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Diabetic retinopathy (DR) is a common chronic fundus disease, which has four different kinds of microvessel structure and
microvascular lesions: microaneurysms (MAs), hemorrhages (HEs), hard exudates, and soft exudates. Accurate detection and
counting of them are a basic but important work. The manual annotation of these lesions is a labor-intensive task in clinical
analysis. To solve the problem, we proposed a novel segmentation method for different lesions in DR. Our method is based on
a convolutional neural network and can be divided into encoder module, attention module, and decoder module, so we refer it
as EAD-Net. After normalization and augmentation, the fundus images were sent to the EAD-Net for automated feature
extraction and pixel-wise label prediction. Given the evaluation metrics based on the matching degree between detected
candidates and ground truth lesions, our method achieved sensitivity of 92.77%, specificity of 99.98%, and accuracy of 99.97%
on the e_ophtha_EX dataset and comparable AUPR (Area under Precision-Recall curve) scores on IDRiD dataset. Moreover,
the results on the local dataset also show that our EAD-Net has better performance than original U-net in most metrics,
especially in the sensitivity and F1-score, with nearly ten percent improvement. The proposed EAD-Net is a novel method
based on clinical DR diagnosis. It has satisfactory results on the segmentation of four different kinds of lesions. These effective
segmentations have important clinical significance in the monitoring and diagnosis of DR.

1. Introduction

Diabetes is a common chronic disease that has a large num-
ber of patients over the world. It is a global public health
problem related to microcirculation disorders which seri-
ously affects human health. Diabetic retinopathy (DR) is a
common complication of diabetes, so it is also a serious
chronic disease. DR is caused by the insufficient blood sup-
ply and capillary occlusion due to excessive blood sugar con-
tent. In severe cases, it would lead to irreversible damage and
even blindness. Therefore, the timely monitoring and treat-
ment are essential for DR patients. The analysis of microvas-
cular lesion areas is one of the important ways of diagnosis.
In retinal fundus images, typical symptoms of DR mainly

include microaneurysms (MAs), hemorrhages (HEs), hard
exudates, and soft exudates, which are the major features
of DR.

As shown in Figure 1, the first detectable abnormalities of
DR are MAs, which present as small red dots. MAs are
formed due to the local distensions of capillary walls caused
by high blood glucose on the surface of retina [2]. When
MAs ruptured, they would cause intraretinal hemorrhages,
which are also important features in the early stage of DR.
HEs have irregular shapes and sizes, and their color is very
similar to the background. Hard exudates are yellow lipid
formations that leak as a result of increased capillary perme-
ability, presenting as bright yellow exudates of irregular
shape and well-defined boundaries. Soft exudates are
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essentially microinfarcts of the retinal nerve fiber layer, pre-
senting as cotton-wool spots of irregular shape and fuzzy
boundaries.

In recent years, many approaches have been applied to
the lesion detection of DR, because detecting defective areas
is an important step and one of the most labor-intensive
tasks in clinical diagnosis. According to the characteristics
of different lesion areas, we define the MAs and HEs as red
lesions and define the hard exudates and soft exudates as
bright lesions.

As for the detection of red lesions, since MAs and HEs
are usually early abnormal signs of DR, the accurate detec-
tion of them is crucial for the early diagnosis. On account
of similar circular shape and limited size range, the detec-
tions of MAs mainly include morphological operations [3,
4] and image filtering [5, 6]. Some other researches combine
MA and HE detections, such as the algorithm based on cur-
velet transform proposed by Esmaeili et al. [7]. The candi-
date pixels belonging to red lesions and blood vessels are
separated from a reconstructed retinal image with modified
coefficients, and then, the full curvelet-based blood vessels
are removed, leaving the remaining part as detected red
lesions. Similarly, all dark-colored structures can be
extracted as candidates, and then pixels belonging to vessels
are eliminated by using a multilayer perception [8] or multi-
scale morphological closing operation [9]. However, the
aforementioned algorithms might consider some actually
red lesions as false positives to be removed, so these lesions
are left out and directly affect the rate of detection. To solve
the problem, an automatic red lesion detection algorithm
using dynamic shape features [10, 11] is proposed. In this
method, candidate regions do not need to be segmented pre-
cisely before feature extraction. Instead, a new set of shape
features, called dynamic shape features, are extracted for
each candidate region which is identified based on intensity
and contrast.

