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This paper describes a computer program for calculating the contrast image on the

human retina from an array of scene luminances. We used achromatic transparency

targets and measured test target’s luminances with meters. We used the CIE standard

Glare Spread Function (GSF) to calculate the array of retinal contrast. This paper

describes the CIE standard, the calculation and the analysis techniques comparing

the calculated retinal image with observer data. The paper also describes in detail the

techniques of accurate measurements of HDR scenes, conversion of measurements to

input data arrays, calculation of the retinal image, including open source MATLAB code,

pseudocolor visualization of HDR images that exceed the range of standard displays,

and comparison of observed sensations with retinal stimuli.

Keywords: glare, calculate light on retina, human response to light, lightness, scene content, neural spatial

processing, open source code:MATLAB, high dynamic range HDR

INTRODUCTION

Psychophysical experiments require measurements of the light coming from the scene to the
observers’ eyes. This data includes the luminance and the angular subtense of each scene element.
High-Dynamic Range (HDR) scenes (McCann, 2007) introduce substantial amounts of intraocular
veiling glare, resulting from the scattering of light inside the eye. Glare introduces a complex spatial
transformation of scene luminances. The quanta catch of retinal receptors is the combination of
scene luminances and optical distortions such as glare.

In order to model human response to light we need to understand the sequence of input stimuli
at each stage in the visual pathway:

1. The light coming from objects (Array of luminances from the scene)
2. The light falling on the retina (Array of retinal contrast)
3. The light response of receptors (Rod and cone quanta catch)
4. The spatial processing in the visual pathway (Neural spatial comparisons)
5. The appearance reported by observers (Psychophysical measurements of sensations, or

perceptions)

Often, psychophysical models compare scene luminance with observer data. Such models collapse
four of the five stages listed above into a single black box mechanism. Studies of HDR scenes show
that the second and fourth stages tend to cancel each other (McCann and Rizzi, 2012, p. 146–152).
Namely, neural processing counteracts optical glare. In order to properly model neural processes
leading to appearances, wemust calculate the light imaged on the retina. That includes glare’s spatial
transformations of scene luminances as the input array for neural visual models.

This paper describes computer software that calculates retinal luminance images from
scene luminance measurements. The software is based on the CIE Standard for Intraocular
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Glare (Vos and van den Berg, 1999), and makes specific
adjustments for characteristics of the observers; namely, age and
color of the iris. The software is implemented in MATLAB R© and
the code is freely available to all researchers1. The article describes
the program and provides flowchart, source code, and links to
test images, parameter files, and updates (http://mccannimaging.
com/retinalContrast/code.html).

Scene Luminance, unambiguously defined in physics, is the
name of the input array used by the Glare Spread Function
(GSF) convolution in the MATLAB program. This paper uses
the term Retinal Contrast as the name of the program’s output
image. The GSF convolution conserves the total energy in the
input Scene Luminance array. It redistributes all of the energy
in the input image into the output image. As described by Hecht
et al. (1942) the light falling on receptors is attenuated by front
surface reflection, intraocular and macular pigment absorptions.
As well, the eyes’ optics, pupil size, and curvature of the retina are
not accounted for in our MATLAB program. This paper limits
the term Retinal Contrast to be the specific output array of our
MATLAB program. It is the normalized, linear photopic energy
per pixel in a flat array congruent with the flat visual test targets.
This term is intended to recognize the fact that this program
models the spatial effects of glare, but does not model the human
eyes’ light attenuation and 3-D transformations. The program is
designed as a tool to study the effects of the CIE Glare Spread
function on measured scene luminances in HDR scenes. The
program does not calculate retinal luminance.

It is extremely important to have accurate scene luminances
for the input to the program. In addition, the paper describes
techniques to generate and measure HDR scenes. Photographs,
made with digital and silver halide cameras, are inaccurate
records of scene luminance because of the cameras’ optical veiling
glare (McCann and Rizzi, 2007).

Figure 1 illustrates the paper’s tools for studies of
psychophysical models of vision. By converting scene luminance
to relative retinal contrast, we can isolate the properties of neural
spatial processing from optical veiling glare.

1Image Processing Toolbox. Available online at: https://www.mathworks.com/

products/image.html?s_tid=srchtitle

FIGURE 1 | Illustration of the paper’s technique to compare psychophysical appearance with retinal stimulus, calculated retinal contrast.

METHODS AND MATERIALS:
INTRAOCULAR SCATTER

The influence of intraocular scatter can be found in two sets of
psychophysical measurements. The first is the measurement by
human observers of the standard Glare Spread Function (GSF).
The second is the measurement of lightness sensations and their
relationship to the image on the retina.

CIE Glare Spread Function (GSF)
Retinal straylight in normal vision varies due to age, and
iris pigmentation. Further, straylight is the result of a variety
of classes of cataracts, and straylight in the cornea. A
comprehensive review can be found in “History of ocular
straylight measurement: A review” (Franssen and Coppens,
2007), and “Ocular Media Clarity and Straylight” (van den Berg
et al., 2010).

