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Abstract: Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA,
proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Ad-
vances in electrochemical sensing platforms have enabled the development of a new type of biosensor,
enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole
cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electro-
chemical sensors, which are the most critical parameters for assessing sensor performance. Various
nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and
metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic
properties of working electrodes, increasing sensor sensitivity. Further modifications have been
implemented to advance sensor platform selectivity and biocompatibility using biomaterials such
as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper
summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells
(cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts
to accelerate biosensor progress—enabling a prosperous future in regenerative medicine and the
biomedical industry.
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1. Introduction

There is a pressing need for rapid clinical monitoring and diagnostic approaches that
associate high sensitivity, selectivity, and quick performance with sample determination [1].
Recent progress in bioanalytical techniques has led to integrating conventional biological
concepts with digital instrumentation to establish an easy-to-use, handheld system [2,3].
Biosensors are a significant breakthrough in scientific research, which could be defined as
the device that relies on specific biochemical reactions involving isolated enzymes, immune
systems, tissues, organelles or whole cells during the electrical, thermal, or optical signals
detection of chemical compounds [4]. They promise to enable the detection of biologically
related substances through biorecognition and signal transduction cost-effectively, highly
accurately, and rapidly [5,6]. Several researchers have attempted to develop a sensor device
that can quickly detect antibodies, antigens, enzymes, proteins, and DNA in complex
samples [7–9]. Following those innovations, biosensing entities have received significant
attention for changing the medical paradigm from treatment to prevention and diagnoses
due to the potential of biomolecules as disease biomarkers [10,11].

Many types of biosensor modes have been developed based on physicochemical
signal transducers, such as electrochemical or fluorescence phenomena, surface plasmon
resonance (SPR), and field-effect transistor (FET) [12–15]. An electrochemical biosensor
is defined as a reliable integrated system that serves quantitative or semi-quantitative
analytical profiles from a target of interest through interactions between biochemical
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receptors and electrochemical transducer elements [16–19]. For electrochemical sensing-
based biosensors, the detection process is less expensive and more rapid than conventional
methods [20–22]. Furthermore, it has promising performance for point-of-care (POC) in
label-free operation and simple miniaturization. Numerous studies have reported an
increase in biosensing platform sensitivity and selectivity, which indicates that lowering
the sensor detection limit toward specific target molecules is possible [23–26].

Further architecture modifications have been performed with materials that enhance
surface conductivity to increase sensor sensitivity and selectivity [27]. Nanomaterials have
been essential in reinforcing various constituents that have eventually become biosensing
tools [28,29]. Metal nanoparticle-based electrochemical biosensors have been intensively
studied due to evidence that the biological or chemical reactions between biomolecules are
more accessible due to their interactions with metal structures [30,31].

Other than metal nanoparticles, carbon-based materials have also become highly
attractive in the development of an electrochemical sensing platform (e.g., graphene and
its derivatives and carbon nanotubes), mostly due to their favorable characteristics such as
excellent performance, high mechanical strength, and thermal stability [32–34]. Moreover,
peptide molecules and oligonucleotides—called aptamers—have been developed, which
have received significant attention in biosensor modification strategies because they enable
high-affinity binding to a specific target molecule and can convert biorecognition cues into
electrochemical signals [35].

With the ability of electrochemical sensing to operate non-destructively and non-
invasively, a direct in situ detection method is considered as an analytical tool for the living
system to underrate the use of chemical agents such as chemical dyes, radio-labeling, and
fluorogenic probes [36–38]. Some studies have reported the potential of electrochemical
detection to access highly proliferative cell viability (e.g., cancer cells and pluripotent
stem cells) through their cell-redox properties, leading to the advancement of whole-
cell sensing [39–43]. Through electrochemical biosensing, toxicity assessment and early
diagnosis can be efficiently conducted without any adverse effects on live cells [44–47].
Hence, this is widely applicable according to their advantages, such as in drug screening,
stem cell pluripotency monitoring, and differentiation [48,49].

