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Abstract: Crops grown under stress conditions show restricted growth and, eventually, reduced
yield. Among others, brassinosteroids (BRs) mitigate the effects of stress and improve plant growth.
We used two barley cultivars with differing sensitivities to BRs, as determined by the lamina joint
inclination test. Barley plants with the 2nd unfolded leaf were sprayed with a diluted series of bikinin,
an inhibitor of the Glycogen Synthase Kinase 3 (GSK3) family, which controls the BR signaling
pathway. Barley was grown under salt stress conditions up to the start of the 5th leaf growth stage.
The phenotypical, molecular, and physiological changes were determined. Our results indicate that
the salt tolerance of barley depends on its sensitivity to BRs. We confirmed that barley treatment with
bikinin reduced the level of the phosphorylated form of HvBZR1, the activity of which is regulated
by GSK3. The use of two barley varieties with different responses to salinity led to the identification
of the role of BR signaling in photosynthesis activity. These results suggest that salinity reduces the
expression of the genes controlling the BR signaling pathway. Moreover, the results also suggest that
the functional analysis of the GSK3 family in stress responses can be a tool for plant breeding in order
to improve crops’ resistance to salinity or to other stresses.

Keywords: 24-epibrassinolide; brassinosteroids; BR signaling pathway; BZR1; Golden Promise;
GSK3; Haruna Nijo; inhibitor; PSII; RNA-Seq

1. Introduction

Brassinosteroids (BRs) are a class of plant polyhydroxylated steroid hormones, which
are involved in many developmental processes and stress responses. Brassinolide (BL),
an end-product of the BR biosynthetic pathway, is a signaling molecule recognized by
Brassinosteroid Insensitive 1 (BRI1) [1]. The binding of BL by BRI1 leads to conformational
changes in this receptor and the disconnection of BRI1 Kinase Inhibitor 1 (BKI1) [2], result-
ing in its association with BRI1 associated receptor kinase 1 (BAK1) [3,4]. The BRI1-BAK1
transmembrane receptor initiates a cascade of phosphorylation and dephosphorylation of
cytoplasmic relay proteins, leading to dephosphorylation and the inactivation of kinases
from the Glycogen Synthase Kinase 3 (GSK3) family [5–7]. The GSK3 family controls many
transcription factors (TFs), e.g., those regulating cell elongation and cell division, root
meristem and root development, lateral root development, stomatal development, xylem
differentiation, vascular cambial activity, chloroplast development, photomorphogenesis,
hypocotyl elongation, floral organ development, flowering, seed development, fruit ripen-
ing, sugar content in fruits, and responses to stress (salt, drought, cold, and biotic) [8].
The GSK3s family is represented by four kinase groups [9]; nine are known to date in
rice (Oryza sativa L.) [10], seven in barley (Hordeum vulgare L.) [11], eleven in maize (Zea
mays L.) [12], and ten in Arabidopsis (Arabidopsis thaliana L.) [13]. At low BR concentrations,
GSK3 phosphorylates Brassinzaole Resistant 1 (BZR1), one of the major TFs, leading to its
proteasomal degradation [14]. The activity of BZR1 is regulated by 14-3-3 protein [15,16]
and Protein Phosphatase 2A [17].
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The 4-[(5-bromo-2-piridynyl)amino]-4-oxobutanoic acid (bikinin) compound has been
identified among the library of 10,000 compounds as one that induces constitutive BR
responses in Arabidopsis, i.e., a significant increase in hypocotyl length; long and bending
petioles; and blade-shaped, pale-green leaves, as well as effects comparable to those ob-
tained with treatment with BL at micromolar concentrations, in which lateral root density
was reduced [18]. Consecutive analyses with bikinin and its inactive variant showed that
treatment induced petiole and hypocotyl elongation under light and dark growth condi-
tions, allowing researchers to conclude that Brassinosteroid Insensitive 2 (BIN2–the best
characterized kinase from the GSK3 family) is a direct target of this compound. Due to its
role in inactivating BIN2, the name of bikinin was derived from its role in the BR signaling
pathway, i.e., BIN2 kinase inhibitor. Bikinin folds the lamina joint of barley, similarly to
24-epibrassinolide (24-EBL), and has resulted in a similar phenotype under optimal and
salt stress conditions [19].

Previously, BRs have been shown to regulate the fruit ripening of tomato (Solanum
lycopersicon L.) [20,21], persimmon (Diospyros kaki L.) [22], grapevine (Vitis vinifera L.) [23],
pear (Pyrus ussuriensis Maxim.), and apple (Malus domestica Borkh.) [24] plants, as well
as affecting the yield of crops by regulating grain formation, which has been the best
characterized in rice [25–29]. Moreover, BRs have been shown to positively regulate salt
stress tolerance in many species, e.g., canola (Brassica napus L.) [30], brown mustard (Brassica
juncea L.) [31], pepper (Capsicum annuum L.) [32], pea (Pisum sativum L.) [33], tomato [34],
potato (Solanum tuberosum L.) [35], barley [19], rice [36], and wheat (Triticum aestivum L.) [37].
The regulatory role of BRs has been investigated by applying bioactive 24-EBL [38], BL,
and 28-homobrassinolide [39] or by using mutants with the genetic dissection of the BR
biosynthetic pathway [40–44]. However, the role of GSK3s in barley development using
bikinin has not yet been reported. Here we present the results of the application bikinin
to barley plants and the long-term effects of GSK3 family inhibition on barley growth
under high-salinity conditions. According to the results presented by Honda et al. [44]
and Groszyk and Szechyńska-Hebda [45], we considered that the best approach to analyze
GSK3s function in barley development was to use a GSK3s inhibitor, i.e., bikinin. We
assumed that because of its specificity for GSK3s [46] and its lack of toxic effects, as with
another GSK3s inhibitor, i.e., lithium [47–49], we would be able to characterize the initial
molecular and physiological processes in which GSK3s are involved. The analyses were
performed during the outset of the formation of side shoots phase, when tillers were still
invisible, i.e., the BBCH20 growth stage according to the BBCH-scale, which is used to
identify the phenological development stages of plants [50]. Therefore, the aim of this
study was to understand the long-term response of barley plants exposed to salinity to
bikinin treatment.

2. Results
2.1. Bikinin-Induced Phenotypical Responses in Salt-Stressed Barley

To test the function of GSK3 in barley development under the effects of salinity, the
bikinin treatment was applied to two barley cultivars with differing sensitivities to exoge-
nous BRs, which were previously determined [19]. Golden Promise and more sensitive to
BRs Haruna Nijo while growing under control conditions, showed genotype-dependent
differences in BBCH20, i.e., shoot length, shoot fresh weight, as well as the areas and
lengths of the consecutive leaves (Table 1). Haruna Nijo had 1.2-fold longer shoots, with
1.3-fold higher fresh weight and 1.6-fold higher dry weight compared to Golden Promise
under optimal conditions (Figure 1a–c), whereas differences in root parameters were neg-
ligible (Figure 1d–f). The most differentiating parameters were the lengths and areas of
the consecutive leaves. The 1st, 2nd, 3rd, and 4th leaves of Haruna Nijo were 1.7-fold,
1.3-fold, 1.1-fold, and 1.2-fold longer, with 2.2-fold, 1.7-fold, 1.2-fold, and 1.2-fold greater
surface areas, respectively, than those of Golden Promise (Figure 1g,h). Salinity reduced
growth parameters in a genotype-dependent manner (Table 1) and barley plants reached
the BBCH20 stage ~7 days later. We observed the relevant changes in shoot length and fresh
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weight and root length. The measured parameters were considerably lower in Haruna
Nijo under conditions of salinity (shoot length, 81.6%; fresh weight, 59.6%; dry weight,
85.6%; root length, 85.3%; fresh weight, 71.1%; and dry weight, 73.0%) than in Golden
Promise (shoot length, 90.8%; fresh weight, 75.7%; dry weight, 163.9%; root length, 91.6%;
fresh weight, 108.2%; and dry weight, 141.0%), indicating the greater resistance of Golden
Promise to 150 mM sodium chloride (NaCl). The reduced sensitivity of Golden Promise
to salinity resulted in significantly reduced length (79.0%) and area (64.3%) of the 4th leaf,
whereas in Haruna Nijo, the reduction in these parameters started from the 3rd and 4th
leaf (length, 94.4% and 68.1%; area, 79.0% and 52.3%, respectively). Similarly to previous
reports [19], these results indicate the greater sensitivity of Haruna Nijo to salinity.