As for the detection of bright lesions, Harangi and Hajdu
[12] divided exudate detection into three stages: at first, a
grayscale morphology-based candidate extractor method is
used to recognize the bright lesions contained regions, then,
an active contour method is applied to obtain the precise
boundary segmentation, and finally, false exudate candidates
are removed by a region-wise classifier. An unsupervised
approach [13] for exudate segmentation is based on an ant
colony optimization algorithm to solve the numerous man-
ually labeling works needed in supervised methods. Many
research works have been done for the detection of hard
exudates: Banerjee and Kayal [14] proposed a method which
employs morphological operations to eliminate optic disc,
mean shift [15], and normalized cut [16] to extract hard exu-
dates and Canny’s operator to demarcate exudate boundary
more clearly. Jaya et al. [17] proposed a hard exudate detec-
tion system designed using a fuzzy support vector machine
(FSVM) classifier. In addition, only a few researches work
for the detection of soft exudates (also called cotton wool
spot) because it is difficult to filter out soft exudates from
the background. Bui et al. [18] presented an automatic seg-
mentation method which consists of image enhancement,
optic disc removal, selective feature extraction, and a neural
network model. Sreng et al. proposed an algorithm [19]
based on the integration of principal component analysis
(PCA) and support vector machine (SVM) for accurate
detection of cotton wool spots. The authors also proposed
another detection method [20] based on adaptive threshold
and ant colony optimization (ACO) combined with SVM
and achieved better performance.

With the development of convolutional neural networks
(CNNs), various image segmentation algorithms have made
breakthroughs in both speed and accuracy. One of the most
popular methods for biomedical segmentation tasks was
called U-net [21], which followed an encoder-decoder struc-
ture. There are many different improvements of the U-net
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Figure 1: Lesions of DR in IDRiD_49.jpg from IDRiD dataset [1]. (a) Microaneurysm (MA). (b) Hemorrhage (HE). (c) Soft exudate. (d)
Hard exudate.
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model, such as an ensemble MU-net [22], designed to detect
exudates with limited data, and a multitask architecture [23]
for the joint segmentation of different lesions. Besides, Quel-
lec et al. [24] proposed a deep learning algorithm supervised
at image level and produced heatmaps to improve DR detec-
tion. Javidi et al. presented dictionary learning-based algo-
rithms to segment exudates using extension of
morphological component analysis [25] and to detect micro-
aneurysm using sparse representation [26]. Dai et al. [27]
combined an image-to-text model and multisieving CNN
to identify microaneurysm and solve the unbalanced data
distribution problem. Pratt et al. [28] also proposed a CNN
approach for DR diagnosis and grading and achieved good
performance on a large dataset.

The main contribution of this paper can be summarized
as follows. Since the pixel-level lesion segmentation, espe-
cially, the segmentation of both red lesions and bright
lesions is still rare, we focus on segmenting four different
lesion areas with a supervised method which can work with
limited labeled datasets. In this paper, we present a novel
convolutional neural network EAD-Net, which is composed
of encoder module, dual attention module, and decoder
module. Experimental results show that the proposed
EAD-Net can achieve pixel-level accuracy for different kinds
of lesions. Our method has competitive performance in both
qualitative and quantitative analyses than other state-of-the-
art methods.

2. Methods

In this section, we describe the datasets used and the
methods employed to segment different kinds of lesions.
Firstly, in addition to two public benchmark datasets for
the comparison with other state-of-the-art algorithms, a
local dataset with hundreds of clinical images is also intro-
duced for validation. Secondly, we describe the architecture
of EAD-Net and illustrate the detailed structures of encoder
module, dual attention module, and decoder module,
respectively. Thirdly, we introduce the network training pro-
cess including data normalization, data augmentation, and
parameter settings. Finally, we designed an evaluation
method based on the matching degree between detected can-
didates and ground truth lesions to analyze the segmentation
results more appropriately.

2.1. Datasets. In this paper, we evaluated the performance of
our proposed network on two publicly available datasets: e_
ophtha_EX [29] and IDRiD [1], for the comparison with
other latest algorithms. Furthermore, we also evaluated our
model on a local intelligent ophthalmology dataset com-
pared with U-net as the baseline for additional validation.

