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Diabetic foot ulcers (DFUs), the most serious complication of diabetes mellitus, can induce high morbidity, the need to amputate
lower extremities, and even death. Although many adjunctive strategies have been applied for the treatment of DFUs, the low
treatment efficiency, potential side effects, and high cost are still huge challenges. Recently, nanomaterial-based drug delivery
systems (NDDSs) have achieved targeted drug delivery and controlled drug release, offering great promises in various
therapeutics for diverse disorders. Additionally, the radial extracorporeal shock wave (rESW) has been shown to function as a
robust trigger source for the NDDS to release its contents, as the rESW harbors a potent capability in generating pressure waves
and in creating the cavitation effect. Here, we explored the performance of oxygen-loaded nanoperfluorocarbon (Nano-PFC)
combined with the rESW as a treatment for DFUs. Prior to in vivo assessment, we first demonstrated the high oxygen affinity
in vitro and great biocompatibility of Nano-PFC. Moreover, the rESW-responsive oxygen release behavior from oxygen-
saturated Nano-PFC was also successfully verified in vitro and in vivo. Importantly, the wound healing of DFUs was
significantly accelerated due to improved blood microcirculation, which was a result of rESW therapy (rESWT), and the
targeted release of oxygen into the wound from oxygen-loaded Nano-PFC, which was triggered by the rESW. Collectively, the
oxygen-saturated Nano-PFC and rESW provide a completely new approach to treat DFUs, and this study highlights the
advantages of combining nanotechnology with rESW in therapeutics.

1. Introduction

Diabetic foot ulcers (DFUs), the most common complication
of diabetes mellitus, are caused by peripheral neuropathy,
small vessel occlusion, and secondary infection or trauma,
and they may lead to lower extremity amputation [1-4].
Many adjunctive strategies have been developed for the treat-
ment of DFUs in the clinical practice, including negative
pressure wound therapy, ultrasound, recombinant human
platelet-derived growth factor-BB, and acellular matrix

products [5-7]. However, low efliciency, potential side
effects, and high cost have limited their wide application.
Hypoxia is a key inhibiting factor for wound healing of
DFUs, which can block fibroblast proliferation, collagen pro-
duction, and capillary angiogenesis and enhance the risk of
infection [8-10]. Hyperbaric oxygen therapy (HBOT) is the
most commonly utilized adjunctive therapy for improving
wound tissue hypoxia in DFU treatment [11-13], but this
method has not achieved universal success in many studies
and is costly [14, 15]. And the production of HBO-related
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oxidative stress is a concern [16]. Thus, to improve treatment
efficiency and reduce costs, a need exists for a new and effec-
tive DFU treatment method.

A nanomaterial-based drug delivery system (NDDS)
could improve DFU treatment by means of targeted drug
delivery and controlled drug release [17-19]. Recently, grow-
ing attention in the NDDS has given rise to the study of
micro/nanobubbles, especially oxygen-filled nanobubbles
[8,20-22]. Among them, nanoperfluorocarbon (Nano-PFC)
has been extensively explored as an oxygen-loaded system to
overcome hypoxia-associated resistance in cancer therapies
owing to its high oxygen affinity and great biocompatibility
[22-24]. Additionally, oxypherol (Fluosol-43), a type of
PFC, has obtained US Food and Drug Administration
(FDA) approval for improving myocardial oxygenation and
preventing abnormalities in ventricular function [25]. Thus,
Nano-PFC can be used as an NDDS to deliver molecules, such
as drugs and oxygen, to target tissues and release the contents
in response to physical stimuli [20, 23, 26].