In this review, we describe the progress in electrochemical sensors for detecting targets of
interest, from biomolecules to the cellular level corresponding with cell viability toward cancer
cells and pluripotent stem cells (PSCs) as highly proliferative cells (Figure 1). Furthermore, we
comprehensively discuss various nanomaterials and molecules, combined with biosensing
platforms, that increase electrochemical sensitivity and selectivity. Accelerating the progress
of biosensing technology will require attention for future studies in biomedicine and
regenerative therapies.
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2. Electrochemical Detection of Biomolecules

The detection of small biomolecules (e.g., nucleic acids, enzymes, and hormones) is
based on their biological and physiological functions: transmitting genetic information,
regulating biological activity, and catalyzing reactions at the cellular level [50–52]. How-
ever, developing biomolecule sensing technology remains a challenge [53,54]. Standard
biomolecular techniques for analyzing biomolecules have been developed, such as gel
electrophoresis, Western blot, and polymerase chain reaction (PCR) [55]. Despite precise
characterization results, they are hindered by limitations such as expensive reagent re-
quirements, laboriousness, and high time requirements [56]. The electrochemical detection
method has significant potential to address the drawbacks of conventional methods with fast
accessibility, cost-effectiveness, and high sensitivity and selectivity toward a specified target.

Numerous papers have reported the studies of electrochemical techniques for de-
tecting small biomolecules as an early diagnosis [26]. The electrochemical detection of
DNA and RNA has been used to diagnose viral infections, such as coronavirus, Zika virus,
and hepatitis E [57–61]. Another example is electrochemical-based enzyme and hormone
detection to inspect cancer, pregnancy, food toxicity, and pollution levels. Compared with
conventional methods (Western blot and PCR) that are costly and time-consuming, the elec-
trochemical approach is a superior alternative [62,63]. Nonetheless, its performance is not
distinct from its conductivity properties [64–66]. Furthermore, the signal-overlapping from
interference must be hindered for electrochemical performance with complex samples [67].
This section presents representative examples of electrochemical sensing platforms for
nucleic acids, enzymes, and hormones, as summarized in Table 1.
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Table 1. Electrochemical biosensing platforms for detecting biomolecules.

Target Substrate Immobilization Strategies Detection Methods Ref.

DNA Screen-printed
electrode

Au nanoparticles/TFO
probe/Methylene Blue/Target DNA

(ssDNA or ds DNA)
CV/SWV [68]

DNA Carbon paste electrode WS2/PIn6COOH/ssDNA CV/EIS [69]

DNA Platinum electrode MoS2-polyaniline/
ssDNA/Methylene Blue (MB) CV/DPV [70]

Thrombin Au electrode Poly-adenine/aptamer1/thrombin/
aptamer2/padlock CV/DPV/EIS [71]

Thrombin Au electrode Thiol-group/aptamer/
tetra-ferrocene DPV/EIS [72]

Thrombin Glassy-carbon
electrode

Graphene oxide/MNP-TBA1
(Magnetic nanoparticle-thrombin

binding aptamer)/HAP-TBA2
(Hydroxyapatite-TBA2)

CV/SWV [73]

MMP-2 Au electrode Selenium/peptide/Na2MoO4/ssDNA CV/EIS [74]

MMP-9 ZnO nanoparticle
electrode

Gold-coated glass/ZnO-
NP/APTES/Glutaraldehyde/

MMP-9 Antibody
CV/EIS [75]

MMP-9 Au electrode L-cysteine/EDC/NHS/
Peptide/MB CV [76]

Estrogen (ER alpha) Screen-printed
electrode

5′-thiol-modified DNA
aptamer/Tris-(2-carboxyethyl)

phosphine hydrochloride
DPV [77]

Estrogen (17-β
Estradiol) Au electrode Split aptamer 1/E2/Split aptamer 2 CV/DPV [78]

Estrogen (17-β
Estradiol) Au electrode 6-mercapto-1-hexanol

(MCH)/Aptamer-Graphene DPV/EIS [79]

Human chorionic
gonadotrophin (hCG)

Screen-printed carbon
electrode

Carbon-nanotube/Antibody
1/hCG/Au-Antibody 2 CV/DPV [80]

Human chorionic
gonadotrophin (hCG)

Glassy-carbon
electrode

Carbon nano-onions (CNOs)/
gold nanoparticles

(AuNPs)/Polyethylene glycol (PEG)
CV/SWV [81]

Human chorionic
gonadotrophin (hCG)

Screen-printed carbon
electrode

PANHS/Anti-hCG
antibody/BSA/hCG CV/SWV [82]

Abbreviations: TFO: triplex forming oligonucleotides, CV: cyclic voltammetry, SWV: square wave voltammetry, EIS: electrochemical
impedance spectroscopy, DPV: differential pulse voltammetry.