The public e_ophtha_EX dataset consists of 82 labeled
images with precise lesion annotation. These images have
four different sizes ranging from 1440 × 960 to 2544 × 1696
pixels. 47 images have exudates which were marked by two
ophthalmologists, and 35 images contain no exudates.

The public IDRiD (Indian Diabetic Retinopathy Image
Dataset) consists of 81 images with a resolution of 4288 ×
2848 pixels. It provides pixel-level annotations of four

lesions. The partition of the training set and testing set is
provided on IDRiD, with 54 images for training and the rest
27 images for testing. All images in the testing set have MAs,
HEs, and hard exudates, and 14 images of them have soft
exudates.

The local intelligent ophthalmology dataset is a general
high-quality dataset for eye disease classification and lesion
segmentation. Our study was conducted in collaboration
with the Affiliated Eye Hospital of Nanjing Medical Univer-
sity. From more than 10,000 clinical color fundus images,
262 images were selected for this research and all images
have been desensitized for common use. In this dataset, 63
images have MAs, 84 images have HEs, 86 images have hard
exudates, and 29 images have soft exudates. In addition,
their corresponding pixel-level annotation images are pro-
vided. In lesion annotation, there were five ophthalmologists
involved. To minimize the probability of mislabeling, all the
images were labeled by four ophthalmologists and checked
by a chief ophthalmologist at last. The detailed annotation
example is shown in Figure 2.

2.2. Network Architecture

2.2.1. Overview of the Proposed EAD-Net. The proposed
EAD-Net can be divided into three parts: encoder module,
dual attention module, and decoder module (as shown in
Figure 3). The U-shaped structure composed of an encoder
and decoder, as well as skip connections, enables the net-
work to combine high-level semantic information and low-
level feature. Furthermore, the dual attention modules can
capture long-range contextual information in both spatial
and channel dimensions and therefore obtain better feature
representations.

Specifically, through convolution and pooling, we can
get the Map1; then, we use a convolution block with residual
structure in the downsampling process. With the residual
structure, the gradient can propagate directly through the
skip connection from later layers to the earlier layers, so
the vanishing gradient problem can be inhibited. These fac-
tors guarantee the stability of the whole network in a train-
ing process. Before the skip connection, Map3 and Map4
are sent through a dual attention module [30], which is com-
posed of a position attention module and a channel atten-
tion module. Finally, the feature maps of each dimension
are put into the decoder module to accomplish the segmen-
tation of different kinds of lesions. Figure 3 shows an over-
view of the EAD-Net architecture.

2.2.2. Encoder Module. Different from the widely used U-net,
we choose a convolution block with a residual structure to
replace the traditional encoder. And we only use the pooling
layer once during the whole downsampling process. There
are many tiny lesions in the segmentation of DR lesions,
and too many pooling layers might go against recovering
the features of the tiny targets in decoder stage. Therefore,
in the later downsampling process, we use the convolution
layer (stride is set to 2) to replace the pooling layer. The
green hollow arrows in Figure 3 contain the conv block
and identity block (as shown in Figure 4).
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As we can see in Figure 4, conv block and identity block
have almost the same structure. We learn from the idea of
skip connection proposed in the ResNet [31]. In conv block,
the input firstly passes through the same convolution, batch
normalization, and Relu layers twice. Next, the result of the
second Relu layer and the original input are added up after
convolution and batch normalization. The added result is
activated through the Relu layer to get the final output. What
differentiates the two blocks is that in identity block the
input is directly added up through a skip connection. One
other thing to note is that the size of convolution kernels is
set to the same 3 × 3.

The number of convolution kernels in the blocks shown
in Figure 4 is subject to the bottleneck structure; that is, the

output channel number of the input and output is generally
four times as many as the channel number of the first two
convolution parts. With this strategy, the number of training
parameters can achieve a considerable reduction. It is worth
noting that the number of channels indicated in the figure is
not constant all the time. With the abovementioned propor-
tional relationship, they will increase with the depending
network, typically exponentially.

2.2.3. Dual Attention Module. Dual attention module is a
self-attention mechanism proposed by Fu et al. [30] and
was applied to semantic segmentation. It can capture long-
range contextual information in both spatial and channel
dimensions. The position attention module (PAM)

(a) (b)

Figure 2: Annotation example of the local dataset. (a) The original image. (b) The corresponding annotation result: MAs in the red area,
HEs in the green area, hard exudates in the blue area, and soft exudates in the yellow area.
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selectively aggregates the features of each position through a
weighted sum of all positions, while the channel attention
module (CAM) selectively emphasizes one feature map
through all feature maps. The outputs of two attention mod-
ules are aggregated to obtain the better feature representa-
tions. The structure of dual attention module is shown in
Figures 5 and 6.