Table 1. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under two conditions (control conditions and salt stress induced by 150 mM sodium chloride)
were calculated for aboveground and belowground organ traits (length; FW, fresh weight; DW, dry
weight; area). MS—mean square; F—F-test; p—p-value; red characters—significant changes.

Organs Parameters
Genotype Conditions Genotype × Conditions

MS F p MS F p MS F p

Shoot
Length 85.504 18.629 0.000 168.010 36.604 0.000 27.094 5.903 0.025

FW 0.639 7.950 0.011 4.056 50.464 0.000 0.524 6.519 0.019
DW 0.00810 3.701 0.069 0.009 4.186 0.054 0.043 19.453 0.000

Root
Length 28.602 1.605 0.220 88.935 4.991 0.037 9.127 0.512 0.482

FW 0.00146 0.083 0.776 0.023 1.341 0.260 0.063 3.580 0.073
DW 0.00014 0.456 0.507 0.00000 0.001 0.982 0.003 9.881 0.005

Area of
the leaf

1st 255.180 200.257 0.000 1.058 0.831 0.373 0.468 0.367 0.551
2nd 218.890 133.589 0.000 1.097 0.670 0.423 6.723 4.103 0.056
3rd 21.015 11.300 0.003 51.744 27.824 0.000 12.152 6.535 0.019
4th 12.003 2.160 0.157 325.452 58.569 0.000 17.230 3.101 0.094

Length of
the leaf

1st 204.050 206.101 0.000 10.415 10.520 0.004 0.088 0.089 0.768
2nd 141.305 76.308 0.000 0.680 0.367 0.551 1.549 0.836 0.371
3rd 4.096 2.017 0.171 1.044 0.514 0.482 5.425 2.672 0.118
4th 56.912 10.419 0.004 247.555 45.321 0.000 23.278 4.261 0.052

The application of 10 µM bikinin under conditions of salinity increased shoot and root
length (112.9% and 114.7%, respectively) and the length and surface area of the 4th leaf
(117.2% and 128.2%, respectively). The 50 µM bikinin treatment, applied during salinity,
improved growth parameters in Haruna Nijo shoots (length, 107.2%; fresh weight, 118.9%;
dry weight, 128.1%; 4th leaf length and area, 124.8% and 139.0%, respectively) and roots
(length, 115.0%; fresh weight, 135.7%; dry weight, 131.7%), whereas in Golden Promise the
root length (82.5%) and the area of the 1st leaf (76.9%) were reduced. On the other hand,
100 µM bikinin significantly improved the fresh and dry weights of aboveground and
belowground organs (shoots, 118.0% and 126.9%; roots, 145.5% and 134.4%, respectively)
and the 4th leaf length and area (139.8% and 153.1%, respectively) in Haruna Nijo under the
same conditions, suggesting that bikinin at higher concentrations improved barley growth
under conditions of salinity. Contrary to this finding, the phenotype of Golden Promise
was worse than those of the corresponding controls after the administration of 50 µM and
100 µM bikinin (Figure 2, Table 2).
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Figure 1. Treatment with bikinin resulted in phenotypic changes in barley grown under normal and 
salt stress conditions. Shoot length (a), fresh (b), and dry (c) biomass and root length (d), fresh (e), 
and dry (f) weight, and leaves’ length (g) and area (h) after bikinin treatment with 10 µM, 50 µM, 
and 100 µM (BK10, BK50, and BK100, respectively), compared to controls with 0.11% DMSO (CK) 
used as a background for solvent solutions for each bikinin concentration. Non-treated plants were 
used as a control for the 0.11% DMSO treatment. The values in (a–h) represent the mean and stand-
ard error for six biological replicates. The results of the HSD Tukey test analysis are presented in 
Table S1 (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001). 

  

Figure 1. Treatment with bikinin resulted in phenotypic changes in barley grown under normal and
salt stress conditions. Shoot length (a), fresh (b), and dry (c) biomass and root length (d), fresh (e),
and dry (f) weight, and leaves’ length (g) and area (h) after bikinin treatment with 10 µM, 50 µM, and
100 µM (BK10, BK50, and BK100, respectively), compared to controls with 0.11% DMSO (CK) used
as a background for solvent solutions for each bikinin concentration. Non-treated plants were used
as a control for the 0.11% DMSO treatment. The values in (a–h) represent the mean and standard
error for six biological replicates. The results of the HSD Tukey test analysis are presented in Table S1
(*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 24 
 

 

 

 
Figure 2. Treatment with bikinin resulted in phenotypic changes in barley growth under normal 
and salt stress conditions. Barley phenotypes after bikinin treatment with 10 µM, 50 µM, and 100 
µM (BK10, BK50, and BK100, respectively) compared to controls with 0.11% DMSO (CK) used as a 
background for solvent solutions for each bikinin concentration. Non-treated plants (NT) were used 
as a control for the 0.11% DMSO treatment. 

Table 2. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo) 
grown under salt stress (150 mM sodium chloride) after bikinin treatment (non-treated; treated with 
0.11% DMSO; and treated with 10 µM, 50 µM, and 100 µM bikinin dissolved in 0.11% DMSO) were 
calculated for aboveground and belowground organ traits (length; FW, fresh weight; DW, dry 
weight; area). MS—mean square; F—F-test; p—p-value; red characters—significant changes. 

Organs Parameters 
Genotype Treatment Genotype × Treatment 

MS F p MS F p MS F p 

Shoot 
Length 41.500 12.734 0.001 20.868 6.403 0.000 6.418 1.970 0.114 

FW 1.536 21.918 0.000 0.13566 1.936 0.119 0.112 1.601 0.189 
DW 0.004 1.455 0.233 0.00417 1.486 0.221 0.00753 2.681 0.042 

Root  
Length 3.651 0.270 0.606 10.016 0.741 0.569 36.755 2.719 0.040 

FW 0.00000 0.000 0.993 0.02550 2.403 0.062 0.04557 4.295 0.005 
DW 0.00024 1.205 0.278 0.00032 1.615 0.185 0.00078 3.931 0.008 

Area of the leaf 

1st  685.160 435.335 0.000 2.472 1.571 0.197 2.161 1.373 0.257 
2nd 540.606 240.356 0.000 1.051 0.467 0.759 2.831 1.259 0.299 
3rd 36.787 10.374 0.002 3.594 1.013 0.409 3.764 1.062 0.385 
4th 117.695 22.348 0.000 23.623 4.485 0.004 20.049 3.807 0.009 

Length of the 
leaf 

1st  402.284 352.902 0.000 2.672 2.344 0.067 1.448 1.270 0.294 
2nd 238.666 93.288 0.000 4.755 1.859 0.132 1.477 0.577 0.680 
3rd 0.003 0.001 0.976 11.367 3.155 0.022 4.618 1.282 0.290 
4th 182.614 29.855 0.000 53.148 8.689 0.000 12.433 2.033 0.104 
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(Table 3). Relative water content and relative turgidity, which were reduced under salin-
ity, were improved with bikinin treatment (Figure 3). The water content in the 3rd leaf 
depended on the barley genotype and the bikinin concentration used (Table 4). In addi-
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Figure 2. Treatment with bikinin resulted in phenotypic changes in barley growth under normal and
salt stress conditions. Barley phenotypes after bikinin treatment with 10 µM, 50 µM, and 100 µM
(BK10, BK50, and BK100, respectively) compared to controls with 0.11% DMSO (CK) used as a
background for solvent solutions for each bikinin concentration. Non-treated plants (NT) were used
as a control for the 0.11% DMSO treatment.
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Table 2. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under salt stress (150 mM sodium chloride) after bikinin treatment (non-treated; treated with
0.11% DMSO; and treated with 10 µM, 50 µM, and 100 µM bikinin dissolved in 0.11% DMSO) were
calculated for aboveground and belowground organ traits (length; FW, fresh weight; DW, dry weight;
area). MS—mean square; F—F-test; p—p-value; red characters—significant changes.