2.1. Electrochemical DNA Sensing Platforms

Electrochemical genosensing technology for DNA diagnostics has been recently devel-
oped [68,83]. Of the DNA sensing methods, electrochemical detection has the advantages
of inexpensive equipment, sensitivity, and rapid performance. Compared with sequence-
specific DNA detection, genosensing is a promising biosensor technology, particularly for
early disease diagnosis, forensic application, and drug screening [84,85]. Immobilization
performed in several steps is vital to the electrochemical detection of DNA. According
to Yang et al. (2019), self-signal DNA detection was performed via the immobilization
of hybridized ssDNA [69]. Firstly, tungsten disulfide (WS2) nanosheets were treated on
a carbon paste electrode (CPE), followed by poly (indole-6-carboxylic acid) (PIn6COOH)
treatment. Consequently, a WS2/PIn6COOH nanocomposite was formed, and an ssDNA
probe was attached to the WS2/PIn6COOH nanocomposite-modified CPE through the
redox response. The electrode was then immersed with a 1.0 × 10−11 mol L−1 ssDNA
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probe containing 10 mL of phosphate-buffered solution (PBS, pH 7.0). After immersing
the electrode, the ssDNA probe was non-covalently assembled on the WS2/PIn6COOH
nanocomposite. Altogether, the DNA was immobilized through the hybridization step
(Figure 2A). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)
were used prior to the detection of DNA immobilized on the CPE electrode [86]. The
ssDNA probe was hybridized with the target DNA to form the double-helix structure,
which induced the dsDNA release from the nanocomposite surface.
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Figure 2. (A) Construction process for a self-signal electrochemical sensing platform. (B) Fabrication of the electrochemical
sensors for DNA hybridization and quantitative DPV detection. (C) DPV graphs obtained for (a) Pt||MoS2-polyaniline-
ssDNA electrode with different target DNA concentrations, (b) calibration curve of DNA detection in term of percentage
change in DPV intensity for target DNA concentration, (c) DNA detection of bare Pt||MoS2-ssDNA electrode, and
(d) Pt||MoS2-polyaniline-ssDNA electrode of single-mismatched and fully matched DNA. Reprinted with permission
from [69]. Copyright 2019, Royal Society of Chemistry; Represented with permission from [70]. Copyright 2018, Elsevier.

Dutta et al. (2018) proposed a platform that could successfully detect concentrations
as low as 10−15 M of target DNA without labeling or amplifiers (Figure 2B) [70]. The
Pt||MoS2-polyaniline electrode is immersed in a tris buffer (pH 6.9) containing 2.5 µM
ssDNA solution, which functions as a DNA probe. This reported DNA biosensor directly
senses the target through differential pulse voltammetry (DPV) and CV measurements
with a wide linear range of detection (10−15 to 10−6 M). The electrochemical characteristics
of methylene blue (MB) on an ssDNA/MoS2-polyaniline/Pt electrode was conducted in
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different conditions (Figure 2C). The sensor treated with a MoS2-polyaniline nanocomposite
successfully detected the target DNA in various target DNA solution concentrations, as
depicted in Figure 2C(a).

Furthermore, a DPV measurement was conducted with a MoS2-polyaniline electrode
and an only-MoS2 electrode (Figure 2C(c,d)). The peak current of completely matched
DNA was diminished compared with that of single-matched DNA. DNA sensor detection
could occur at an extremely low concentration (down to 10−15 M) using the electrochemical
method, a superior alternative to conventional methods. Furthermore, the novelty of DNA-
sensing technology primarily concerns the hybridization of target DNA on conductive
platforms without labeling or pretreatment. In the future, further improvement is required
for more accurate DNA recognition and detection.