In order to accommodate the specific morphology of DR
lesions, we have also proposed some corresponding
improvements.

There are often many small and fuzzy lesions existing in
the fundus images. As what we have mentioned previously,
too many pooling layers might lead to too much semantic
information loss. To avoid this problem, we only use the
max pooling layer once. Moreover, in the later decoder
structure, to obtain the pixel-wise output, a larger size of fea-
ture map needs to be upsampled from the deep feature map,
which might also cause the information loss. So the dilated
convolution [32] strategy is introduced as an improvement.
The dilated convolution with different dilation rates can pro-
duce a larger receptive field and capture multiscale contex-
tual information. The blue sample block in Figure 6
contains three dilated convolutions. We set the dilation rates
to 1, 2, and 5, respectively, to avoid gridding effect.

2.2.4. Decoder Module. In the decoder module, we adopt the
upsampling structure of U-net. The features of encoder and
decoder at the same level can achieve global information
fusion through concatenation. And the high-resolution
information generated by the encoder output can provide
more detailed guidance in the segmentation of lesions. The
structure of decoder module is shown in Figure 7.

2.3. Network Training. In order to facilitate the processing of
neural network, the size of all input images and labels is nor-
malized into 1024 × 1024 pixels. The purpose of this step is
to preprocess the images and unify the size of all datasets
without losing images’ details. Meanwhile, in order to keep
the information of input images as much as possible and
make the image undistorted when its size changed (that is,
maintain the aspect ratio of the image), we take the following
steps: firstly, remove the redundant black edges around the
original image. Next, according to the long side after the
interception, the short side is filled to be equal to the long
side. Finally, the size of the filled image is transformed to

obtain an image of 1024 × 1024 pixels. We also cut and
resize the corresponding ground truth segmentation image
in the same way. The normalization process is shown in
Figure 8.

High-quality datasets are valuable in the field of medical
segmentation. Considering the lack of training data, data
augmentation is beneficial when training the neural net-
work. The data augmentation transformations consist of
horizontally and vertically flipping, scaling images in per
axis, translating, and rotation. Notice that we did not apply
all these methods to every input image; instead, we select
some combinations of them randomly to accomplish the
augmentation. After data augmentation, the number of
training dataset images could be up to five times larger.

Using the images with original size will run out of hard-
ware limitations. In order not to lose image information in
the maximum case, all images are resized to 512 × 512 pixels
before being sent to the network training. Since the partition
of training set and testing set is provided on IDRiD, with 54
images for training and the rest 27 images for testing, we also
applied this partition ratio to e_ophtha_EX and local data-
sets in this research. There was not any overlap between
training and testing data. For each dataset, two-thirds of
the images were randomly selected for training and the
remaining third for testing. That is to say, the partition ratio
of training set and testing set is set to 2 : 1.

In the training process, firstly, the network’s hyperpara-
meters are gradually adjusted by the effect on the validation
set. In this way, we set the batch size to 2, dropout rate to 0.5,
Adam as the optimizer, and BCEDiceLoss (binary cross
entropy and dice loss) as the loss function. In addition, we
use the loss value as a monitoring indicator during training
the network. The learning rate is set to 0.0001 and is lowered
by 10 times after five epochs when the indicator does not
improve. An early stopping method is also applied to the
training process. If the indicator does not improve after 15
epochs, the training process would stop. The network for
comparison follows the same training settings.

All the programs in this paper are based on Python. The
construction and training process of the network are applied
on Keras platform. Parallel computing is conducted by GPU,
and the hardware environment is NVIDA GTX 1080.

2.4. Evaluation Metrics. The evaluation can be classically
done by simply calculating the number of correctly
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identified pixels or by comparing the number of detected
lesions with the number of real lesions. However, we
consider that both of these methods have shortcomings
in analyzing the segmentation of lesions. Suppose a situ-
ation as shown in Figure 9: there are three detected
lesions (shown in blue) and three ground truth lesions
(shown in red). Only the two large connected compo-
nents in the middle are partially overlapped. It is clear
that the larger the intersection area is, the greater the
matching degree between the detected candidates and
ground truth is.