Retinal straylight is a visual handicap. Patient issues include
hazy vision, contrast and color loss, difficulty with against-the-
light face recognition, and halos around bright lights. Straylight
will also adversely affect visual function tests, such as contrast
sensitivity (van den Berg, 1986), visual field (van den Berg, 1987),
and pattern electroretinogram (van den Berg and Boltjes, 1987).

Cobb (1911) introduced the concept of equivalent veiling
luminance (Leq) as a way to define retinal straylight. Disability
glare/retinal straylight, as defined by the CIE, is now quantified by
means of this concept of equivalent luminance, i.e., the (external)
luminance that has the same visual effect as the glare source at
some angular distance (Vos, 1984; van den Berg and IJspeert,
1991).

Leq is the outer part of the retinal GSF. The GSF is normalized
to unity by writing

GSF = Leq/Ebl(sr
−1) (1)

with Ebl the illuminance on the eye from the (glare) point source.
Tom van den Berg and J. K. IJspeert described a compensation

technique to measure Leq/Ebl (van den Berg and IJspeert, 1991,
1992). Vos, chair of CIE TC1-18 (Disability Glare) and van den
Berg developed a Standard Glare Observer (Vos and van den
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Berg, 1999) accepted as CIE standard (van den Berg, 1991; Vos
et al., 2002). Vos and van den Berg (1999) provided a detailed
description of the shape of the retinal PSF in their 1999 “Report
on disability glare.” It includes an equation with parameters for
age and eye color. Using this retinal PSF one can calculate the
retinal image of any well-measured scene.

Veiling Glare Accounts for Lightness
Lightness is the visual appearance between white and black.
Both psychophysics and neurophysiology experiments have
measured the shape of the function describing response
to light. The problem is that neurophysiology measures a
logarithmic response, while psychophysics measures a cube-root
function. That means that neurophysiology and psychophysics
measurements give similar, but different, responses to
light.

The magnitude of change in photocurrent from rods and
cones is proportional to the logarithm of their quanta catch
(Oyster, 1999). Many measurements of the logarithmic retinal
responses have been reported (Hartline and Graham, 1932;
Werblin and Dowling, 1969).

Using psychophysical measurements, the apparent Lightness
scale in the Munsell Book of Color, L∗ in CIELAB, and in
CIELUV color spaces are fit by a cube-root of luminance
(Wyszecki and Stiles, 1982, p. 486–513). Stiehl et al. (1983) made
a complex lightness display using Munsell’s lightness bisection
technique. The display was made up of equally-spaced steps in
lightness appearance. Theymeasured the light coming from these
equally-spaced lightness steps. Stiehl et al.’s lightness data was fit
by CIELAB L∗ functions, even though Stiehl’s transparent target
covered 3 log10 units of dynamic range, much greater than the
range of reflectances found in the Munsell book (McCann and
Rizzi, 2008).

Stiehl et al. (1983) showed that scattered light changes the
shape of the psychometric cube-root function to a log function.
They used the calculated retinal image based on Vos et al.’s
(1976) GSF to calculate the spatial distribution of the light on
the retina after intraocular scatter. They calculated the reduced
contrast of the darker areas caused by scattered light in their test
target. The appearance of lightness is proportional to the receptor
response. Intraocular glare resolves the discrepancy between
psychophysical (cube-root) and physiological (log) response
functions. Cube-root applies to the target, while log applies to the
retinal image.

Glare Calculation—Converting Scene
Luminance to Retinal Contrast
There are three steps in determining the spatial distribution of
the light falling on the retina.

1. Measure each pixel’s luminance in an HDR target (section
Measurement of HDR Scenes)

2. Convert measurements to input data using meter calibration
data (section Measurement of HDR Scenes)

3. Calculate the spatial distribution of retinal image (sections
Optical Glare Spread Function to Flow Chart)

Measurement of HDR scenes
It would be very convenient to record a real-life HDR scene
with a camera, and to use the captured digital array as the
record of scene luminances. Although convenient, that would
be a terrible mistake. A camera has an optical system that has
its own glare spread function (McCann and Rizzi, 2007, 2012,
p. 99–160). Consequently, images captured by cameras, will
inevitably contain substantial glare distortion.

RAW format digital files are useful for removing the
standard camera signal processes, such as tone scale and
chroma enhancements (McCann and Vonikakis, 2012; McCann
et al., 2013; LibRAW, 2017). However, using RAW format files
does not remove the impact of optical glare on the captured
luminances. RAW format photographs of a low-dynamic-range
beach scene show glare distorted pixel values for objects with
darker reflectances (McCann, 2014). Even though the scene had
low dynamic range, it was mostly sky and sand, with near
maximal luminances. The nearly all-white content of the scene
generated enough optical veiling glare to seriously distort camera
response digits. Camera image digits were not proportional to
ColorChecker R© reflectances under uniform illumination in a
low-dynamic-range scene. In order to calculate the retinal image
of a complex scene, we must have an accurate array of scene
luminances, and cameras have been shown not to be able to
provide such level of accuracy (McCann, 2014).

An optimal way to make a million-to-one dynamic
range scene is to build it using transparencies. Photographic
transparency film has a range of 3 log10 units. Two superimposed
transparencies have a range of six log units. McCann and Rizzi
(2012, p. 135–143) used pairs of photographic transparencies
to fabricate HDR scenes with accurate luminances. Figure 2A
shows an illustration of their achromatic HDR display made up
of 20 pairs of test areas in a half white-half-black surround.