Organs Parameters
Genotype Treatment Genotype × Treatment

MS F p MS F p MS F p

Shoot
Length 41.500 12.734 0.001 20.868 6.403 0.000 6.418 1.970 0.114

FW 1.536 21.918 0.000 0.13566 1.936 0.119 0.112 1.601 0.189
DW 0.004 1.455 0.233 0.00417 1.486 0.221 0.00753 2.681 0.042

Root
Length 3.651 0.270 0.606 10.016 0.741 0.569 36.755 2.719 0.040

FW 0.00000 0.000 0.993 0.02550 2.403 0.062 0.04557 4.295 0.005
DW 0.00024 1.205 0.278 0.00032 1.615 0.185 0.00078 3.931 0.008

Area of
the leaf

1st 685.160 435.335 0.000 2.472 1.571 0.197 2.161 1.373 0.257
2nd 540.606 240.356 0.000 1.051 0.467 0.759 2.831 1.259 0.299
3rd 36.787 10.374 0.002 3.594 1.013 0.409 3.764 1.062 0.385
4th 117.695 22.348 0.000 23.623 4.485 0.004 20.049 3.807 0.009

Length
of the
leaf

1st 402.284 352.902 0.000 2.672 2.344 0.067 1.448 1.270 0.294
2nd 238.666 93.288 0.000 4.755 1.859 0.132 1.477 0.577 0.680
3rd 0.003 0.001 0.976 11.367 3.155 0.022 4.618 1.282 0.290
4th 182.614 29.855 0.000 53.148 8.689 0.000 12.433 2.033 0.104

Water balance in barley under saline conditions depends on the genotype and the
conditions; however, the different genotypes’ reactions to growth conditions were similar
(Table 3). Relative water content and relative turgidity, which were reduced under salin-
ity, were improved with bikinin treatment (Figure 3). The water content in the 3rd leaf
depended on the barley genotype and the bikinin concentration used (Table 4). In addition,
the parameters also depended on the responses of the genotypes to the bikinin treatment,
whereas the relative turgidity and water deficit results were significantly different. Water
deficit, measured in the 3rd leaf, was increased 4.6-fold in Golden Promise, and 16.2-fold
in Haruna Nijo under saline conditions (Figure 3c). The application of 100 µM bikinin
significantly reduced water deficits (76.6–80.5%) in both cultivars under saline conditions
(Figure 3c).

Table 3. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under two conditions (control conditions and salt stress induced by 150 mM sodium chloride)
were calculated for aboveground and belowground organ traits (length; FW, fresh weight; DW, dry
weight; area). MS—mean square; F—F-test; p—p-value; red characters—significant changes.

Parameters
Genotype Conditions Genotype × Conditions

MS F p MS F p MS F p

Relative
water content 1.736 1.614 0.219 108.614 100.979 0.000 0.879 0.817 0.377

Relative
turgidity 139.466 28.594 0.000 2807.78 575.670 0.000 0.192 0.039 0.845

Water deficit 139.466 28.594 0.000 2807.78 575.670 0.000 0.192 0.039 0.845
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Figure 3. Treatment with bikinin resulted in phenotypic changes in barley grown under normal and salt
stress conditions. Relative water content (a), relative turgidity (b), and water deficit (c) after treatment
with 10 µM, 50 µM, and 100 µM bikinin (BK10, BK50, and BK100, respectively), compared to controls
with 0.11% DMSO (CK), used as background for solvent solutions for each bikinin concentration.
Non-treated plants were used as a control for the 0.11% DMSO treatment. The values in (a–c) represent
the mean and standard error for six biological replicates. The results of the HSD Tukey test analysis are
presented in Table S2 (*, p ≤ 0.05; ***, p ≤ 0.001).

Table 4. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under salt stress (150 mM sodium chloride) after bikinin treatment (non-treated; treated
with 0.11% DMSO; and treated with 10 µM, 50 µM, and 100 µM bikinin dissolved in 0.11% DMSO)
were calculated for the 3rd leaf (length; FW, fresh weight; DW, dry weight; area). MS–mean square;
F–F-test; p–p-value; red characters–significant changes.

Parameters
Genotype Treatment Genotype × Treatment

MS F p MS F p MS F p

Relative
water content 23.872 22.189 0.000 2.890 2.686 0.042 0.664 0.617 0.652

Relative
turgidity 210.531 65.462 0.000 89.337 27.778 0.000 22.291 6.931 0.000

Water deficit 210.531 65.462 0.000 89.337 27.778 0.000 22.291 6.931 0.000

2.2. RNA-Seq Analysis

Based on the phenotypical results, the 3rd and the 4th leaves of barley plants treated
with 10 µM and 100 µM bikinin, as well as plants treated with 0.11% DMSO as controls (CK),
were used for transcriptome analysis under conditions of salinity. A total of 1235.51 million
(1,235,515,176) clean reads were obtained for all samples, with an average of 34.32 million
pair-end reads with a size of 100 bp for each sample, and an average of 96.16% Q20. After
removing adaptor sequences and low-quality reads, all clean reads were mapped to the
barley reference genome IBSC_v2 [51]. The results showed that an average of 29.687 million
reads were uniquely mapped to the reference genome (Table S4). To determine the genes
regulated by bikinin under saline conditions, the mean normalized counts were calculated,
and then used to identify differentially expressed genes (DEGs). Using log2-fold change
(<1 and <−1), and Padj < 0.01, we identified 2807 up- and downregulated DEGs (1700
and 1107, respectively) differentiating both barley genotypes under salinity conditions. To
capture changes in gene expression during bikinin treatment, we compared the transcript
levels of the samples. 117 and 150 genes were identified as a DEGs regulated by 10 µM and
100 µM bikinin in Golden Promise and Haruna Nijo, respectively (Figure 4).
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Figure 4. Venn diagrams showing the number of DEGs identified in barley leaves (3rd and 4th) after
treatment with two concentrations of bikinin (10 µM and 100 µM) compared with the controls with
0.11% DMSO (CK) used as a background for the solvent solutions for each concentration of bikinin.
Common DEGs identified in Golden Promise (left) and Haruna Nijo (right). DEGs were identified via
bioinformatic analysis of three biological replicates of each sample and log2-fold change (<1 and <−1)
and Padj < 0.01. Raw data are presented in Table S3.