On the one hand, if we only calculate the number of cor-
rectly identified pixels, in this case, the true positives only
refer to the intersection area of blue and red, while half blue
pixels and half red pixels in the nonoverlapping part are
considered false positives and false negatives. This kind of
evaluation method tends to get underestimated error rate
on small connected components. On the other hand, it
seems inappropriate to directly compare the number of
detected lesions and ground truth lesions. For example, in
Figure 9, there are 3 detected lesions and 3 ground truth
lesions, but obviously, the results in the figure do not mean
that the accuracy of lesion segmentation has reached 100%.
Therefore, we applied the evaluation method proposed by
Zhang et al. [29]: the matching degree between the detected
candidates and the ground truth areas was considered. To be
specific, if there are N detected candidates fD1,D2,⋯,DNg
and M ground truth lesions fG1,G2,⋯,GMg, the set of

detected candidates can be expressed as

D = ∪
1≤i≤N

Di, ð1Þ

and the set of ground truth lesions can be expressed as

G = ∪
1≤j≤M

Gj: ð2Þ

Then we can give the definition of true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) as follows.

A pixel is considered TP if and only if it belongs to any of
the following sets:

(i)

D ∩ G ð3Þ

(ii) Di such that ðjDi ∩ Gj/jDijÞ > σ

(iii) Gj such that ðjGj ∩Dj/jGjjÞ > σ

j⋅j is the cardinality of a set, and the σ is a factor used to
evaluate the proportion of overlapping area between the
detected candidates and ground truth. The σ ranges from 0
to 1. When σ = 0, a detected candidate is considered TP if
and only if it touches the ground truth. Taking into

(a) (b) (c)

Figure 8: Size normalization process. (a) The original image. (b) Remove the redundant black edges. (c) The final result.

False positives

False negatives

True positives

Figure 9: Illustration of the proposed evaluation method. Detected candidates are represented by blue areas and ground truth lesions by red
areas. True positive pixels are defined by the matching degree of blue and red connected components.
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consideration that in this case (σ = 0) a single very large
detection mask would produce excellent results as long as
it covers the whole ground truth set, a minimal overlap ratio
is required. Finally, we set the σ to 0.2 to facilitate compari-
son with other methods.

A pixel is considered FP if and only if it belongs to any of
the following sets:

(i) Di such that Di ∩G = ϕ

(ii) Di ∩ �G such that ðjDi ∩Gj/jDijÞ ≤ σ

A pixel is considered FN if and only if it belongs to any
of the following sets:

(iii) Gj such that Gj ∩D = ϕ

(iv) Gj ∩ �D such that ðjGj ∩Dj/jGjjÞ ≤ σ

Pixels that do not fall into any of the above-mentioned
three categories are considered TN.

Then, we computed the sensitivity, specificity, precision,
accuracy, and the F1-score according to the following
equations:

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Precision =
TP

TP + FP
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

F1 =
2 × sensitivity × precision
sensitivity + precision

:

ð4Þ

3. Results

In this section, we demonstrate the effectiveness of our
EAD-Net on two public benchmark datasets and show the
comparison with other state-of-the-art algorithms, especially
with U-net and its variants. For additional validation, we
also compared the performance of our EAD-Net with the
baseline U-net on a local dataset.

3.1. Performance on the Public e_ophtha_EX Dataset. On the
public e_ophtha_EX dataset, the results compared with
other state-of-the-art methods are shown in Table 1. Our
proposed EAD-Net outperforms other methods on most
indicators. Compared with the latest study [35] proposed
by Guo et al., our method is 8.6% higher in sensitivity and
achieves 5.61% and 7.06% improvements in precision and
F1-score. Compared with the state-of-the-art method [22]
by Zheng et al., our method has competitive results in both
specificity and accuracy, although there exists a small gap
in sensitivity, precision, and F1-score.

Table 1: Evaluation of exudate detection on e_ophtha_EX dataset.