Figure 2B is a magnification of the upper right corner of the
target. The 50% White background is made up of different size
squares; ranging from 1 × 1 pixel to 64 × 64 pixels. The squares
have the same distribution around all 20 pairs of test squares,
although that pattern is rotated. This high contrast background
was designed to have a middle average luminance (50% max)

FIGURE 2 | (A) Left: The “50% White” Background target. It subtends 15.5 by

19.1◦. Its digital record (inputMap file) has 750 by 600 pixels. (B) Right: The

400% magnification of the upper right corner of “50% White” that illustrates

the different sizes of the equal numbers of white and black squares making the

background. The smallest, single pixel, white squares surround the pairs of

gray test patches. The smallest pixel subtends 1.6min of arc.
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background. Further, this high contrast pattern was designed to
have spatial contrast in many spatial frequency channels.

The Figure 2 test target was designed in Photoshop R© as an
achromatic 8-bit array. It is used as a 2-D digital map of the
spatial locations of all the image segments. It is a digital paint-
by-numbers map of the scene.

These input map digits were then used twice:

• First, the digital inputMap file was used as the file read by a
film recorder that transformed digits 0–255 into film optical
densities. The map array was printed by a laser scanner on
10× 12.5 cm Ektachrome film.

• Second, the same inputMap integer array file was used in
this MATLAB program to calculate floating point values for
sceneLuminance. The film was measured with a transmission
densitometer calibrated over 3.5 log10 units. Log luminances,
or Optical Densities (OD), its reciprocal, are a data
format that makes sense for HDR scenes. These measured
optical densities are used to formulate a conversionTable to
transform the 8-bit inputMap integers into a linear double
precision sceneLuminance image. The two superimposed
films generated the HDR scene for observers; and the
calibration measurements made an accurate 6 log-unit range
sceneLuminance input digital array for the intraocular glare
calculation.

The film-recorder strategy allowed us to make a test target
using Photoshop’s integers for the inputMap. The maximum
luminances of the Single and Double Contrast transparency
targets were measured using a Konica Minolta Chroma meter
CS-100A meter. The less than maxima luminances were from
densitometer readings of film transparencies (single contrast),
and their sum (double contrast). The measurements of optical
density resulting from the 0 to 255 input values were accurate
to 0.01 OD units over the film’s 1,000 to 1 luminance range.
The combined use of laser printed transparencies and film
densitometer measurements, creates an accurate, high-precision
luminance array covering 3 log10 units (single density). Two
superimposed identical transparencies made the 6 log10 unit
(double density) HDR displays. The luminances, Max, Min,
Range, %Average luminances, and optical densities, and range
measurements of both single and double density targets are
shown in Figure 3.

It is interesting to note two properties of these transparency
targets. First, the luminance range of test squares in Single

Contrast is 501:1; and in Double Contrast is 251,189:1. That
is 2.9 and 5.8 log10 units. Second, despite the squaring of the
luminance range, the %Average luminance remains very close
to constant. That is 50.01% in Single; and 50.00% in Double.
The White background squares (50% of the background area)
contribute almost all of the light to the average. The Black squares
(50% of the background area) contribute one part in 500. By
squaring the contrast range, the Black squares now contribute
one part in 251,189. Those darker squares change the average by
only 0.01%.

The transparencies were backlit by 4 diffused white light bulbs.
The experiments were done in a dark room. The only source of
light was the target. The lightbox had an average luminance of
1,056 cd/m2; with chromaticities x = 0.45, y = 0.43 (McCann
and Rizzi, 2012, p. 136).

There are three test targets analyzed by this MATLAB
program (Figure 4). In addition to the 50% White background
shown in Figure 2, there are 100% White and 0% White for
maximal and minimal glare.

Conversion of Measurements to Input Data Arrays
The MATLAB program converted measured luminances to the
luminance input digit array. The MATLAB code is found in the
Supplementary Material (Data Sheet 1).

• Reads the 8-bit integer inputMap Photoshop image used by the
laser printer.

• Reads the 8-bit integer conversionTable log luminance
calibration of the image.

• Calculates sceneLuminance linear data used to calculate retinal
contrast. [8-bit digit-in is converted to measured double
precision luminance-out].

The simple 0 to 255 conversionTable converts integer inputMap
data into double precision sceneLuminance that accurately
represents 6 log10 unit measurements with appropriate precision.

Although this process seems unusual, and a little complicated,
it describes a technique for generating a complex HDR test target
with reliable luminance values everywhere in the scene. The
goal was to make a million-to-one dynamic range display with
measured luminances. While HDR displays (Seetzen et al., 2004)
using the combination of LED and LCD technologies have high
dynamic ranges, the measurement of actual luminances (pixel
by pixel) is a challenge. These displays send different spatial
frequency signals to LED and LCD components. Laser recorder

FIGURE 3 | List of luminances, ranges, and average luminances of single and double contrast targets.
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FIGURE 4 | Test targets with nearly 6 log10 units of range with maximal, average and minimal glare. (A) 100% White background; (B) 50% White background; (C) 0%

White background.

printed film is a simple, inexpensive, permanent media. When
used in conjunction with small-spot densitometers it provides
highly precise measurements of optical density. Superposition of
two measured films makes a test image having a well-calibrated
million-to-one range.