2.2. Electrochemical Biosensors for Enzyme Activity

Enzymes are essential proteins in the body due to their fundamental role in the four
stages of degradation, absorption, oxidation, and reduction [87]. Enzymes can be found
throughout the body because they flow in the blood and enter cells in each organ [88,89].
Many researchers attempt to construct platforms that can recognize any specific enzyme
that could function as a biomarker without causing damage. The electrical signal is based
on enzymes’ actions in activating and degrading specific substances. For example, ferrocene
and potassium ferricyanide are used to indirectly confirm enzyme activity, and fluorescent
substances are labeled to develop a sensing platform. Recent studies have successfully
achieved a high limit of detection (LOD), which is highly favorable for further quantitative
approaches in biomedicine and diagnostics. In contrast, confirming the capability of
the electrochemical method for the qualitative characterization of enzyme features is
challenging because the features exist in the complex form. In this section, we describe
several recently reported sensors that enable enzyme detection, which could be used as a
proof-of-concept and motivation for future development.

2.2.1. Electrochemical Detection of Thrombin

Thrombin is a type of serine protease essential to molecular biology for tumor growth,
metastasis, angiogenesis, and blood coagulation [90]. It is used primarily as a tumor
marker to diagnose pulmonary metastasis [91,92]. High or low blood thrombin levels
are associated with blood coagulation [93]. Accordingly, the specific and quantitative
detection of thrombin is vital in clinical practice and diagnostic approaches. Recently,
thrombin-bound aptamers have successfully demonstrated the capability to use various
transducers as molecular receptors [94,95]. Thrombin has been successfully detected
using several methods, such as fiber-optics, fluorescence-based, and infrared fluorescence
sensors [96,97]. However, these methods lack operation and detection times. Considering
blood coagulation and environmental complexity, developing the ability to detect thrombin
electrochemically is challenging [71,98].

According to the platform developed by Cheng et al. (2020), a homogenous electro-
chemical biosensor based on a selected aptamer probe was fabricated with tetra-ferrocene
at the 3′ terminal and a thiol group at the 5′ terminal for sensing thrombin, as described in
Figure 3A [72]. This reported biosensor successfully enhanced the binding efficiency between
the target unit and substrate, including a wide range of concentrations, in the range of 0.18 to
1.8 nM (Figure 3B(a)). Various common proteins, such as Immunoglobulin G (IgG) and bovine
serum albumin (BSA), were used to confirm the specificity of this reported sensor; the thrombin
probe did not selectively interact with either protein (Figure 3B(b)). Furthermore, Zhang et al.
(2018) proposed a platform where two aptamers are directly used as the recognition unit
and electroactive indicator to detect thrombin [73]. The graphene promotes the electron
transfer and amplifies the electrochemical signals [99,100]. The detection limit is 0.03 fM,
which indicates the proposed electrode’s high sensitivity level. For selectivity, the reported
biosensors demonstrated that only thrombin significantly increases the signal compared
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with other serum samples (e.g., lysozyme and BSA). The developed platform is promising
for highly sensitive and selective thrombin detection.
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Figure 3. (A) Electrochemical sensor for thrombin detection. (B) DPV (a) response of different thrombin concentrations, a:
0 M, b: 1.8 × 10−13 M, c: 1.8 × 10−12 M, d: 1.8 × 10−11 M, e: 1.8 × 10−10 M, and f: 1.8 × 10−9 M target thrombin. (Insert)
Calibration plots of target thrombin (1.8 × 10−13 to 1.8 × 10−9 M). Specificity of the assay for the detection of thrombin (b).
(C) Biosensor for the detection of MMP-9 biomarker. (A) Spin-coating and annealing of ZnO nanoparticle seed solution,
(B) ZnO nanorod growth, (C) antibody immobilization, (D) sample incubation, and (E) electrochemical measurement (CV
and EIS). Chemical link between ZnO surface and antibody is illustrated on right side. Reprinted with permission from [72].
Copyright 2020, Elsevier; Reprinted with permission from [75]. Copyright 2020, Elsevier.

2.2.2. Electrochemical Detection of Matrix Metalloproteinase

Matrix metalloproteinase (MMP) is a zinc-dependent proteolytic enzyme capable of
degrading all components of the extracellular matrix (ECM) [101]. It consists of 24 types
that differ preferentially based on the enzyme substrates: type IV collagenase (MMP-2 and
MMP-9), stromelysin (MMP-3), and interstitial collagenase (MMP-1) [102,103]. MMP has
properties involved in tumor invasion and metastasis and functions as a biomarker for
infection, inflammation, and cancer growth [104]. Consequently, it is essential to precisely
detect its activities and quantities at the cellular level [74]. Lee et al. (2016) reported
that the redox reporter MB labeled with the peptide was used to integrate a gold-based
biosensor [76]. Classical lithography and etching processes are defined as production
techniques where the working electrode can maintain a continuous potential without the
reference electrode [105]. This simplified platform is further applicable in electrochemical-
based cancer diagnosis.