Between CK and 10 µM bikinin, 5 and 7 genes were upregulated and 4 and 26 were
downregulated in Golden Promise and Haruna Nijo, respectively (Figure 5). Then, between
CK and 100 µM bikinin, 68 and 87 genes were differentially expressed in Golden Promise
(57 upregulated and 11 downregulated) and Haruna Nijo (67 upregulated and 20 downreg-
ulated), respectively. A total of 75 DEGs exhibited differential expression patterns between
10 µM and 100 µM bikinin in Golden Promise (53 upregulated, 22 downregulated). In
comparison, 48 upregulated and 10 downregulated genes were identified in Haruna Nijo.
12 genes were identified between Golden Promise and Haruna Nijo after bikinin treatment.
None of the genes identified after bikinin treatment were found in the group of 2807 DEGs
differentiating both cultivars. On the other hand, 15 DEGs were identified as a common
bikinin-regulated genes in both genotypes.
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Figure 5. Treatment with bikinin resulted in molecular changes in barley grown under salt stress
conditions. Up- and downregulated genes after treatment with 10 µM and 100 µM bikinin (BK10
and BK100, respectively) compared to controls with 0.11% DMSO (CK) used as a background for
the solvent solutions used for each bikinin concentration. Non-treated plants were used as a control
for the 0.11% DMSO treatment. Results represent the means of 3 biological replicates. Raw data are
presented in Table S3.
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According to the Phanter Classification System, a total of 117 genes in Golden Promise
and 141 genes in Haruna Nijo were involved in a molecular function, a biological process,
and a cellular component (Figure 6a). 15 genes were the same for both barley cultivars.
Molecular function included six sub-categories for Golden Promise and five sub-categories
for Haruna Nijo, i.e., catalytic activity, binding, transcriptional regulator activity, transporter
activity, molecular function regulator, and molecular transducer activity. The biological
process contained seven sub-categories for Golden Promise and eight sub-categories for
Haruna Nijo, i.e., cellular process, metabolic process, biological regulation, response to
stimulus, signaling, localization, developmental process, locomotion, and multicellular
organismal process. The cellular component contained two sub-categories for both geno-
types, i.e., cellular anatomical entity and protein-containing complex. The protein class
contained seven and eight sub-categories for Golden Promise and Haruna Nijo, respectively,
among which the metabolite interconversion enzyme, gene-specific transcriptional regu-
lators, and transporter sub-categories possessed the most abundant unigenes (Figure 6b).
Moreover, we identified transmembrane signaling receptors, protein modifying enzymes,
RNA metabolism proteins, calcium-binding proteins, cytoskeletal proteins, and chaperone
protein classes.
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Figure 6. Treatment with bikinin resulted in molecular changes in barley grown under salt stress con-
ditions. Molecular function (yellow), biological process (orange), and cellular component (green) (a);
protein class (b); and gene classification (c) after treatment with 10 µM and 100 µM bikinin compared
to controls with 0.11% DMSO used as a background for the solvent solutions for each bikinin concen-
tration. Non-treated plants were used as a control for the 0.11% DMSO treatment. Results represent
the means for three biological replicates. Raw data are presented in Tables S3 and S4.
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A total of 256 genes were annotated in fifteen sub-categories for Golden Promise
(112 genes) and twenty one sub-categories for Haruna Nijo (144 genes) (Figure 6c), but
25% and 19% of them were assigned to ‘not assigned.annotated’ and 27% and 20% to ‘not
assigned.not annotated’, respectively, suggesting that the functions of more genes were
worth exploring. In addition, enzyme classification, RNA biosynthesis, and photosynthesis
were the three other main categories, which contained 30 and 52 genes for Golden Promise
and Haruna Nijo, respectively. Furthermore, 22 and 27 genes were assigned to protein
modification, protein homeostasis, solute transport, carbohydrate metabolism, amino acid
metabolism, lipid metabolism, secondary metabolism, phytohormone action, and external
stimuli response. Moreover, cell wall organization was characteristic of Golden Promise,
and nucleotide metabolism, polyamine metabolism, RNA processing, nutrient uptake,
and multi-process regulation were characteristic of Haruna Nijo, with 2 and 9 genes, re-
spectively. Common DEGs for Golden Promise and Haruna Nijo that were regulated as
a result of bikinin treatment involved 3 genes representing the group of ‘enzyme clas-
sification’, i.e., beta-glucosidase 5, flavonoid 3′monooxygenase CYP75B3, and probably
xyloglucan endotransglucosylase/hydrolase protein 28; ‘RNA biosynthesis’, i.e., transcrip-
tion factor (WRKY); ‘protein modification’, i.e., protein kinase (WAK/WAKL); ‘external
stimuli response’, i.e., regulatory protein (CBP60) of systemic acquired resistance; and
‘photosynthesis’, i.e., LHC-related protein (ELIP) and component PsbR of the PS-II complex.
Moreover, 3 genes were ‘not assigned’.

2.3. Photosystem II Eficiency under Salinity

Two-way ANOVA indicated that the efficiency of photosystem II (PSII) was regu-
lated by salinity in both barley cultivars and that the measured parameters depended
on genotype, growth conditions, and parameters of quantum yield of the primary PSII
photochemistry (Fv/Fo), efficiency and flow of energy (Fv/Fm, ψ0, ϕP0, ϕE0, ϕD0), and
performance index (PI ABS) (Table 5). On the other hand, the bikinin treatment results
indicated that only electron transport flux per reaction center was genotype-dependent,
whereas other measured parameters under conditions of salinity depended on barley’s
response to bikinin treatment (Table 6). The analysis of consecutive parameters indicated
that under salinity conditions the efficiency of electron transport (ϕE0, ψ0) was elevated,
whereas trapped and dissipated energy flux per reaction center (TR0/RC, DI0/RC) and
absorption flux per reaction center (ABS/RC) were lower in the 3rd leaves of Golden
Promise (Figure 7a). Moreover, the performance index (PI ABS) was significantly in-
creased under saline conditions. The opposite effect was observed after bikinin treatment
(Figure 7c). The higher the bikinin concentration, the lower the PI ABS and the efficiency of
electron transport (ϕE0, ψ0), whereas the trapped and dissipated energy flux per reaction
center (TR0/RC, DI0/RC) and the absorption flux per reaction center (ABS/RC) increased.
Moreover, 50 µM and 100 µM bikinin treatments led to a decrease in the quantum yield
of primary PSII photochemistry (Fv/Fo) and an increase in quantum yield for energy
dissipation (ϕDo). A similar but negligible effect was observed with the application of
150 mM NaCl to Haruna Nijo (Figure 7b). Haruna Nijo under saline conditions showed a
negligible increased performance index (PI ABS) and reduced quantum yield of the primary
PSII photochemistry (Fv/Fo), which resulted in an increased quantum yield for energy
dissipation (ϕDo). The reduced absorption flux per reaction center (ABS/RC) lowered the
trapped energy flux per reaction center (TR0/RC), consequently lessening electron trans-
port flux per reaction center (ET0/RC) and negligibly increasing the dissipated energy flux
per reaction center (DI0/RC). Bikinin treatment improved the quantum yield of the primary
PSII photochemistry (Fv/Fo) and reduced the quantum yield for energy dissipation (ϕDo)
and dissipated energy flux per reaction center (DI0/RC) (Figure 7d).
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Table 5. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna
Nijo) grown under two conditions (control conditions and salt stress induced by 150 mM sodium
chloride) were calculated for photosystem II efficiency, measured in the 3rd leaf (Fv/Fo, PSII potential
activity; Fv/Fm, PSII maximum photochemical efficiency; Ψo, probability (at t = 0) that a trapped
excitation moves an electron into the electron transport chain beyond QA; ϕPo, maximum quantum
yield of primary photochemistry (at t = 0); ϕEo, quantum yield of electron transport (at t = 0);
ϕDo, quantum yield (at t = 0) of energy dissipation; PI ABS, performance index (potential) for energy
conservation from an exciton to the reduction of intersystem electron acceptors; ABS/RC, absorption
flux (of antenna Chls) per RC; TRo/RC, trapping flux (leading to QA reduction) per RC; ETo/RC,
electron transport flux (further than QA−) per RC; DIo/RC, dissipated energy flux per RC (at t = 0)).
MS—mean square; F—F-test; p—p-value; red characters—significant changes.

Parameters
Genotype Conditions Genotype × Conditions

MS F p MS F p MS F p

Fv/Fo 0.88032 16.604 0.001 0.30702 5.791 0.029 0.30455 5.744 0.029
Fv/Fm 0.00151 15.586 0.001 0.00063 6.458 0.022 0.00061 6.229 0.024

Ψo 0.01086 31.483 0.000 0.03168 91.862 0.000 0.00166 4.802 0.044
ϕPo 0.00151 15.586 0.001 0.00063 6.458 0.022 0.00061 6.229 0.024
ϕEo 0.01142 29.127 0.000 0.01659 42.294 0.000 0.00225 5.729 0.029
ϕDo 0.00151 15.586 0.001 0.00063 6.458 0.022 0.00061 6.229 0.024

PI ABS 10.2159 23.157 0.000 13.7846 31.246 0.000 3.34726 7.587 0.014
ABS/RC 0.08489 11.995 0.003 0.45632 64.479 0.000 0.00012 0.017 0.898
TRo/RC 0.02865 8.559 0.010 0.34348 102.605 0.000 0.00088 0.264 0.614
ETo/RC 0.00150 1.818 0.196 0.01017 12.358 0.003 0.00295 3.588 0.076
DIo/RC 0.01491 15.934 0.001 0.00808 8.637 0.010 0.00169 1.810 0.197

Table 6. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under salt stress (150 mM sodium chloride) after bikinin treatment (non-treated; treated
with 0.11% DMSO; and treated with 10 µM, 50 µM, and 100 µM bikinin dissolved in 0.11% DMSO)
were calculated for photosystem II efficiency, measured in the 3rd leaf (Fv/Fo, PSII potential ac-
tivity; Fv/Fm, PSII maximum photochemical efficiency; Ψo, probability (at t = 0) that a trapped
excitation moves an electron into the electron transport chain beyond QA; ϕPo, maximum quantum
yield of primary photochemistry (at t = 0); ϕEo, quantum yield of electron transport (at t = 0);
ϕDo, quantum yield (at t = 0) of energy dissipation; PI ABS, performance index (potential) for energy
conservation from an exciton to the reduction of intersystem electron acceptors; ABS/RC, absorption
flux (of antenna Chls) per RC; TRo/RC, trapping flux (leading to QA reduction) per RC; ETo/RC,
electron transport flux (further than QA−) per RC; DIo/RC, dissipated energy flux per RC (at t = 0)).
MS—mean square; F—F-test; p—p-value; red characters—significant changes.