Optical Glare Spread Function
The next operation used the GSF filter Equation (8) formula (Vos
and van den Berg, 1999) to calculate the spatial distribution of
the light on the retina. The CIE standard for veiling glare covers
angles from 1/100 to 100 degrees (horizontal axis, Figure 5). The
dynamic range of veiling glare (vertical axis) in the standard
covers 1,000,000 to 1/1,000 units of the ratio of (equivalent
luminance in cd/m2/glare illuminance at the eye in lux).

The retinal image is the sum of scene luminance, plus light
scattered into each pixel. The amount scattered into each pixel
is the sum of the veiling glare from all other pixels. Each glare
contribution depends on the luminance of the distant pixel and
its angular separation between the scattering and receiving pixels.

The CIE GSF is shown in Equation (2). We calculate
the relative luminance at each pixel (Leq/Egl). It is the ratio
of Equivalent Veiling Luminance (Leq in cd/m2) and Glare
Illuminance at the Eye (Egl lux).

Leq/Egl =
[

1− 0.08∗(A/70)4
]

∗
[

9.2 ∗ 106

[

1+ (θ/0.046)2
]1.5

+
1.5 ∗ 105

[

1+ (θ/0.045)2
]1.5

]

+
[

1+ 1.6∗(A/70)4
]

∗

{[

400

1+ (θ/0.1)2
+ 3 ∗ 10−8 ∗ θ

2

]

+p

[

1300
[

1+(θ/0.1)2
]1.5

+
0.8

[

1+ (θ/0.1)2
]0.5

]}

+2.5 ∗ 10−3 ∗ p

(2)

where θ is the visual angle between emitting and receiving
pixels, A is the age of the observer and p is the observer’s iris
pigmentation. This formula measures the equivalent veiling glare
in relation to the energy of relative illuminance. Pigmentation
types determine parameter values that range from 0 to 1.2. [p= 0
for very dark eyes, p= 0.5 for brown eyes, p= 1.0 for blue-green
caucasians, up to p = 1.2 for blue eyes (Vos and van den Berg,

1999)]. In the calculations we used brown eye color pigment =
0.5 and age= 25.

Glare Spread Function Convolution Filter
Kernel
Our retinal contrast calculation is the result of one of the many
transforms performed by the optics of the eye. The Vos and van
den Berg model provides the glare spread function that calculates
glare as a function of visual angle. Our approach calculates the
relative intensity on a plane, rather than on a sphere. It does
not include other properties of the actual retinal image. For
example, it does not incorporate the spatial transforms caused
by the curvature of the retina. As well, it does not calculate the
absolute photon count on the retina. Our paper calculates the
relative retinal image contrast of the original scene as predicted
by the 1999 CIE standard veiling GSF. The analysis compares two
congruent digital arrays: the measurements of scene luminances
with the calculations of retinal image contrast. We do not
describe this array as retinal luminance, or retinal image because
of the lack of absolute values, and geometric differences. We use
the term retinalContrast.

Starting from the CIE GSF (Equation 2) we first compute the
2D filter kernel, which will be used in the convolution with the
retinal input. The radius of the kernel is double themaximum size
of the retinal input array, so it adjusts to the input dimensions.
Even though the radius of the kernel is large, its values are
never zero. This means that every position in the retinal input
array will contribute to all the others, after the convolution with
the 2D filter kernel. Once the values of the 2D filter kernel
are calculated from Equation (2), they are normalized by their
total sum, ensuring that they all add up to unity and thus, no
DC constant is introduced during the convolution operation.
Figure 6A depicts the 3-dimensional, and Figure 5C depicts the
2-dimensional plots of a 600 × 600 filter kernel. Note that, for
visualization purposes, the output dimension is depicted in a
logarithmic color scale (Figure 6B). However, during the actual
convolution, the linear values are used. As it is visible from
the two graphs, convolving the GSF kernel with the array of
measured targets luminances, results in spreading the light from
each pixel, into all other image pixels. The result for each pixel is
the sum of a large contribution for the pixel’s luminance, a few
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FIGURE 5 | Glare Spread Function plotted on log-log axes.

FIGURE 6 | (A) Pseudocolor 3D plot of convolution kernel. (B) Color map illustration of log luminance kernel. (C) Cross-section of Log Luminance kernel.

large contributions from nearby pixels and a very large number
of very small contributions from distant pixels, since none of
the kernel values are actually zero (Figure 6). Also, there is no
radial distance at which the glare contribution reaches a constant
asymptotic value.

The next operation computes the retinal image by convolving
the filter kernel on the input luminance array, resulting in the
calculation of the retinal contrast after the intraocular glare.

Performing the actual convolution, with such a large
size kernel in the spatial domain, is very computationally
expensive, since each of N pixels is affected by all others. As
such, the complexity of this operation is O(N2). A typical
approach for speeding up the computation is to perform
the convolution in the frequency domain. This results in a
O(NlogN) complexity. In our implementation we used the
imfilter MATLAB command, which performs the convolution
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in the frequency domain by employing the fast Fourier
transform (FFT).