Shabani et al. (2020) reported MMP-9 detection by the electrochemical method using
zinc oxide (ZnO) nanoparticles and a ZnO nanorod-modified substrate [75]. An Au-
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coated substrate was modified using ZnO nanoparticles, and its concentration was op-
timized using the CV method. Antibody immobilization was then performed by (3-
aminopropyl)triethoxysilane (APTES), glutaraldehyde, and ethanolamine treatment for
high platform sensitivity and selectivity (Figure 3C). Furthermore, ZnO nanorods were
fabricated using the hydrothermal method: a ZnO nanoparticle seed layer was coated
on the Au-coated substrate, followed by MMP-9 substrate conjugation via antibody im-
mobilization. Based on the CV graph, MMP-9 was detectable at a concentration of 1 to
1000 ng mL−1 with a detection limit of 0.15 ng mL−1. Similar to the commercial enzyme-
linked immunosorbent assay (ELISA) in real serum samples, the mean MMP-9 concentra-
tion was detected by the CV methods. Remarkably, this proposed biosensor achieved a
lower detection limit of 7% than commercial ELISA at 10%. The reported studies confirmed
the efficiency of direct MMP detection through its electrochemical behaviors, which will be
of further use before its application in POC diagnosis.

3. Electrochemical Biosensors for Hormone Detection

The development of biosensors enables detecting biomolecules and other phenomena,
including hormones [106,107]. Hormones are secreted primarily by glands or specific cells,
circulate in the bloodstream, and specialize in targeting cells [108]. The electrochemical
biosensing of hormones has emerged for treating human diseases and performing clinical
diagnosis. The quantity of hormones that regulate and control the metabolism of the
human body is very low, leading to efforts to develop a highly sensitive tool to detect
them. The electrochemical approach has typically been used for hormone sensing because
it can overcome the limitations of other well-established methods (e.g., ELISA) in terms
of sensitivity, selectivity, and time performance [109,110]. One example is the modified
screen-printed carbon electrode (SPCE) with cobalt nanoparticles (CoNPs) with chitosan
and multi walled carbon nanotubes (MWCNTs) (CoNPs/chitosan-MWCNTs/SPCE) that
can successfully detect insulin with concentrations down to 25 nM. This finding could
confirm the advantages of an electrochemical detection system [111]. This section describes
several current sensors for hormone detection that may contribute to the development of
electrochemical-based hormone sensors.

3.1. Electrochemical Detection of Estrogen Hormone

Estrogen is a naturally occurring steroid hormone in mammals with unusual behavior
when it reacts with its receptor [78]. It is an essential hormone in the female reproductive
cycle, menstrual cycle, and growth, while it can also lead to obesity and infertility at
abnormal levels. Eighty percent of breast cancers are affected by estrogen, indicating its
association with cancer [112]. Therefore, estrogen-level detection is highly favorable due
to its promotion effects and initial tumor formation. A detection platform that uses the
estrogen receptor has been studied through an electrochemical detection platform that
is non-destructive with high selectivity and sensitivity [77,113,114]. In 2018, Liu et al.
developed an electrode surface transformation with a gold electrode on which 6-mercapto-
1-hexanol (MCH) was used for a self-assembled monolayer (SAM) [79]. Graphene was
treated with a bi-function to adsorb the E2-binding aptamers and the SAM on the MCH/Au
modified electrode. Electrochemical detection was performed with a 20 mM PBS containing
5 mM FcCOOH and 0.1 M NaClO4. The DPV performance confirmed the enhanced
detection of E2.

Nameghi et al. (2019) used the gold electrode and aptamers for the substrate to detect
estrogen (Figure 4A). Previously, aptasensors have demonstrated satisfactory results at
detecting their targets [113,114]. The immobilization was performed via thiol-modified
split aptamers that can react with the gold surface [78]. CV was conducted through the
proposed platform because the interfacial reaction could be determined via this method,
thus enabling easy discrimination between estrogen and the control group through their
signal (Figure 4B). The bare electrode presented the maximum CV current (curve A), which
indicated excellent electron transfer between the bare gold electrode and [Fe(CN)6]3−/4−.