Parameters
Genotype Treatment Genotype × Treatment

MS F p MS F p MS F p

Fv/Fo 0.05511 0.550 0.463 0.15640 1.560 0.204 0.51010 5.088 0.002
Fv/Fm 0.00015 0.768 0.386 0.00029 1.512 0.217 0.00097 5.023 0.002

Ψo 0.00143 3.386 0.073 0.00085 2.013 0.111 0.00315 7.484 0.000
ϕPo 0.00015 0.768 0.386 0.00029 1.512 0.217 0.00097 5.023 0.002
ϕEo 0.00054 0.960 0.333 0.00101 1.787 0.150 0.00382 6.734 0.000
ϕDo 0.00015 0.768 0.386 0.00029 1.512 0.217 0.00097 5.023 0.002

PI ABS 0.15114 0.230 0.634 0.93804 1.426 0.243 4.23774 6.441 0.000
ABS/RC 0.00442 0.751 0.391 0.00455 0.773 0.549 0.02126 3.615 0.013
TRo/RC 0.00118 0.492 0.487 0.00230 0.956 0.442 0.00650 2.705 0.044
ETo/RC 0.00478 6.349 0.016 0.00175 2.326 0.073 0.00179 2.382 0.068
DIo/RC 0.00106 0.866 0.358 0.00133 1.089 0.375 0.00578 4.730 0.003
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Figure 7. Diagrams presenting photosystem II efficiency under salinity (a,b) and after bikinin
treatment (non-treated; treated with 0.11% DMSO; and treated with 10 µM, 50 µM, and 100 µM
bikinin (BK10, BK50, and BK100, respectively) dissolved in 0.11% DMSO (CK)) (c,d) in Golden
Promise (a,c) and Haruna Nijo (b,d). Values represent the mean and standard error for 6 biological
replicates. The results of HSD Tukey test analysis are shown in Table S4. Fv/Fo, PSII potential
activity; Fv/Fm, PSII maximum photochemical efficiency; Ψo, probability (at t = 0) that a trapped
excitation moves an electron into the electron transport chain beyond QA; ϕPo, maximum quantum
yield of primary photochemistry (at t = 0); ϕEo, quantum yield of electron transport (at t = 0);
ϕDo, quantum yield (at t = 0) of energy dissipation; PI ABS, performance index (potential) for energy
conservation from an exciton to the reduction of intersystem electron acceptors; ABS/RC, absorption
flux (of antenna Chls) per RC; TRo/RC, trapping flux (leading to QA reduction) per RC; ETo/RC,
electron transport flux (further than QA−) per RC; DIo/RC, dissipated energy flux per RC (at t = 0).
The results of HSD Tukey test analysis are presented in Table S5.

These results are consistent with the DEGs identified, 5 of which were common
for both genotypes (4 genes encoding LHC-related protein (ELIP) and 1 gene encoding
the PsbR component of the PSII complex), and 4 other genes encoding ELIP in Golden
Promise, with 19 genes encoding component LHCb1/2/3 of the LHC-II complex (14 genes),
ELIP (4 genes), and the regulatory factor (CURT) of thylakoid grana stacking (1 gene)
(Figure 8). The above results confirmed that the amounts of all DEGs (common characteris-
tics of Golden Promise, and characteristics of Haruna Nijo) in the 3rd and the 4th leaves of
barley were opposite, i.e., the amount of genes was increased with a higher concentration
of bikinin in Golden Promise. The same concentration of this chemical led to a reduced
amount of the genes in Haruna Nijo. All identified DEGs involved in photosynthesis are
shown in Figure 8. Moreover, the differing levels of a few genes were compared between
Golden Promise and Haruna Nijo under conditions of salinity.
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Figure 8. Differentially expressed genes (DEGs) involved in photosynthesis identified in leaves
(3rd and 4th) of two barley cultivars, i.e., Golden Promise and Haruna Nijo, after bikinin treat-
ment, identified in both cultivars (a), in Golden Promise (b), and in Haruna Nijo (c,d). DEGs
were identified via bioinformatic analysis of three biological replicates of each sample and
log2-fold change (<1 and <−1) and Padj < 0.01. Identified DEGs encoding (a) LHC-related
protein (ELIP) (horvu0hr1g013030, horvu1hr1g067080, horvu5hr1g063660, horvu5hr1g063670)
and component PsbR of PS-II complex (horvu2hr1g038940); (b) LHC-related protein (ELIP)
(horvu1hr1g087740, horvu5hr1g063590, horvu5hr1g063620, horvu5hr1g063630); (c) component
LHCb1/2/3 of the LHC-II complex (horvu5hr1g109260, horvu5hr1g109250, horvu6hr1g016890,
horvu5hr1g109360, horvu6hr1g016880, horvu6hr1g016850, horvu1hr1g088920, horvu1hr1g089180,
horvu6hr1g091660, horvu6hr1g091650); and (d) component LHCb1/2/3 of the LHC-II complex
(horvu7hr1g040370, horvu7hr1g040380, horvu1hr1g088900, and horvu1hr1g078380), LHC-related
protein (ELIP) (horvu0hr1g023360, horvu0hr1g038220, horvu0hr1g031930, and horvu4hr1g066810),
and regulatory factor (CURT) of thylakoid grana stacking (horvu6hr1g073100). Raw data are pre-
sented in Table S6.

2.4. Key Molecular Steps Controlling Consecutive Stages of the BR Signaling Pathway

To determinate the contribution of HvBZR1 to the regulation of plant growth under
saline stress, the 3rd and the 4th leaf growth of Golden Promise and Haruna Nijo under
optimal and salt stress conditions, treated with 10 µM, 50 µM, and 100 µM bikinin, were
used for Western blot analysis. Similarly to results obtained in 5-day-old barley shoots [45],
in leaves we detected the phosphorylated form of HvBZR1 (Figure 9) and the salinity
resulted in an increased accumulation of HvBZR1. The HvGSK2.1 under control and saline
conditions were detected in similar amounts. Reduced amounts of HvBZR1 under saline
conditions were detected after treatment with 50 µM and 100 µM bikinin in Golden Promise
and in all concentrations of the bikinin of Haruna Nijo. In contrast, HvGSK2.1 was detected
in the similar quantities.
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Following the results of RNA-Seq analysis and our observations regarding HvGSK2.1
and HvBZR1 activity, we performed a quantitative analysis of genes controlling the BR
signaling pathway (Figure 10). The expression of these genes was similar in Golden Promise
and Haruna Nijo under control conditions, except for HvBAK1, which was expressed
4.7-fold more highly in Haruna Nijo than in Golden Promise, as well as HvDWF4 and
HvGSK4.1, which were expressed 10.2-fold and 1.8-fold more highly in Golden Promise than
in Haruna Nijo. These traits may be genotype-dependent, as we have shown previously
(Table 7). Salinity led to the inhibition of all the tested genes of the BR signaling pathway
in both cultivars, i.e., HvBRI1 and HvBAK1 (16.5–42.7%), HvBSU1 (74.6–82.1%), HvGSK3s
(12.6–68.4%), and HvBZR1 (24.1–25.4%). Only HvDWF4 expression, which controls the first
step of the BR biosynthesis pathway, was increased 1.2-fold and 6.1-fold in Golden Promise
and Haruna Nijo, respectively. HvDWF4 expression is regulated by HvBZR1 activity, and
the activity of HvBZR1 and the expression of the HvDWF4 gene have been demonstrated in
Arabidopsis, rice, and barley.
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Table 7. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna
Nijo) grown in two conditions (control conditions and salt stress induced by 150 mM sodium
chloride) calculated for genes controlling brassinosteroid (BR) biosynthesis (HvDWF4) and the
BR signaling pathway (HvBRI1, HvBAK1, HvBSU1, HvGSK1.1, HvGSK1.2, HvGSK1.3, HvGSK2.1,
HvGSK2.2, HvGSK3.1, HvGSK4.1, HvBZR1), as determined in leaves (3rd and 4th). MS—mean square;
F—F-test; p—p-value; red characters—significant changes.