The calculation of the 2D filter kernel, as well as the
convolution operation with the retinal input array, are
implemented in the “computeRetinalContrast.m” function
of the provided MATLAB script.

Input/Output Ranges
The fundamental idea in the calculation of retinalContrast from
sceneLuminance is modifying the dynamic range. There are three
different aspects to managing range in this calculation.

First, glare redistributes a small fraction of light from all
pixels to all other pixels. The largest sources of light are the
highest luminance pixels; the largest recipients of light are
the lowest luminance pixels. It follows that the input image
must represent the entire range of scene luminances accurately.
Camera photographs are not good enough. The construction
of the scene, its measurement with meters, and the viewing
conditions for observer matching are all essential components of
making accurate scene input (section Scene Dependent Human
Response Functions).

The computational precision of pixel values is the second
range aspect. The GSF convolution uses double precision
to calculate the result of all pixels’ contributions and tiny
accumulations of light. This need for precision includes the
padding of external input boundaries in the convolution.

The third aspect of range is visualization of the input/output
information. By definition HDR scenes exceed the range of light
possible in themedia we use to inspect them.We need to carefully
document the data (in and out) of the calculation in an accessible
format. We also need tools to visually inspect these images that
exceed the range of display devices.

Input Data Range
As described above in section CIE Glare Spread Function (GSF),
the input design uses a paint-by-numbersmapInput (integers) in
combination with calibration conversionTable (log10 integers) to
calculate linear double precision retinalContrast values. The use
of transparent targets in a darkroom insures that there is no other
light source in addition to that coming from the target itself. The
logarithmic table (0DD) assigns the lowest input to −1.0E+2, a
low value approaching zero (representing the opaque part of the
target and the darkroom). The second digit in the conversionTable
is−6.17E+00 is the logarithm of the darkest scene measurement.
The table permits the use of near 0 opaque luminance values for
the outside border of the target that will be used for padding in
the convolution.

While this is useful in the calculation, visual analyss of the
results needs to restrict the range of data to be displayed to
the relevant ranges of target luminances. The program uses
parameter.range as a fixed range of luminance for analysis. The
user of the program chooses its value based on the calibration
data, and the range of interest in the analysis.

Computational Padding
During the convolution operation, computing the values near the
borders of the input array requires special treatment, since part

of the kernel goes out of the area of the input array. A typical
approach to address this is to pad zeroes (or any other value)
around the original input array. The choice of the padded values
however is very important; if the padded values are very different
from the actual content of the input array, artifacts will appear on
the borders of the final output. In order to minimize the impact
of the padded values, we used the “replicate” option of the imfilter
command, which mirrors the boundary values of the input array
to the padded area. As such, the difference between the added
padded values and the actual input content is very small, reducing
the chances of border artifacts.

Vos and van den Berg (1999) describes the shape of the
GSF. That shape does not include the glare loss of light from
every pixel. The filter kernel was normalized so that the sum
of all output retinal contrasts equals the sum of all input scene
luminances. Without this step, the sum of output could exceed
the sum of input. The filter calculates the light distribution on
projected on a sphere (CIE GSF); and the program converts
that to the light projected a plane (input pixels = output
pixels). It does not include the effects of pre-retinal light
absorptions.

Analysis Range
The testRetinalContrast.m program (Figure 7) has input values
between 0 and maximum luminance. For analysis, the program
writes the output file sceneLuminanceLogRange (integer), which
records the log luminance values scaled to parameter.range.

The output of the convolution is the retinalContrast array
with linear, double precision values of the relative amounts of
light on the retina. The content of the input scene, namely, the
population and distribution of luminances determines the range
in the retinalContrast output file. The greater the population of
high-luminance pixels, the lower the retinalContrast dynamic
range. As well, the local distribution of high-luminance pixels
controls the local retinalContrast.

For comparison with input sceneLuminanceLogRange, the
program writes the file retinalContrastLogRange (integer), that
records the log values scaled to the same parameter.range value.
This pair of files provides an accessible data format for numerical
analysis of both input and output relative intensities using the
same data scaling. In the HDR scene described above in Figure 2

parameter.range = 5.4. The range of analysis covers 5.4 log10
units.

The program saves the sceneLuminanceLogRange.tiff, and
retinalContrastLogRange.tiff files, that are achromatic integers
used to analyze numerical values of the retinal image. Visual
inspection of this image is an unreliable tool for analyzing the
spatial distribution of the light on the retina (McCann, 2017).
Visual inspection does not represent the data they contain.
Alternative analysis techniques are needed.

As an example, we can plot scans of digits converted
to luminance across a horizontal window of input and
output values. The plots are scans of the integers from
sceneLuminanceLogRange.tiff and retinalContrastLogRange.tiff.
These integers were scaled in the graph to the Log Relative
Luminance range [−5.4, 0]. This is described below in section
Pseudocolor “cmap.”
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FIGURE 7 | Flow chart of the program and functions.