Model
Lesion-level results

SE SP PR ACC F1

U-net 79.86 99.97 78.77 99.95 79.31
∗Playout et al. [23] 80.02 — 78.50 — 79.25
∗Zheng et al. [22] 94.12 99.98 91.25 99.96 92.66

Fraz et al. [33] 81.20 94.60 90.91 89.25 —

Zhang et al. [29] 74 — 72 — —

Imani and Pourreza [34] 80.32 99.83 77.28 — —

Javidi et al. [25] 80.51 99.84 77.30 — —

Guo et al. [35] 84.17 — 83.45 — 83.81
∗Proposed EAD-Net 92.77 99.98 89.06 99.97 90.87

SE: sensitivity; SP: specificity; PR: precision; ACC: accuracy; F1: F1 score. ∗
are methods based on U-net.
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Figure 10: Evaluation on e_ophtha_EX dataset using ROC curves
of U-net and the proposed EAD-Net.

Table 2: Comparison with top 10 teams in the lesion segmentation
competition on IDRiD dataset.

Model (team) MAs HEs
Hard

exudates
Soft

exudates

VRT (1st) 0.4951 0.6804 0.7127 0.6995

PATech (2nd) 0.4740 0.6490 0.8850 —

iFLYTEK-MIG
(3rd)

0.5017 0.5588 0.8741 0.6588

SOONER (4th) 0.4003 0.5395 0.7390 0.5369

SHAIST (5th) — — 0.8582 —

lzyuncc_fusion
(6th)

— — 0.8202 0.6259

SDNU (7th) 0.4111 0.4572 0.5018 0.5374

CIL (8th) 0.3920 0.4886 0.7554 0.5024

MedLabs (9th) 0.3397 0.3705 0.7863 0.2637

AIMIA (10th) 0.3792 0.3283 0.7662 0.2733

Proposed EAD-Net 0.2408 0.5649 0.7818 0.6083

The results are based on AUPR (Area under Precision-Recall curve).
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Figure 10 also shows the ROC (Receiver Operating
Characteristic) curves with AUC (Area Under Curve) values
of our method and the baseline, U-net. We can see that the
EAD-Net has much better detection effect than the original
U-net. The AUC value of the proposed method is 0.5%
higher than the result of U-net. The improved performance
demonstrates the effectiveness of the proposed EAD-Net.

3.2. Performance on the Public IDRiD Dataset. In this part,
we used AUPR (Area under Precision-Recall curve) as eval-
uation metric, which is the same to the IDRiD challenge.
The IDRiD challenge is a fundus image analysis challenge
organized by the IEEE International Symposium on Bio-
medical Imaging (ISBI) conference. We compared our
method with the top 10 teams in the lesion segmentation
competition of IDRiD challenge. As we can see in Table 2,
the proposed EAD-Net ranked No. 3 on HE segmentation,
No. 6 on hard exudate segmentation, and No. 4 on soft exu-
date segmentation.

For the top 3 teams, they choose different network archi-
tectures for each segmentation task. And for each segmenta-
tion task, many hyperparameters need to be adjusted during
the training stage. Therefore, these teams that performed
well had to test four models for corresponding segmentation
task during the test stage. In contrast, our study used a single
network structure and only a few changes are needed for the
hyperparameter settings. Even so, our proposed EAD-Net
has achieved comparable results.

3.3. Performance on the Local Intelligent Ophthalmology
Dataset. On the local intelligent ophthalmology dataset, we
also evaluated the performance by comparing the matching
degree between the ground truth and prediction. In this sec-
tion, we performed a visual analysis of segmentation results
and compared our proposed method with the original U-
net, which was the baseline.

An example of segmentation results is shown in
Figure 11: different color curves are used to represent the
contours of different types of lesions. At the same time,
through connected components analysis in the predicted
images, we can also easily output the counting of different

lesions (as shown in the rectangular box on the right of
Figure 11(c)). These counting statistics are helpful as a refer-
ence for clinical diagnosis of DR severity. In addition, a more
detailed comparison of ground truth and predicted segmen-
tations for this example is shown in Figure 12. The different
rows in Figure 12 represent different types of lesions. We use
red to represent ground truth areas, blue to represent pre-
dicted lesions areas, and purple to represent the intersection
of ground truth and prediction in the last column of
Figure 12. From this, we can intuitively see which areas are
correctly identified, which areas are misdiagnosed, and
which areas are missed. For detailed definitions of the cate-
gories of predicted lesions (TP, FP, FN, or TN), please refer
to Evaluation Metrics.