Parameters
Genotype Conditions Genotype × Conditions

MS F p MS F p MS F p

HvDWF4 7.254 × 10−8 12.136 0.008 1.501 × 10−8 2.511 0.152 4.055 × 10−9 0.678 0.434
HvBRI1 2.972 × 10−6 0.107 0.752 8.958 × 10−4 32.153 0.000 1.687 × 10−5 0.605 0.459
HvBAK1 6.742 × 10−5 34.590 0.001 2.610 × 10−5 13.392 0.011 1.114 × 10−5 5.715 0.054
HvBSU1 4.483 × 10−4 2.745 0.136 5.562 × 10−4 3.405 0.102 4.232 × 10−6 0.026 0.876

HvGSK1.1 5.560 × 10−3 2.445 0.157 2.954 × 10−2 12.987 0.007 3.044 × 10−4 0.134 0.724
HvGSK1.2 2.580 × 10−3 1.288 0.289 1.822 × 10−2 9.092 0.017 2.473 × 10−3 1.234 0.299
HvGSK1.3 1.394 × 10−4 0.786 0.401 4.384 × 10−3 24.715 0.001 1.508 × 10−4 0.850 0.383
HvGSK2.1 1.018 × 10−3 0.621 0.453 5.366 × 10−2 32.746 0.000 6.876 × 10−4 0.420 0.535
HvGSK2.2 4.380 × 10−5 0.298 0.600 4.068 × 10−3 27.684 0.001 4.182 × 10−4 2.846 0.130
HvGSK3.1 1.089 × 10−4 1.079 0.329 7.284 × 10−3 72.184 0.000 1.467 × 10−4 1.454 0.262
HvGSK4.1 8.620 × 10−3 9.555 0.015 7.711 × 10−2 85.485 0.000 9.543 × 10−3 10.579 0.012
HvBZR1 1.597 × 10−5 0.586 0.466 6.408 × 10−4 23.531 0.001 7.725 × 10−6 0.284 0.609

After the application of 10 µM, 50 µM, and 100 µM bikinin, there were no significant
changes in the expression patterns of the analyzed genes in Golden Promise (Table 8,
Figure 10). Only HvGSK1.1 after the application of 10 µM bikinin and HvDWF4 after
the application of 100 µM bikinin were induced (113.0% and 170.5%, respectively) in
Haruna Nijo. However, all concentrations of bikinin induced relevant HvBRI1 expression
(132.9–127.4%) in Haruna Nijo, and only 100 µM bikinin induced the expression of this gene
(134.0%) in Golden Promise. Other concentrations of bikinin (10 µM and 50 µM) reduced
HvBRI1 expression (75.6–85.8%) in this barley cultivar. On the other hand, 10 µM bikinin
induced HvBAK1 expression (134.1%) in Golden Promise, whereas 100 µM reduced the
expression (83.3%) of this gene in Haruna Nijo. 50 µM of bikinin reduced the expression
of all HvGSK3s (67.4–88.9%) in Golden Promise, whereas in Haruna Nijo the changes in
gene expression were negligible. In contrast, 100 µM bikinin slightly reduced HvGSK1.1,
HvGSK1.2, HvGSK1.3, HvGSK2.1, HvGSK2.2, and HvGSK3.1 expression (75.8–98.6%) in
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Haruna Nijo, whereas the expression levels of these genes were negligible in Golden
Promise. Only HvGSK4.1 was reduced (72.1%) after the application of 100 µM bikinin in
Golden Promise. Both 50 µM and 100 µM bikinin treatments reduced HvBZR1 expression
(81.2–91.8%) in both barley cultivars under control conditions.

Table 8. Results of two-way ANOVA for two barley genotypes (Golden Promise and Haruna Nijo)
grown under salt stress (150 mM sodium chloride) after bikinin treatment (non-treated; treated with
0.11% DMSO; treated with 10 µM, 50 µM, and 100 µM bikinin dissolved in 0.11% DMSO) calculated
for genes controlling brassinosteroid (BR) biosynthesis (HvDWF4) and the BR signaling pathway
(HvBRI1, HvBAK1, HvBSU1, HvGSK1.1, HvGSK1.2, HvGSK1.3, HvGSK2.1, HvGSK2.2, HvGSK3.1,
HvGSK4.1, HvBZR1) as determined in leaves (3rd and 4th). MS—mean square; F—F-test; p—p-value;
red characters—significant changes.

Parameters
Genotype Treatment Genotype × Treatment

MS F p MS F p MS F p

HvDWF4 5.578 × 10−9 1.695 0.208 7.285 × 10−9 2.214 0.104 5.266 × 10−9 1.601 0.213
HvBRI1 9.469 × 10−5 1.643 0.215 4.438 × 10−5 0.770 0.557 2.291 × 10−5 0.398 0.808
HvBAK1 4.489 × 10−5 90.158 0.000 3.968 × 10−7 0.797 0.547 8.273 × 10−7 1.662 0.214
HvBSU1 4.866 × 10−4 3.593 0.073 6.420 × 10−5 0.474 0.754 4.659 × 10−5 0.344 0.845

HvGSK1.1 3.333 × 10−2 17.550 0.000 1.352 × 10−3 0.712 0.593 9.785 × 10−4 0.515 0.725
HvGSK1.2 1.269 × 10−5 0.024 0.879 6.822 × 10−4 1.287 0.308 3.836 × 10−4 0.724 0.586
HvGSK1.3 5.851 × 10−4 1.451 0.242 1.317 × 10−4 0.327 0.857 2.420 × 10−4 0.600 0.667
HvGSK2.1 1.300 × 10−3 0.608 0.445 1.362 × 10−3 0.636 0.642 1.411 × 10−3 0.659 0.627
HvGSK2.2 2.445 × 10−3 30.136 0.000 1.713 × 10−4 2.111 0.117 7.364 × 10−5 0.908 0.478
HvGSK3.1 7.127 × 10−4 3.072 0.095 2.150 × 10−4 0.927 0.468 2.452 × 10−4 1.057 0.403
HvGSK4.1 2.169 × 10−3 1.447 0.243 9.797 × 10−4 0.653 0.631 6.860 × 10−4 0.457 0.766
HvBZR1 6.510 × 10−5 4.051 0.058 1.085 × 10−5 0.675 0.617 6.768 × 10−6 0.421 0.791

3. Discussion

Crops grown under stress conditions show restricted growth and, eventually, reduced
yields. Among other treatments, brassinosteroids (BRs) mitigate the effects of stress and
improve plant growth. In this study, the following hypotheses were verified: (1) bar-
ley’s (Hordeum vulgare L.) tolerance of salinity depends on its sensitivity to BRs and the
activity of the transcription factor (TF) HvBZR1; (2) treatment of barley with bikinin low-
ers kinase suppression of HvBZR1, which can be observed through a reduction in the
amount of the phosphorylated form of HvBZR1; and (3) the use of two barley varieties
with differing responses to salinity allowed the identification of regulatory elements of the
BR biosynthesis pathway.