The radial extracorporeal shock wave therapy (rESWT)
has been widely applied in musculoskeletal disorders, myo-
cardial infarction, wound healing, and erectile dysfunction
due to the noninvasive mode of treatment, cost effectiveness,
lower energy level, and negligible side effects [27-29]. More
importantly, rESW is a type of pneumatically generated pres-
sure wave [30, 31] that can induce the cavitation effect, which
refers to the rapid formation, expansion, and collapse of
small vapor bubbles in liquids due to sharp pressure changes
[32-34]. Thus, the rESW is a candidate trigger source to
enhance inclusion release inside an NDDS. Furthermore,
ESW therapy has been reported to distinctly improve and
promote the healing of DFUs by mainly enhancing blood
microcirculation and tissue regeneration and reducing oxida-
tive stress [35, 36]. However, the corresponding studies about
rESWT are few.

Herein, we developed a completely new strategy for the
treatment of DFUs by combining the rESW with oxygen-
loaded Nano-PFC, which could effectively improve blood
flow and provide a targeted supply of oxygen. In our study,
the rTESW-responsive oxygen release feature of Nano-PFC
was first proved in vitro and in vivo. Moreover, rESWT was
demonstrated to improve blood microcirculation and accel-
erate the wound healing of DFUs. Based on our results, the
rESW-responsive oxygen-loaded Nano-PFC can provide a
new sight and great potential for DFU treatment.

2. Materials and Methods

2.1. Preparation and Characterization of Nano-PFC. PFC
(300 uL perfluoro-15-crown-5-ether, Fluorochem, UK) was
added to 1% human serum albumin (HSA) (Sigma-Aldrich,
China) in 0.01 M phosphate-buffered saline (PBS) solution
(4mL). Then, the mixture was emulsified by an ultrasonic
homogenizer (Scientz-1200E, China) for 200s after slight
oscillation. The obtained emulsion was centrifuged
(8000 r/min) for 3 min, and then, the precipitate was resus-
pended in PBS for further use. The size and morphology of
Nano-PFC were characterized by transmission electron
microscopy (TEM) (SU-8020, Hitachi, Japan) after negative
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staining using 1.5% phosphotungstic acid and Malvern
zetasizer (NANO ZS, UK).

2.2. Measurement of Oxygen Release from Nano-PFC
Triggered by rESW In Vitro. Nano-PFC solution (4 mL, con-
taining 300 uL of PFC) was stored in an aseptic oxygen
chamber (O, flow rate =5L/min) for 5min for Nano-PFC
oxygenation. The oxygen-free water was obtained after
N, bubble. Then, oxygen-saturated Nano-PFC was added
to 45mL of oxygen-free water. The oxygen concentration
was measured by a portable dissolved oxygen meter
(Rex, JPBJ-608, China) before and after adding Nano-PFC
with or without rESW (MASTERPULS® MP100, STORZ
MEDICAL AG, Switzerland) treatment (1 bar, 2 Hz, 25 min).

2.3. Cellular Experiments. Murine breast cancer (4T1) and
human umbilical vein endothelial (HUVE) cells were pur-
chased from American Type Culture Collection (ATCC)
and cultured with 1640 medium containing 10% fetal bovine
serum (FBS, HyClone) at 37°C in a 5% CO, atmosphere. The
4T1 and HUVE cells were seeded into separate 96-well plates
(0.8 x 10* cells/well). After 24h, the different amounts of
Nano-PFC (0.25, 0.5, 1, 2, and 4 uL) were added to the
96-well plates, and the cells were incubated for 24h
(n=4). The cell viability was determined by the WST-8
(4-[3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-5-
tetrazolio]-1,3-benzene disulfonate sodium salt) assay fol-
lowing a standard protocol (Solarbio, 1000T, China).