Compared with the baseline U-net, the results shown in
Table 3 indicate that the proposed method outperforms the
original U-net in most metrics, especially in the sensitivity
and F1-score. And the AUCs of the EAD-Net are generally
higher than U-net (as shown in Figure 13).

From all the above results on the local dataset, it can be
concluded that the EAD-Net makes remarkable progress in
the lesion segmentation compared with baseline U-net.
However, although our network does well in the segmenta-
tion of the lesions with distinct features, such as HEs and
hard exudates, the details in Figure 12 and the low sensitivity
in Table 3 indicate that it is not that effective for small
lesions, especially the tiny MAs. This problem would be dis-
cussed in more detail in the next section.

4. Discussion

The research of computer-aided diagnosis of DR based on
fundus images is an emerging field. Most of the current
DR-AI researches are based on the image labels, rather than
the direct study of lesions. However, the diagnosis basis of
clinical guidelines is precisely based on the identification
and localization of lesions. Once the clinical guidelines are
adjusted, none of the current DR-AI results can play a role.
In contrast, lesion-based studies can be easily adapted to
the adjustment of diagnostic rules. Therefore, we proposed
a deep learning method based directly on lesions, which is

Original image

(a)

Ground truth

(b)

Predicted result

MAs:

HEs:

Hard exudates:

Soft exudates:
78

11

24

1

Counting of
predicted lesions

(c)

Figure 11: An example of segmentation results. (a) Original image. (b) The corresponding ground truth annotations of different lesions. (c)
The predicted segmentation results. Note that the areas marked out in different colors represent different lesions: MAs in red, HEs in green,
hard exudates in blue, and soft exudates in yellow. The predicted result in (c) also provides counting statistics of the four lesions. In the
rectangular box on the right of (c), the number of lesions is obtained by connected components analysis of the corresponding lesion
areas in the left of (c).
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aimed at segmenting four typical lesions of DR: MAs, HEs,
hard exudates, and soft exudates. In addition, the proposed
method can easily output the counting of different lesions,
so as to diagnose the severity of DR. In this paper, we
designed a novel convolutional neural network named
EAD-Net, which is composed of encoder module, dual
attention module, and decoder module.

The proposed network has significant improvement in
the segmentation of different lesions: MAs, HEs, hard exu-
dates, and soft exudates. Different from the original U-net,
we choose a convolution block with residual structure to
replace the traditional encoder. Since there exist many small
or fuzzy lesions and too many pooling layers might lead too
much semantic information loss, we only use the max pool-
ing layer once to avoid this problem. The dual attention
module is designed to capture long-range contextual infor-
mation in both spatial and channel dimensions, so that the
network can obtain better feature representations. We also
introduce the dilated convolution strategy as an improve-

ment. By setting different dilation rates, we can get larger
receptive field and multiscale contextual information. The
high-resolution information generated by the encoder out-
put can provide more detailed guidance in the segmentation
of lesions.

Compared with other state-of-the-art methods, we
achieve superior performance on two public benchmark
datasets: e_ophtha_EX and IDRiD. As a variant of U-net,
the proposed EAD-Net outperforms the baseline U-net at
both lesion-level and image-level by a large margin. As an
additional validation, the results on the local dataset also
demonstrate the effectiveness of our method.

However, the drawback of EAD-Net is the limited detec-
tion performance for tiny lesions, such as MAs and small
exudates. As an instance shown in Figure 11, there exist
omissions and misidentifications of MAs, and some blood
vessels are also detected as HEs. The reason might be that
unlike natural images, medical images tend to be more com-
plicated, and they are influenced by many factors, such as
imaging equipment, and illumination effect. In the fundus
images of DR, there exist many tiny and fuzzy lesions. It is
not easy to find the boundary between these lesions and
their adjacent pixels, and even professional doctors need a
long time to locate them. To better analyze the experimental
results, we calculated the distribution of labeled lesions in
three datasets. The statistics information is shown in
Table 4.

From Table 4, we can see that the ratio of MAs is very
small, which makes it very difficult to accurately segment.
However, since our study only used a single network struc-
ture, the drawback could be overcome by ensemble networks
or more elaborate preprocessing in a further study.

