condition number.

Therefore, to develop a robust elastography method for characterizing the mechanical
properties of soft tissues or other soft materials, the existence, unique and stability issues of the
solution to the inverse problem must be addressed. However, this issue has not received sufficient
attention in the literature regarding ultrasound elastography.

5. Concluding remarks
Ultrasound-based elastography has emerged as a highly useful technique for characterizing
the mechanical properties of soft materials, including living soft tissues, because of the
extensive experimental and theoretical research performed in recent years, which has improved
understanding of this technique and its applications, particularly in clinics. From the viewpoint of
continuum mechanics, recent findings have contributed to shaping a set of unanswered questions
that require investigations in future studies of static and dynamic elastography methods.
Researchers, particularly those in the mechanics community, deserve to pay attention to these
important issues. Some of these questions include the following: (i) How can we improve the
current elastography methods based on the knowledge from the field of continuum mechanics to
quantitatively determine the mechanical properties of soft tissues in critical cases, such as when
the soft tissues are anisotropic and/or have finite dimensions (e.g. tumours) that significantly
influence the propagation of shear waves? (ii) What opportunities exist for developing robust
GWE methods to characterize the mechanical properties of thin-walled soft tissues, including
arteries and bladder, in vivo based on the knowledge of guided wave in pre-stressed thin-walled
soft solids? (iii) Diseases may alter the structures and functions of soft tissues/organs and change
their mechanical properties. How can we model the diseased tissues/organs and determine
which mechanical parameters (e.g. elastic, hyperelastic, viscoelastic and poroelastic parameters)
are sensitive to the diseases, and further inspire the development of new elastography techniques?
(iv) What new fundamental science can be explored (e.g. the propagation of elastic waves induced
by a moving vibration source in pre-stressed inhomogeneous living soft tissues across different
length scales)? (v) What new techniques are becoming available that could expand applications
of ultrasound elastography and provide new opportunities to characterize diverse soft materials
far beyond biological soft tissues?

Although the practical use of ultrasound elastography in quantitatively measurements of
material parameters still faces challenges in many cases, based on the advances made in
understanding this promising technique in recent years and the aforementioned opportunities
for further study, one can reasonably predict that this technique has a bright future in a variety
of fields, including not only medicine, but also biology, materials science, tissue engineering and
soft matter physics. Note that this review gives emphasis to the mechanics theories involved
in ultrasound elastography. Although understanding the responses of soft materials to various
internal or external stimuli is by no means trivial, the knowledge obtained from continuum
mechanics indeed helps yield some analytical solutions that can be used to interpret the
experimental data.

Finally, we conclude this review with an old aphorism: ‘Simplicity is beauty’. Aleksandr
Solzhenitsyn said, in his 1970 Nobel Prize speech, that ‘Beauty will save the world’. By
pursuing fundamental solutions in simple forms that reveal the correlation between experimental
responses and material parameters within the framework of continuum mechanics, we are
not merely pursuing ‘beauty’ but also providing fundamental solutions that contribute to
understanding ultrasound elastography methods and facilitate their practical use, particularly
in medicine.
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