Flow Chart
As shown in the flow chart (Figure 7), the program
testRetinalContrast.m reads input data for calculation arrays
(blue text) and writes output files (green text). The program
calculates the HDR sceneLuminance array used as input to the
convolution. It calls function computeRetinalContrast.m that
performs the convolution that calculates the retinal output array.
It also calls the function imageLogDisplay.m that scales output
data for analysis.

Mathematical Formulation
Let matrix M ∈ Z

w×h, denote the LDR input map that will be
used to synthesize the scene luminance values, while w and h
denote the width and height, respectively, of the map. The matrix
M can be designed with any drawing software (e.g., Photoshop),
and each of its elementsmij takes values in the interval [0, 255], as
a typical 8-bit grayscale image. In our software implementation,
map M is represented by the mapInput array. Let function

C (x) : Z → R that maps integer values to the domain of real
numbers, based on linear luminance measurements taken from
the actual scene. Function C essentially is a Look-Up-Table
(LUT) containing scene luminance measurements, taken with
a telephotometer. Since these measurements are in logarithmic
scale, their values are raised to a power of 10 in order get
the linear measurements. In our implementation, function C is
implemented by the conversionTable array. The values of matrix
M are mapped by function C in order to synthesize the actual
scene luminance matrix L ∈ R

w×h as follows:

L = C (M) (3)

Matrix M essentially provides the spatial patterns of the
scene (or target), while function C provides the actual scene
luminance values. In our implementation L is represented by the
sceneLuminances array.

Let matrix K ∈ R
(2r + 1)×(2r + 1) with r = max(w, h) denote a

filter kernel representing the glare spread function as expressed
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by Equation (2). In order for the kernel K to be used for a
convolution operation, it needs to be normalized so as to sum
up to unity.

K̃ =
1

∑2r+1
i,j=0 kij

K (4)

where K̃ is the normalized glare kernel and kij the value of K at
position (i,j). In our implementation kernelK is represented with
the filterKernel array.

Finally, let matrix R ∈ R
w×h represent the linear retinal

contrast image which is derived by convolving the matrix L with
the filter kernel K̃.

R = L∗K̃ (5)

where ∗ denotes the convolution operator. In our imple-
mentation, matrix R is represented by the retinalContrast array,
while the convolution operation is implemented in the frequency
domain, using MATLAB’s imfilter() function with replicating
padding on the borders of the image.

RESULTS

The input and output of the GSF MATLAB code is a pair of
integer arrays. The input array sceneLuminanceLogRange, and the
output array retinalContrastLogRange cover the parameter.range
log10 values. In this example, that range is 5.4 log10 units.
The simplest analytical tool would be to use visual inspection
to compare input and output. Such observations give the
impression that glare has reduced the range, and the apparent
sharpness of the retinal image. However, visual inspection of an
array that represents 5.4 log10 units is extremely arbitrary and
ambiguous. The variable parameter.range, and the calibration
of the display, or printer, have control of the image under
evaluation. Careful analysis of the input and output arrays require
additional visualization techniques.

There are two techniques described here to analyze the HDR
images.

• Plots of input luminances and output retinal contrast images
(section Logarithmic Plots).

• Visualizations using pseudocolor colormaps (section
Pseudocolor Analysis of Program Calculations).

Logarithmic Plots
The black background in 0% White (Figure 8A) is a million
times lower luminance than the 100% White (Figure 8B). The
only sources of glare in Figure 8A are the 40 test squares. They
show tiny losses of light in their plots. That glare light from these
squares replaces dark, uniform target areas with steep gradients;
many change by more than a factor of 10. Depending on the
position of the glare sources, the retinal image varies from 1/100’s
to 1/10,000’s of the White’s intensity.

All the test areas are darker than the background in
100%White target (Figure 8B). They show small increments in
brighter squares, and larger increments in darker ones. Again,
uniform input luminances become output gradients.

Pseudocolor Analysis of Program
Calculations
Section Results describes, with examples, pseudocolor
techniques for visualizing the sceneLumuminanceLogRange
and retinalContrastLogRange data. Computer graphics helps
to visualize the changes in scene luminance to retinal contrast.
Pseudocolor renders intensity as a quantized, ordered set of
colors. It breaks up apparently hard-to-see smooth gradients
into clearly segmented color bands. By matching the color in the
output array to the calibration scale, the reader can identify the
amount of light (McCann and Rizzi, 2009).

The linear double-precision sceneLuminance and
retinalContrast data are not suitable for pseudocolor rendering,
because of their range. For example, consider using 64 color bins
(4 digits wide) on the linear 5.4 log10 unit luminance input (range

FIGURE 8 | (A) Plots of a horizontal scan of the black (0% White) background, and (B) Plots of 100% White background targets. The green boxes at top show the

horizontal target segments (Areas K,L,M,N,O); the red boxes show the scanned areas. The black lines in the graph plot input sceneLuminancesLogScale, and the red

lines plot output retinalContrastLogScale.
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= 251,188: 1). The lowest bin includes a range of 3.0 log10 units.
By converting the file from linear to logarithmic, every 4-digit
bin represents the same ratio range of 1.05: 1. The program uses
pseudocolor rendering for sceneLuminanceLogRange.tiff and
retinalContrastLogRange.tiff.