2.4. Animal Model. All of the animal experiments were
approved by the Animal Ethics Committee of the Research
Center for Eco-Environmental Sciences, Chinese Academy
of Sciences. Sixteen female albino Wistar rats (180-220g)
were purchased from the Peking University Laboratory
Animal Research Center and randomly divided into Ctrl,
rESW, Nano-PFC@0,, and rESW+Nano-PFC@O, groups
(n=8). The rats in all groups were intraperitoneally injected
with streptozotocin (STZ) solution (Sigma-Aldrich, 60 mg/kg
body weight) that was freshly dissolved in 0.1 mg/L citrate-
sodium citrate buffer (pH 4.5) for approximately 2 months.
With respect to the blood glucose level, measured by a
glucometer, it was >300 mg/dL for two consecutive weeks,
suggesting that the STZ-induced diabetic rat model was suc-
cessfully established, in agreement with previous reports
[10]. In order to faithfully reflect the realistic complex pathol-
ogies and mimic those conditions under diabetes mellitus, we
did not actually add additional treatments. Therefore, during
this period, we kept monitoring blood glucose levels without
additional work. Nonetheless, the protocol of establishing a
STZ-induced diabetic rat model has been widely applied in
the wound healing studies of diabetic foot ulcers, as
supported by the following references (Table S1) [10-17].
Then, a wound (5 x 5mm) was created in the left forepaw
of each rat after anesthetizing with sodium pentobarbital
(45mg/kg body weight) by intraperitoneal injection. The
size of the wound was measured by a Vernier caliper.
BALB/c female mice (7-8 weeks old) were purchased
from the Vital River Laboratory Animal Technology Co.
Ltd. (Beijing, China). The 4T1 tumor-bearing mouse model
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FIGURE 1: Schematic illustration of the synthesis procedure and rESW-responsive oxygen release from Nano-PFC.

was established following the instructions in our previous
reports [37].

2.5. In Vivo Photoacoustic (PA) Imaging. When the tumor
volume of 4T1 tumor-bearing mice reached up to 100 mm?>,
the tumor oxygenation levels were detected using a PA
imaging system (Vevo 2100, FUJIFILM VisualSonics Inc.,
Canada) utilizing the oxy-hemo mode (750 and 850 nm).
The 4T1 tumor-bearing mice were injected with oxygen-
saturated Nano-PFC through the tail vein (200 L, contain-
ing 30 uL of PFC), and the mice breathed pure oxygen for
20 min before PA imaging.

2.6. Blood Flow by Laser Doppler Imaging. The blood flow of
the wound was measured by laser Doppler imaging (Moor
LDI V3.01, UK). STZ-induced diabetic rats were injected
with oxygen-saturated Nano-PFC through the tail vein
(500 uL, containing 80 uL of PFC), and the mice breathed
pure oxygen for 20min before imaging. The rats in the
rESW+Nano-PFC@0O, group were treated with rESW for
20min (1 bar, 2Hz). The quantitative data were obtained
from Moor FLPI measurement software (Version 2.1).

2.7. Immunohistochemistry Analysis. After various treat-
ments for 4T1 tumor-bearing mice, the mice were sacrificed
and the tumors were isolated from the mice on the 15th
day and then fixed in 4% paraformaldehyde, embedded,
and sectioned at 8 ym. Next, the immunohistochemical anal-
ysis of HIF-1a for tumor tissues was performed as the proto-
col. The expression levels of HIF-1a were quantified by
Image] software (https://imagej.nih.gov/ij/).

2.8. Nano-PFC plus rESW Treatment In Vivo. The STZ-
induced DFU rats were anesthetized with sodium pentobar-
bital (45mg/kg body weight) by intraperitoneal injection
prior to treatment. Thereafter, the rats were injected with
PBS (500 uL) through the tail vein for the control group.
The rESW group received rESW treatment (1 bar, 2Hz,
20min). The rats were injected with oxygen-saturated
Nano-PFC through tail vein intravenous injection (500 uL,
containing 80 uL of PFC) and subjected to pure oxygen
breath for 20 min in the Nano-PFC@O, group. The rESW
+Nano-PFC@O, group denoted the rats that inhaled pure
oxygen for 20 min after Nano-PFC@O, injection (500 uL,
containing 80 uL of PFC). Afterwards, the rats were treated
with rESW (1 bar, 2 Hz) for 20 min. All administration and
treatments were conducted once every other day for a total

of three times. The size of the wound was measured by a
Vernier caliper.