Biomedicines 2021, 9, 15 9 of 20

When split aptamers were conjugated onto the gold electrode’s surface, the redox current
decreased (curve B). From curve D, when adding the E2, the electrochemical signal was
significantly reduced (curve D) because the split1–E2–split2 complex was formed on
the electrode. However, in the presence of bisphenol A (BPA) as non-target substances,
the current signal of the split DNA aptamer modified electrode did not change (curve
C). Furthermore, DPV analysis was performed, in which the concentrations of E2 were
measured from 1.2 pM to 100 pM and 100 nM to 7 nM with a detection limit of 0.5 pM
(S/N = 3). The outstanding performance of the proposed biosensors demonstrates their
reproducibility, high sensitivity, and selectivity.
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Figure 4. (A) Electrochemical aptasensor for sensing 17β-estradiol (E2) based on split DNA aptamers. (B) Electrochem-
ical characterization of the electrode modification and the aptasensor function. CV profiles of: bare electrode (green
curve, curve a), split DNA aptamers-modified electrode (pink curve, curve b), split DNA aptamers-modified electrode
+ bisphenol A (BPA) (lack of bridge) (blue curve, curve c), split DNA aptamers-modified electrode + E2 (bridge assem-
bly) (black curve, curve d). (C) Fabrication of the hCG-immunosensor. (D) Assessment of the step-wise fabrication of
hCG-immunosensors and electrochemical signal: (a) CV curve of (a) bare-GCE, (b) CNOs/AuNPs/PEG/GCE, (c) anti-
hCG/CNOs/AuNPs/PEG/GCE, and (d) BSA/anti-hCG/CNOs/AuNPs/PEG/GCE; SWV curves (b) of immunosensor (a)
without hCG and (b) with hCG. Reprinted with permission from [78]. Copyright 2019, Elsevier; Reprinted with permission
from [81]. Copyright 2019, Elsevier.

3.2. Electrochemical Detection of Human Chorionic Gonadotropin (hCG) Hormone

Human chorionic gonadotropin (hCG) is a glycoprotein hormone secreted by pla-
centa trophoblast cells that functions as a diagnostic marker for pregnancy and a tumor
marker [115]. The early quantitative detection of hCG is particularly challenging. Nu-
merous hCG analysis methods have been reported, such as ELISA, fluorescence-labeled
immunoassay, and radioimmunoassay [116,117]. Electrochemical detection could over-
come the limitations of other methods (e.g., high cost, laborious, slow performance, and
risk potential of radioactivity) [80]. A highly sensitive electrochemical immunosensor
based on carbon nano-onions (CNOs), gold nanoparticles (GNPs), a polyethylene glycol
(PEG) composite, and a glassy carbon electrode (GCE) was reported by Rizwan et al.
(2019) [81]. This composite was drop-casted onto a pre-cleaned GCE as a self-assembled
monolayer via chemisorption. The anti-hCG was then immobilized onto the modified
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CNOs/AuNPs/PEG/GCE biocompatible interface (Figure 4C). Before detecting the hCG,
this fabricated sensor was incubated for 45 min at room temperature. This layer-by-layer
fabrication was conducted through CV characterization. The detection of hCG was per-
formed using square wave voltammetry (SWV), as illustrated in Figure 4D. This hCG
immunosensor exhibited high sensitivity and productivity at a low detection concentration
of 100 fg/mL.

Damiati et al. (2019) developed a screen-printed sensor based on the modified carbon
macro- and micro-electrodes with a linker, 1-pyrenebutyric acid-N-hydroxy-succinimide
ester (PANHS), and the immobilization of anti-hCG antibodies to detect hCG [82]. CV
was conducted to characterize the modified electrode by increasing the scan rate from
10 to 100 mV/s. Furthermore, the SWV detection of the micro-electrode exhibited a higher
sensitivity (1 pg/mL) than the macro-electrode sensor with a lower detection limit of
100 pg/mL. The working electrode’s physical size directly impacted the electrochemical
sensitivity of biosensors that used macro- and micro-electrodes. The results of CV and
SWV performance on the modified BSA/anti-hCG antibody/PANHS/SPCE demonstrated
that the low-cost, label-free biosensor has high selectivity for hCG detection.