Pseudocolor “cmap”
The pseudocolor cmap has 64 color values, arranged in 8
progressions (See color scales in Figure 9 with corresponding
digit values). Digit= 0 in is black. Each of the 64 colors has a bin

width of 4 digits. The first 8-bin progression has 8 different color
values starting at black, and ending at dark brown. The next three
8 color progressions end at red, magenta, and blue. Blue is the
midpoint at digit 128, rendering relative log10 luminance=−2.7.
The next four segments end at cyan, green, yellow, white, at log10
luminance= 0.0, or 100%.

Input/Output Pseudocolor Comparison
Figure 9 shows the pseudocolor rendition of input
sceneLuminanceLogRange.png for 0%, 50%, and 100% White

FIGURE 9 | Comparison of the input sceneLuminanceLogRange calculation using the same 5.4 log unit pseudocolor range. (A) 0% White; (B) 50%, White; and (C)

100% White backgrounds.

FIGURE 10 | Comparison of the output retinalContrastLogRange calculations using the same 5.4 log10 unit pseudocolor range. (A) 0% White; (B) 50%, White; and

(C) 100% White backgrounds.

FIGURE 11 | Comparisons of the output retContLogRangeOut.png renditions using variable pseudocolor ranges for each test target: (A) 4.7 log10 range for 0%

White; (B) 3.1 log10 range for 50% White; (C) 2.8 log10 range for 100% White background.

Frontiers in Psychology | www.frontiersin.org 10 January 2018 | Volume 8 | Article 2079

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


McCann and Vonikakis Calculating Retinal Contrast: A Program

backgrounds. The range is 5.4 log10 units, for all three test targets
with different backgrounds.

In Figure 9, all three input targets had a range of luminances
close to 6 log10 units, covering most of the color scale. The 20
pairs of test squares had similar radiances in the test squares, but
they were arranged in different locations. The changes in location
for a particular luminance pair was designed to prevent observer
memory location bias in apparent lightness measurements. The
background was either max, or min luminances, with input edge
ratios of almost 1 million to one.

Figure 10 shows the corresponding pseudocolor rendition of
output retinalContrastLogRange.png for 0, 50, and 100% White
backgrounds. The output range is reduced depending on the
contents of the input scene.

Figure 10A shows the black background (0%White). It shows
that the test squares spread non-uniform gradients of light that
increase the background (−5.4) by 1–2 log10 units. Figure 10B
shows the half-white /half black background (50% White). It
shows that the max part of the background spreads more than
3 log10 units of glare into the largest minimum background areas.
The effect of glare is greater in smaller minimum background
squares. Further, Figure 10C with 100% White shows that the
range of all test squares is compressed into <2 log10 units. In all
three scenes the opaque outermost surround (section Input Data
Range) varies substantially with scene content.

Pseudocolor Scaled to Output
The dynamic range of test squares in the input sceneLuminance is
close to 6 log units, while the output is variable with the content
of the scene. The output files in retinalContrastLogRangeOut.png
are scaled to the range of output, rather than input. The program
finds min and max of retinalContrastLogRange and reassigns
them digits 0 and 255. It rescales all digits to this variable range
in retinalContrastLogRangeOut using cmap.

By adjusting the range of the pseudocolor rendering,
Figure 11 presents a more effective pseudocolor image. It
provides a better tool for analyzing glare.

Figure 11 rescales the retinalContrast data using the entire
mapInput array including the opaque border. In 0% White the
darkest output pixel is 4.8 log10 units lower than maximum
output. In 50%White that range is 3.1; and in 100%White is 2.8.
The 40 test squares in the target have smaller ranges. The output
range for test squares in retinalContrast varies from 4.0 log units
for 0% White surround; while it is 1.5 log units for 100% White
surround.

The highly variable range of light on the retina results from
the content of the scene, namely, the spatial population of
luminances, that controls the sum, and distribution of intraocular
glare. The wide range of input luminances, and the variable range
of outputs requires that the program user have interactive control
of the pseudocolor’s display’s range. The program has that feature.

DISCUSSION

Models of human vision require accurate measurements of the
field of view of the human observer as the input to the model.
That input requires measurements of the visual angle subtended

by objects in the field of view. As well, the input requires
measurements to the luminances and radiances falling on the
observer’s eyes.

CIE Colorimetry Standards provide an interesting example.
Color matching began with Maxwell (1860) as a technique
to measure human response to light. Two adjacent lights are
adjusted to match. At match the observer sees a single spot with
fixed angle, on a no-light surround. The CIE Color Matching
Functions (Wyszecki and Stiles, 1982, p. 124) generate very
different spectral responses compared with absorption spectra
of cone visual pigments. The reconciliation of these different
measurements relies heavily on the transmission spectra of
intraocular media (Smith and Pokorny, 1975).

Colorimetry and HDR images are extreme examples of
studies of vision. Colorimetry uses a single spot that is the
only source of intraocular glare. Colorimetry incorporates the
optical transmission of ocular media as an essential component
of its calculation. HDR scenes introduce ranges of light that
are substantially transformed by intraocular media. Here the
transformation is spatial, as well as spectral.