To test our hypotheses, we used two barley cultivars, i.e., Golden Promise and Haruna
Nijo, with differing sensitivity to BRs, which was determined by means of the lamina joint
inclination test, in which Haruna Nijo presented greater sensitivity [19]. Barley plants with
a 2nd unfolded leaf of the same length or ~1 cm longer than the 1st one were sprayed
with a diluted series of bikinin, in parallel with the start of NaCl treatment. Barley was
grown under controlled conditions until the beginning of the 5th leaf emergence stage.
The 3rd and the 4th leaves were used for molecular analyses to determine the effects
of the applied inhibitor. Plants treated with 0.11% DMSO were used as a baseline for
plants treated with bikinin solutions. Non-treated plants were used as a benchmark for
salinity. Similarly to previous studies [19], barley length and fresh weight depended on the
genotype’s response to growth conditions, and early leaf length and area were characteristic
of the genotype (Table 1). In contrast, the consecutive leaves’ traits depended on the growth
conditions (Table 1). Barley’s response to bikinin treatment was genotype-dependent and
the greater (albeit insignificant) changes were observed in Haruna Nijo treated with higher
concentrations of bikinin (Figures 1 and 2). This was also observed in the growth of the
4th leaf (Figure 1g,h). In contrast to Haruna Nijo, Golden Promise had a faster phenotypic
response to bikinin treatment, as observed in the increased length of the 3rd leaf (Figure 1g).
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These traits may depend on the varieties’ sensitivity to BRs. Despite the greater sensitivity
to 24-EBL and bikinin observed in Haruna Nijo, greater changes in lamina inclination
were observed at higher concentrations in Golden Promise [19]. BR application promoted
hypocotyl and epicotyl elongation of soybeans (Glycine max L.) [52], petioles of carrot
(Daucus carota L.) [53] shoots and roots of barley [19].

Bikinin at the highest concentration also increased the fresh and dry weights of roots
in Haruna Nijo under saline conditions, resulting in root lengths similar to plants un-
der optimal conditions (Figure 1). When 5-day-old plants were analyzed, the roots of
Haruna Nijo under conditions of salinity were found to be longer than those of Golden
Promise [19]. In another study, these changes were associated with the characteristics of
root BZR1 transcription factor activity, which has been shown in many studies to be a factor
regulating cell division in the Quiescent Center (QC), Columella Cells, and Columella Stem
Cell [45,54–56]. The QC of the root meristem is controlled by Brassinosteroids at the Vas-
cular and Organizing Center (BRAVO) [57]. The increased cell division levels observed
in Haruna Nijo roots after bikinin treatment, resulting in higher fresh and dry weights,
may be associated with a higher cell number, but this should be verified in the future.
Root phenotype may be connected with the role of Glycogen Synthase Kinase 3 (GSK3)
family in the regulation of the auxin signaling pathway [56,58,59] and signal transduction
due to the fact that the activity of the HvGSK2.1 kinase from the GSK3 family has not
been detected in barley roots [45]. However, AtSK11 and AtSK12 have been characterized
as a genes that induce root growth under osmotic stress [60], and the best-characterized
kinase from GSK3 family, i.e., Brassinosteroid Insensitive 2 (BIN2), has been detected in
Arabidopsis roots [61,62]. Orthologs of these genes have been identified in barley [11] and
the expression of HvGSK1.1 in Golden Promise roots was the highest compared to that
of other genes from this family [45]. The first functional analysis of HvGSK1.1 showed
that reduced expression by RNAi resulted in higher weights of transgenic plants under
conditions of salinity [63]. However, the figure presented in the article shows that the
authors of that study compared barley in different developmental stages [63] and that
the inhibition of kinase from GSK3 family led to faster growth. Analysis of OsGSK1 (also
known as OsGSK21, OSKζ) with the Os01g10840 locus [10,64,65], an ortholog of BIN2
belonging to a class represented by four orthologs in rice [10] and two in barley [11],
showed that knockout mutants had enhanced tolerance to cold, heat, salt, and drought
stresses [65]. In contrast, the overexpression of full-length OsGSK1 led to a stunted growth
phenotype, similar to that of the gain-of-function bin2 mutant [65]. Rice with knock-out of
OsGSK1 exhibited a lower wilting ratio and improved Fv/Fm compared to controls under
the same conditions [65]. Similarly, with increasing bikinin concentrations, both barley
genotypes had higher relative water content and relative turgidity and lower water deficits
in consecutive concentrations than in the controls grown under saline conditions (Figure 3).
Despite the changes in both genotypes, the water content was genotype-dependent and
depended on the control conditions and the genotypes’ responses to bikinin treatment
(Tables 3 and 4). On the other hand, photosystem II (PSII) activity was genotype-dependent
and depended on growth conditions and barley’s response to salinity (Table 5) but changes
in consecutive parameters depended on the genotypes’ responses to bikinin treatment
(Table 6). Salinity-induced changes were alleviated by bikinin (e.g., PI ABS, DIo/RC in
Golden Promise; Fv/Fo, ϕDo in Haruna Nijo). A positive effect of BR treatment on PSII ac-
tivity has been observed in cucumber (Cucumis sativus L.) [66,67], wheat (Triticum aestivum
L.) [68,69], soybean (Glycine max L.) [70], maize (Zea mays L.), spinach (Spinacia oleracea
L.) [71], and mung beans (Vigna radiata) [72]. Differentially expressed gene (DEG) analysis
revealed an opposite and genotype-dependent response. 9 out of 117 identified DEGs in
Golden Promise and 24 out of 150 DEGs identified in Haruna Nijo played a role in photosyn-
thesis (Figure 8). Previously, the GSK3 family was identified to contain kinases controlling
stomata development via the regulation of YDA, MKK4/5, and Speechless [64,73–76].

The short-term response (30 min or 2 h) to BL or bikinin led to the identification
of 272 genes involved in BR metabolism, BR biosynthesis, hormone-mediated signaling,
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auxin, and the response to abiotic stimuli [18]. The long-term response (approximately
17 days) resulted in the regulation of genes involved in photosynthesis (Figures 7 and 8).
The differences indicate that the bikinin response led to rapid changes in phytohormonal
regulation that regulated plant phenotype, mainly affecting photosynthetic efficiency and
water content in the days following plant growth (Figures 3 and 7).

The most distinctive results were obtained in the response to two concentrations of
bikinin. Although the transcript level in Golden Promise increased with higher bikinin con-
centrations, it decreased in Haruna Nijo and vice versa (Figure 8). However, photosynthetic
activity parameters and transcriptome analysis data confirmed the genotype-dependent
response to bikinin treatment. According to a previous study [45], we identified a phos-
phorylated form of HvBZR1 in the 3rd and the 4th barley leaves that accumulated more
under conditions of salinity and the amount of which was reduced during treatment with
50 µM and 100 µM bikinin in Golden Promise and after each bikinin concentration in
Haruna Nijo (Figure 9). As before, the results indicated two levels of phosphorylation with
a lower amount of HvBZR1 over a lower molecular weight. Both proteins, HvBZR1 and
HvGSK2.1, detected in leaves showed greater amounts than in 5-day-old barley shoots [45].
In contrast, the expression profiles of these genes showed an opposite response. The low
expression profile of HvBZR1, accompanied by the high HvBZR1 protein level, suggests
that this TF is stabilized through the phosphorylation process and stored in the cytoplasm.
To date, many security proteins for BZR1 have been identified [16,77–79]. Contrary to the
highest expression level of the GSK3 family, protein accumulation in leaves was lower than
for HvBZR1. This suggests that HvGSK2.1 may be an unstable protein with short-term
activity. Similarly to HvGSK2.1 and HvBZR1, the expression levels of genes controlling
the consecutive stages of the BR signaling pathway were reduced by salt stress, but their
expression was stable and unchanged after bikinin treatment.

The phenotypic changes observed in the two barley genotypes grown under saline
stress confirmed previous results obtained for the same genotypes in a different experi-
mental design. Despite the presence of shared traits, many data suggested a genotype-
dependent, exogenous BR-linked response by barley plants to bikinin and the consequent
inhibition of GSK3 activities, affecting plant development. Nevertheless, many aspects
remain unexplained and further studies are needed to further characterize barley. In sum-
mary, our results indicate that barley’s salt tolerance depends on its sensitivity to BRs, but
the activity of the HvBZR1 TF should be verified. We confirmed that barley treatment
with bikinin reduced the amount of the phosphorylated form of HvBZR1. The use of
two barley varieties with different responses to salinity led to the identification of the role
of BR signaling in photosynthesic activity. The results suggested that salinity reduces the
expression of the genes controlling the BR signaling pathway. Moreover, the results also
suggested that the functional analysis of GSK3 in stress responses can be a tool for the
breeding of crops to improve plant resistance to salinity or other stresses.