2.9. Statistical Analysis. The statistical analysis of experimen-
tal data was determined by an independent ¢-test or one-way
ANOVA test using the SPSS Statistics 17.0 software. All of
the data are presented as the mean + standard error. Statisti-
cal significance was determined with P < 0.05 and P < 0.001.

3. Results and Discussion

3.1. Synthesis and Characterization of Nano-PFC. The nano-
droplets of HSA-stabilized Nano-PFC were obtained using
the modified microemulsion method under ultrasonication,
as described in previous reports (Figure 1) [22, 23].
Figures 2(a) and 2(b) show that the synthesized HSA-
stabilized Nano-PFC exhibits a highly uniform size distri-
bution with an average diameter of about 70 nm, as measured
by TEM and dynamic light scattering (DLS). Moreover, the
size of Nano-PFC changed negligibly after rESW treatment,
which proved that Nano-PFC had great stability (Figure 2(b)).

3.2. rESW-Responsive Oxygen Release of Nano-PFC In Vitro
and In Vivo. PFC, as an artificial oxygen carrier, has been
used in the clinical treatment of ischemic diseases such as
hemorrhagic shock and allogeneic blood transfusions owing
to its excellent dissolving capacity for many gases, including
oxygen and carbon dioxide [25, 38]. Thus, the abilities of
Nano-PFC for oxygen loading and rESW-responsive oxygen
release (Figures 1 and 2(c)) were measured by an oxygen
meter. The concentration of pure oxygen saturation within
Nano-PFC was about 1.50 mg/mL at 25°C (1atm), which
was consistent with previously reported results [23]. As
shown in Figure 2(c), the dissolved oxygen concentration in
water speedily increased in a short time, and then, the oxygen
was slowly released from the oxygen-loaded nanodroplets
over time when the oxygen-loaded Nano-PFC was added to
oxygen-free water. Importantly, burst-like oxygen release
in a dose-dependent manner was observed under rESW
treatment with different frequencies (2, 4, 6, 8, and 10 Hz).
These results demonstrated the high oxygen solubility and
rESW-responsive oxygen release abilities of Nano-PFC.
Moreover, after one injection, Nano-PFC may reload oxygen
within the lung capillaries during blood circulation. Thus,
oxygen-filled Nano-PFC can deliver oxygen to the targeted
area and then reversibly release oxygen triggered by the
rESW. Compared to HBOT, this Nano-PFC-based treatment
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F1GURE 2: Synthesis and characterization of nanomaterials used in the current study. (a) TEM images of Nano-PFC, and an inset image shows
the structure of Nano-PFC. (b) The size distribution of Nano-PFC before and after rESW treatment. (c) Time-/dose-dependent changes of
dissolved oxygen concentrations in deoxygenated pure water with or without the addition of oxygen-loaded Nano-PFC@O,. The solutions
were treated with rESW for 25 min. (d) Cell viability was measured with the WST-8 method of 4T1 and HUVE cells upon Nano-PFC at

various concentrations (n = 4) for 24 h.

strategy can effectively reduce the cost of treatment and avoid
serious side effects, such as barotrauma, central nervous
system and pulmonary oxygen toxicity, and increased risk
of claustrophobia [39]. In addition, the cell viability of 4T1
and HUVE cells was not significantly affected by the dif-
ferent doses of Nano-PFC, which exhibited that Nano-
PFC has great biocompatibility for different types of cells
(Figure 2(d)).