Again, in HDR imaging the optical transformations are
necessary to reconcile the differences between psychophysical
observation and neurophysiological measurements. CIE
Lightness is a cube-root function of scene luminance, but
a logarithmic function of retinal luminance. More simply,
lightness is proportional to receptor response to quanta catch
(see section Veiling Glare Accounts for Lightness)

Human Response to Light
One of the first topics in the foundation of psychophysics in the
1860’s was the measurement of the human response function to
light. Fechner (1860) and Weber initiated the field by measuring
the amounts of light that caused different visual sensations. This
idea that light on the retina causes appearance is a cornerstone
of human vision, at least in a broad general manner. Further, a
second idea is broadly held: namely a photograph reproduces the
light from the original scene on the retina.

FIGURE 12 | Plots of lightness sensations as a function of log retinal contrast.
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TABLE 1 | Slopes, intercept, and correlation coefficients of the different linear

HRFs for each background.

Background Slope (m) Intercept (b) Correlation

White 56.3 93 0.93

White/Black 47.0 93 0.92

Black 26.7 93 0.97

Research in vision and photography over the past 150 years
has refined our understanding of these generalizations. Studies
of both adaptation of photoreceptor sensitivity (Dowling, 1978),
and the important role of spatial neural interactions (McCann
and Rizzi, 2012) have shown that the quanta catch of a single
photoreceptor does not generate a unique sensation. As well,
reproduction of a sensation is not uniquely generated by a fixed
radiance. And, photographs do not reproduce scenes.

Here we want to characterize the Human Response Function
(HRF) to HDR stimuli. Rizzi and McCann (2009) measured
sensations of lightnesses of the 40 test squares in the 0, 50,
and 100% White test targets described above (See Figure 4).
Figure 12 plots apparent lightness (psychophysical metric) vs.
calculated log retinal contrast (physical metric) for these three
targets. The retinal contrast values are calculated using the code
included below.

We do not find a single function for observers’ response to
retinal contrast. Instead, we find three distinct responses, one
for each background with different spatial contents. All three
are linear functions of log retinal contrast. Lightness of all three
targets is linearly proportional to receptor response. However,
Figure 12 shows the content of the scene on the retina initiated
very different amplification slopes of receptor response to quanta
catch.

Figure 12 plots the fit by three linear functions of log retinal
contrast. They are three independent measures of the Human
Response Function to light. The values of slope (m) and intercept
(b) are listed in Table 1.

Apparent lightness is a logarithmic function of quanta catch,
and a linear function of receptor response (Oyster, 1999).
However, the slope of that appearance plot varies with the content
of the scene. A 100%White background causes the highest glare,
and therefore has the lowest contrast retinal image. Nevertheless,
it has the highest apparent contrast. The slope of that human
response function is 56.3. The Black background has the least
glare, yet the human response function has the lowest slope
of 26.7. With 0% White, it takes 3.5 log units of decrease in
dynamic range to go from the sensation white to the sensation
black. In comparison, that same white/black change in sensation
is observed in 1.6 log10 units (100%White) with much more
intraocular glare.

Scene Dependent Human Response
Functions
We can model the different Human Response Functions with a
very simple equation.

L = (26.7+ S) logR+ 93 (6)

where L is apparent lightness (Scale 100:1); R is retinal contrast;
and s is an additive factor responsive to scene content. In
the three HDR scenes studied here, s = 0 for the Black
surround; s = 20 for the half-White/half-Black background;
and s = 30 for 100% White background. A small signal
that adds to the slope that amplifies log retinal contrast
can model lightness in HDR, and scenes in the real visual
environment.

The implication of this equation is that the post-receptor
visual processing is scene dependent. There is no single
Human Response Function for all receptor quanta catches.
The data require a dramatic change in the slope of the
HRF with changes in scene content with constant dynamic
range. The remaining problem is to define the model for
calculating the parameter s from the spatial array of retinal
radiances.

CONCLUSIONS

Models of vision’s response to HDR scenes have to go
beyond simple, single-pixel responses to light. Vision has
two powerful spatial processes that transform scene radiances.
The first transform is the degradation of the optical image
by glare, and the second is the enhancement by post-
receptor neural mechanisms. A comprehensive model of vision
requires both elements. The problem of calculating appearance
is that these two strong mechanisms almost cancel each
other. This has the advantage that we rarely notice glare
in everyday life, but the disadvantage that it makes the
separation of their properties more difficult for scientific
analysis.

This paper describes a computer program that calculates
the relative contrast on the human retina. It also provides the
program’s code based on the work of Vos and van den Berg
(1999). In addition, it describes the important task of creating
accurate scene luminance input data for the program. Although
convenient, digital data from cameras is not accurate. Camera
optical veiling glare distorts the image on cameras’ sensors. Input
data must be measured with telephotometers, or densitometers,
to insure that the spatial record of input scene luminances is
accurate.

The response of the eye to light depends on the spatial
luminance content of the scene; and the glare-dependent
consequential retinal image. The lightness appearance is
proportional to retinal receptor response. However, post-
receptor neural processing controls the slope of that appearance
response function. The slope varies with the contents of the
scene.
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