4. Materials and Methods
4.1. Chemicals

Bikinin (CAS 188011-69-0, purity ≥98%) was purchased from Sigma-Aldrich (Schnell-
dorf, Germany). Solutions of bikinin (10 µM, 50 µM, and 100 µM) were prepared from
91.5 mM stock, dissolved in 100% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Schnelldorf,
Germany). The controls used in the experiments contained the same concentration of the
solvent solution, and these were used as a background for the dilution of bikinin.

4.2. Plant Material

The barley (Hordeum vulgare L.) cultivars Golden Promise (United States Department of
Agriculture, GRAIN-Global, USA, accession number 343079) and Haruna Nijo (Gene Bank
Dept., CRI Prague-Ruzyně, accession number 03C0602168) were used in the experiments [45].
Grains were provided from both Gene Bank and imbibed in Petri dishes with three layers
of filter paper soaked with spring water (Żywiec-Zdrój S.A., Węgierska Górka, Poland)
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for 48 h in a refrigerator at 4 ◦C, then germinated in darkness for 72 h in an incubator at
23 ◦C, then 8 plants were planted in 12 L buckets (23 cm × 33 cm × 19 cm) filled with solid
substrate (Hollas, Pasłęk, Poland) and sand (ratio 4:1), and grown in a greenhouse (October
2019–January 2020) for ~3 months in the case of Haruna Nijo and ~4 months in the case of
Golden Promise until complete harvest. Grains from each plant were collected separately
and studied as single-seed descent (SSD) lines.

4.3. Growth Conditions

SSD lines were used for the experiment. Grains were imbibed and germinated as
described above. Then, eight seedlings were planted in 1 L pots filled with soil substrate
(Hollas, Pasłęk, Poland) and sand (2:1). Plants were cultivated in a phytotron chamber at a
16 h photoperiod at 20 ◦C during the day and 18 ◦C at night, with a daylight intensity of
200 µmol photons m2 s−1, and a humidity of 70%. Plants were watered to a soil humidity of
70%, with the growth substrate fully watered (as 100%) and fully desiccated (as 0%). At the
stage when the 2nd leaf had a similar length to the 1st leaf, sodium chloride application and
bikinin treatment were performed. Sodium chloride at a final concentration of 150 mM was
administered every second day 3 times with 50 mM NaCl once. Then, pots were watered
with tap water to 70% humidity and measured using technical scales and weighed up to
1051 g (fully watered, 1152 g; fully desiccated, 816 g; pot weight, 31 g). Plants watered with
tap water only were used as controls and grown under optimal conditions.

4.4. Barley Treatment

Barley at the stage described above (1st and 2nd leaf of approximately equal length)
was treated with 10 µM (BK10), 50 µM (BK50), or 100 µM bikinin (BK100) or 0.11% DMSO
as a control solvent solution (CK). All solutions were prepared as follows:

• BK10: 0.98 µL 91.5 mM bikinin, 8.85 µL 100% DMSO, 25 µL Tween 20 (Sigma-Aldrich,
Schnelldorf, Germany), 9 mL deionized water;

• BK50: 4.92 µL 91.5 mM bikinin, 4.91 µL 100% DMSO, 25 µL Tween 20, 9 mL deion-
ized water;

• BK100: 9.83 µL 91.5 mM bikinin, 25 µL Tween 20, 9 mL deionized water; or
• CK (0.11% DMSO): 9.83 µL 100% DMSO, 25 µL Tween 20, 9 mL deionized water.

Barley at the 5th leaf development stage (BBCH20) was used for assessments of
molecular and phenotypical characteristics. The experiments were repeated twice.

4.5. Physiological Trait Measurements

Barley at the 5th leaf development stage was used for analysis. First, plants were
photographed. Second, 5 cm fragments from the 3rd leaf were used for RWC analysis. Third,
the 3rd and the 4th leaves were collected and stored at −80 ◦C for total RNA and protein
extractions. Analyses were performed in five and three biological replicates, respectively.
In six plants for each growing condition, shoot and root length were measured, and the
fresh and dry biomasses of shoots and roots were weighed. Chlorophyll a fluorescence was
measured using a fluorometer (FluorPen FP 100, ICT International, Australia) and leaf-clips
with a window diameter of approximately 3 mm. Chlorophyll a parameters were measured
according to manufacturer’s protocols with an adaptation to darkness of about 30 min.

4.6. Total RNA Extraction, cDNA Synthesis, and Real-Time PCR Analysis

Analyses were performed as described previously. Total RNA was extracted from
the 3rd and the 4th leaves using TRI Reagent solutions (Invitrogen, Waltham, MA, USA).
Genomic DNA was removed using DNase I, RNase-free (Thermo Fisher Scientific, Waltham,
MA, USA). cDNA was synthetized using a Revert Aid cDNA Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Real-Time PCR was carried out using the 5 x HOT FIREPol
EvaGreen qPCR Mix Plus (noROX) (Solis BioDyne, Tartu, Estonia) kit and Rotor Gene
6000q Series (Corbett Life Science, Mortlake, Australia) thermalcycler according to the
manufacturer’s protocols. The barley ADP-rybosilation factor and Glyceraldehyde-3-phosphate
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dehydrogenase (GAPDH) genes were used as the internal controls. For each gene, three
biological replicates were performed in three technical repeats, and the average value of the
standard curve and standard error was shown. Gene-specific primers used for real-time
PCR were published by Groszyk et al. [11] and Groszyk and Szechyńska-Hebda [45].

4.7. RNA-Seq Analysis

The mRNA sequencing service was outsourced to the commercial service laboratory
of BGI Genomics Co., Ltd. (Hong Kong, China). Analyses were performed using Interdisci-
plinary Centre for Mathematical and Computational Modelling Warsaw University (Poland)
and Galaxy software [80]. Bioinformatics analysis was carried out by filtering out low-quality
readings, containing unknown bases (N) and/or low-certainty readings (Q ≤ 20), and re-
moving adapters using trimmomatic v. 0.39 [81]. The next step was mapping the readings to
the reference genome of Hordeum vulgare (Hordeum_vulgare.IBSC_v2) [82] with the HISAT2
v. 2.2.1 program [83] and calculating the expression levels of the mapped genes using the
StringTie v. 2.1.7 program [84]. Expression normalization between the analyzed samples was
performed using the DESeq2 tool [85]. For the functional enrichment analysis of DEGs, we
used the online Mercator4 v 5.0 tool [86] and the PHANTER 7.0 database [87].

4.8. Western Blot Detection of HvGSK2 and HvBZR1

Commercial anti-OsGSK2 (AbP80050-A-SE) and anti-OsBZR1 (AS16 3219) polyclonal
antibodies were purchased from Beijing Protein Innovation Co., (Beijing, China) and
Agrisera (Vännäs, Sweden), and used to detect HvGSK2.1 and HvBZR1, respectively.
Total protein was extracted from the 3rd and the 4th leaves of barley. The plant mate-
rial was ground to powder in liquid nitrogen and treated with a 1× SDS sample buffer
(5 µL per 1 mg ground leaves). Supernatants were denatured at 70 ◦C for 10 min, cen-
trifuged, and used for SDS-PAGE and immunoblot analysis. Anti-GSK2 and anti-OsBZR1
antibodies were used at dilutions of 1:5000 and 1:10000, respectively. Detection was per-
formed using a PVDF membrane (Bio-Rad Laboratories, Hercules, CA, USA) and Agriser-
aECL SuperBright, AS16 ECL-S solutions (Agrisera, Vännäs, Sweden).

4.9. Data Analysis

Statistical analysis was performed using Microsoft Excel Professional Plus 2016
(Microsoft Office, Warszawa, Poland) and Statistica 13.0 (StatSoft, Kraków, Poland). Graphs
were generated using Microsoft Excel Professional Plus 2016 and Microsoft PowerPoint
Professional Plus 2016 (Microsoft Office, Warszawa, Poland).
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