Inspired by the above great performance in vitro, we fur-
ther researched the oxygen release behavior in vivo based on
a 4T1 tumor-bearing mouse model. It is worth mentioning
that nanosized materials can achieve highly efficient accumu-
lation in tumor tissue depending on the enhanced permeabil-
ity and retention (EPR) effect [40]. Additionally, almost all of
the solid tumors have a hypoxic region due to the deficient
blood supply along with the tumor progression [41, 42].
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FIGURE 3: Determination of oxygen release from nanovehicles with the aid of rESW. (a) Schematic illustration of rESW-respective oxygen
release from oxygen-saturated Nano-PFC in 4T1 tumor-bearing mice. (b) PA imaging of 4T1 tumors for determining tumor oxygenation
status by measuring the ratios of oxygenated hemoglobin (A = 850 nm) and deoxygenated hemoglobin (A = 750 nm) before and after rESW
treatments (20 min). Scale bars are 3 mm. The expression levels of HIF-1w in the tumors of mice from various groups were analyzed by
the immunohistochemical method. Dark blue arrowheads point at the HIF-1a-positive cells. Scale bars are 100 gm. (c) Quantification of
HIF-1a-positive cells in immunohistochemical images by Image] software.

Likewise, the disturbance of the vascular system is one of the
direct reasons for DFUs because it can cause sustained oxy-
gen deficiency and finally chronic hypoxia in the wound area
[43]. However, we had established the wound-healing
models of DFUs in the rats’ forepaws, which were too large
to be placed in the detector of the photoacoustic (PA)

imaging system. And the scientific rationale is very sound,
for the microenvironment, the microstructure, and the
pathology are very similar between tumors and diabetic
foot ulcers, such as hypoxia, angiogenesis, and inflammation
[44-46]. Here, a 4T1 tumor-bearing mouse model was estab-
lished by subcutaneously injecting 4T1 tumor cells, which
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belonged to the superficial tumor. And we have proved that
rESW could effectively improve local blood flow, which could
make more oxygen-loaded Nano-PFC deliveries to the
wound location and greater oxygen release under rESW
treatment. In support of this finding, our latest study uncov-
ered that rESW could promote vessel vasodilation, tumor
blood supply, and nanoparticle extravasation into tumor
microenvironment [47]. Therefore, we selected the 4T1
tumor-bearing mouse model as an alternative method to eval-
uate the in vivo behavior of oxygen release and improvement
of the hypoxia level as a result of rESW-responsive Nano-
PEC. In this process, Nano-PFC can be used as a nanosized
carrier system to deliver oxygen into tumor tissue and
improve tumor oxygenation under the assistance of the
locally applied rESW (Figure 3(a)). The nanodroplets can
reversibly release oxygen within the tumor tissue, triggered
by the rESW, when Nano-PFC is injected into blood circula-
tion. Thus, the 4T1 tumor-bearing mice breathing pure

oxygen were injected with 200 yL Nano-PFC (containing
30 uL of PFC) through the tail vein. Then, the tumor oxygen-
ation status of each mouse was detected by PA imaging after
the tumor region was treated with the rESW (1 bar, 4 Hz)
for 20 min. PA imaging is noninvasive and is suitable for
evaluating the blood oxygenation status by capturing the
absorbance of hemoglobin at 750nm (deoxygenated sta-
tus) and 850nm (oxygenated state) [23]. As shown in
Figure 3(b), the oxygenation levels over the whole tumor
region rapidly increased in the group with hyperoxic breath-
ing plus tumor-localized rESW treatment (rESW+Nano-
PFC@0,) compared with the group with only hyperoxic
breathing (Nano-PFC@0,). We also evaluated the expres-
sion level of hypoxia-inducible factor 1-alpha (HIF-1a), a
marker of tumor hypoxia status, by analyzing the immuno-
histochemistry after 15 days of treatment. In Figures 3(b)
and 3(c), the expression levels of HIF-1a dropped 58.3% in
the rESW+Nano-PFC@O, group in comparison with the
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Nano-PFC@O, group (P <0.001). These results uncovered
the fact that the rESW could effectively stimulate oxygen
release from oxygen-loaded Nano-PFC and enhance tumor
oxygenation status in vivo, which means that the
oxygen-loaded Nano-PFC plus rESW could improve the
hypoxic microenvironment around DFUs and accelerate the
wound healing.