In the three different datasets we used, there were 35
normal images and 47 abnormal images in the e_ophtha_
EX dataset, while the 81 images in the IDRiD dataset and

ComparisonGround truth Predicted

MAs

HEs

Hard exudates

Soft exudates

Figure 12: Detailed comparison of ground truth and predicted segmentations. Each row represents a kind of lesions. The last column
represents the superimposed image of the first two images in the row. In red: ground truth areas; in blue: predicted lesions areas; in
purple: the intersection of ground truth and prediction.

Table 3: Comparison with U-net on local intelligent
ophthalmology dataset.

Lesion type Model
Lesion based results

SE SP PR ACC F1

MAs
U-net 13.17 99.97 54.07 99.90 21.19

EAD-Net 17.32 99.98 59.26 99.91 26.82

HEs
U-net 73.43 99.93 80.21 99.83 76.67

EAD-Net 83.59 99.95 87.75 99.89 85.62

Hard exudates
U-net 68.38 99.99 98.42 99.96 80.70

EAD-Net 84.60 99.99 93.51 99.98 88.83

Soft exudates
U-net 76.89 99.99 98.86 99.98 86.50

EAD-Net 84.92 99.99 92.78 99.98 88.68

SE: sensitivity; SP: specificity; PR: precision; ACC: accuracy; F1: F1 score.
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262 images in our local intelligent ophthalmology dataset
were all with more or less different lesions. To a certain
degree, the performance of our method on e_ophtha_EX
dataset can demonstrate its robustness to normal samples.
Furthermore, the fundus images of three datasets we used
were from people in different countries, which proved that
the proposed method was robust to a certain extent for dif-
ferent ethnic groups. In further studies, we need to conduct
experiments on a larger and more balanced data distribution
to adapt to various situations in a real world.

5. Conclusion

The DR-AI research based directly on lesions is in line with
clinical diagnostic thinking of ophthalmology. In this paper,
we propose a convolutional neural network architecture
EAD-Net for the lesion segmentation task. The architecture
can be divided into three parts: encoder module, dual atten-
tion module, and decoder module. On both public and local
datasets, we compare the performance of the EAD-Net with
other state-of-the-art methods and prove its superiority.
Experimental results show that our network has satisfactory
results on the segmentation of four different kinds of lesions.

These effective segmentation results have important clinical
significance in the screening and diagnosis of DR. With
more accurate performance and appropriate diagnostic rules
based on the lesions, the proposed method will be more suit-
able for the clinical application.

Data Availability
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sets) are cited at relevant places within the text as refer-
ences [1, 29]. The local intelligent ophthalmology dataset
used to support the findings of this study is from the
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ings are commercialized. Requests for data, 6 months after
publication of this article, will be considered by the
corresponding author.

Conflicts of Interest

The authors declared no potential conflicts of interest with
respect to the research, authorship, and publication of this
article.

Acknowledgments

This work was supported by Chinese Postdoctoral Science
Foundation (2019M661832), Jiangsu Planned Projects for
Postdoctoral Research Funds (2019K226), Jiangsu Province
Advantageous Subject Construction Project, and Nanjing
Enterprise Expert Team Project. The materials in this work
were partly supported by the Affiliated Eye Hospital of Nan-
jing Medical University.

ROC curve
1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC: 0.9794 (hard exudates)

AUC: 0.9824 (haemorrhages)

AUC: 0.7898 (microaneurysms)

AUC: 0.9521 (soft exudates)

(a)

AUC: 0.9788 (hard exudates)

AUC: 0.9914 (haemorrhages)

AUC: 0.8486 (microaneurysms)

AUC: 0.9582 (soft exudates)

ROC curve
1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0.0

0.0
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

(b)

Figure 13: Evaluation on the local intelligent ophthalmology dataset. Different colored curves represent different types of lesions. (a) ROC
curves of U-net. (b) ROC curves of EAD-Net.

Table 4: Statistical information of lesion areas of e-ophtha, IDRiD,
and local intelligent ophthalmology datasets.

Dataset MAs HEs
Hard

exudates
Soft

exudates

E-
ophtha

0.01% (148) — 0.22% (47) —

IDRiD 0.10% (81) 1.03% (80) 0.90% (81) 0.38% (40)

Local 0.02% (63) 0.91% (84) 0.48% (86) 0.32% (29)

Number1 (Number2) refers to the fact that there are Number2 images of
this lesion type in the corresponding dataset, and the average percentage
of this lesion area to the total image area is Number1. To maintain data
consistency, only the images containing lesions have been used in Number1.
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