3.3. Blood Microcirculation by Laser Doppler Imaging.
Furthermore, it has been proven that the rESW could induce
tissue regeneration and improve blood microcirculation
[28,47-49]. Thus, laser Doppler imaging was used to measure
the change in blood flow after different treatments. The
data revealed that the blood microcirculation of the rat’s
forepaw was improved about 5.4 times after rESW treatment
compared to the Nano-PFC@O, group without the rESW
(Figure 4, P<0.001). Nearly every step in the wound
healing process requires oxygen for inducing angiogenesis
by increasing vascular endothelial growth factor (VEGF)
expression [9, 50]. Thus, rESW-responsive improvement of
blood microcirculation and oxygen reversible release from
Nano-PFC provided the potential for accelerating foot
wound healing in STZ-induced DFU models.

3.4. Nano-PFC plus rESW Treatment Accelerated Diabetic
Foot Wound Healing. Nano-PFC@O, and rESW are the key
factors in our strategy for the treatment of DFUs. Thus, we
further evaluated whether Nano-PFC plus rESW treatment
could bring any advantages for the wound healing of DFUs.
First, the rat models of STZ-induced DFU were established,
and then, a wound was created in each rat’s forepaw. As
shown in Figure 5, the intervening treatments including
rESW, Nano-PFC@0,, and rESW plus Nano-PFC@0, inor-
dinately accelerated the wound healing of DFUs, compared
to diseased rats with DFUs that did not receive any treat-
ment, namely, the untreated control (Ctrl). Moreover, the
wound healing effect of rESW and PFC was also consistent
with previous studies [2, 43, 51-57]. And the rate of wound
healing in the rTESW+Nano-PFC@0O, group was significantly
higher than that in the Nano-PFC@O, group and rESW
group (Figure 5; “P<0.001 and *P <0.05). The improve-
ment of wound healing might be attributed to the rESW
and the oxygen supply from Nano-PFC. First, rESW treat-
ment could increase blood microcirculation in the wound
healing process. Meanwhile, the oxygen supply from Nano-
PFEC could neutralize the hypoxic microenvironment due to
the vascular disruption and the oxygen consumption by



inflammatory and stromal cells within the wound. And
rESW treatment might reduce oxidative stress, compared to
HBOT, which overcame the drawbacks of HBOT [35, 36].

At present, although many adjunctive therapies have
been applied for the healing of DFUs, just as previously dis-
cussed [5-7, 12], the clinic treatment of DFUs remained as
an enormous challenge due to the multifactors of that. Fortu-
nately, recent studies found that ESW therapy was an effec-
tive treatment approach for DFUs, being more effective
than HBOT in clinical observations [2, 58, 59]. Moreover,
focused ESW was used as a major therapeutic modality in
most studies. Thus, herein, we garnered a new sight into
the treatment of DFUs. On the other hand, PFC-based bioa-
gents have been shown to be effective in the treatment of
chronic wound [43, 51, 60]. Importantly, PFC has been
clinically approved by FDA [23, 61]. Based on the above
desirable features, we therefore developed the rESW for
DFU treatment in combining oxygen-saturated Nano-PFC,
which brought a completely new treatment strategy for
DFUs. To this end, this strategy provided a great potential
for further clinical trials. However, the potential safety issues
of PFC-based micro/nanomaterials should not be neglected.
Thus, we will continue this study forward.

4. Conclusions

In conclusion, the Nano-PFC developed herein exhibited
uniform size and achieved the abilities of high-efficiency oxy-
gen loading and rESW-responsive oxygen reversible release
in vitro and in vivo. More importantly, the synergistic effect
of the rESW and Nano-PFC accelerated foot wound healing
in STZ-induced type 1 diabetes mellitus rats by improving
blood microcirculation and providing a targeted supply of
oxygen to the wound. This study proved the benefits of
combining rESW and Nano-PFC to treat DFUs, which is a
novel strategy for the treatment of diabetic foot ulcers.
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