4. Electrochemical Biosensing for Highly Proliferative Cells

In addition to detecting biomolecules, it is essential to sense larger-unit cells, useful
for prophylactic and therapeutic tools in disease modeling [118,119]. Sensing technology
at the cellular level is challenging compared with biomolecule detection [29,45] due to its
complex structure and composition, including a sensitive microenvironment that varies
depending on the culture conditions, temperature, pH, and nutrient supply [120]. Several
classical methods, such as immunostaining, PCR, and flow cytometry analysis (FACS),
are commonly employed in cell and tissue characterization even though living samples
become irretrievable after such analyses. A cell-based biosensor is a promising solution
for sensitive, reliable, and non-destructive cell viability measurement [45]. Numerous
studies of electrochemical-based biosensors for disease modeling and diagnostics have
been reported [121–123]. For instance, electrochemical biosensors of cell cycles and growth
factors highly favorable for cancer treatment have been established [124,125].

In contrast, electrochemical biosensors have emerged as an innovative method for stem
cell live sensing [126–128]. The ability to monitor stem cell pluripotency and differentiation
rapidly and non-destructively is useful [129,130]. For example, electrochemical biosensing
has been used to assess osteogenesis and neurogenesis of stem cells as therapeutic agents in
regenerative medicine [131–133]. For this advanced study, high sensitivity, selectivity, and
ease of handling the stem cell culture are the primary concerns for further improvement.
Moreover, cell activity and metabolism can be electrically monitored for living cells, yet the
handling system still depends on a laboratory scale [134,135].

Accordingly, the continuous research and improvement of electrochemical-based
technology are necessary to upscale current electrochemical systems to commercialize
stem cell-based products [136–138]. Biosensing platforms are usually combined with
non-biomaterials, including nanoparticles, due to the cell–substrate interactions that may
enhance the readable signal transduction. This section summarizes the development of
electrochemical biosensors for cancer cells and stem cells as typical, highly proliferative
cells (Table 2).

4.1. Electrochemical Detection of Cancer Cell Viability

Before cancer prevention and treatment, detecting cancer cells at an early stage by
sensing their presence in the human body is essential [149]. In vitro cancer-cell detec-
tion based on the electrochemical method—which provides label-free, non-invasive, and
non-destructive performance that could further support anticancer drug discovery—has
emerged recently [120,139–143,150,151]. Angeline et al. (2020) reported the electrical signal
enhancement of stomach cancer cell (MKN-28) viability through the electrochemical detec-
tion method, which is then useful for drug screening applications [144]. The ECM-coated
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hybrid platform was optimized for the electrochemical assessment of MKN-28 cells, fol-
lowed by treatment with anticancer drugs and cell viability assessment. The signal was
enhanced using ECM coating before the cell culture was placed on the ECM-coated hybrid
platform, indicating the ability of ECM to accelerate cell–substrate interaction.

Table 2. Electrochemical biosensing platforms for highly proliferative cells.

Target Substrate Immobilization Strategies Detection Methods Ref.

MDA-MB-231 cells Glassy-carbon
electrode

Mannose-C2NH2/Con A or BSA
Mannose-C2NH2/Cell mixture‘

CV/EIS [139]

MCF-7 cells Glassy-carbon
electrode

MWCNT/PGA
composite/MUC-1

aptamer/Glutathione/
Apt-AgNPs

CV/DPV/EIS [140]

HepG2 cells Screen-printed gold
electrode

DNA nanotetrahedron/TLS11a
aptamer probe/Pd-Pt nanocage

(labeled with cDNA)
DPV [141]

HepG2 cells Glassy-carbon
electrode

Fe3O4/MnO2/Au-Pd/HRP–
aptamer/Hemin/G-quadruplex

(nano probe)
CV/DPV [142]

U-87 MG cells ITO glass electrode Gold layer/L-cysteine/TAT and
RGD-C-peptide CV/EIS [143]

HER2 cells Fluorine doped tin
oxide (FTO) glass

Nitrogen-doped
graphene/AgNP/Poly

aniline/Anti-HER2
DPV [120]

MKN-28 cells ITO glass electrode HAuCl4/Fibronectin and
Collagen-solution DPV/EIS [144]

SH-SY5Y/
U-87 MG cells ITO glass electrode Gold nanostructure DPV [145]

hMSCs ITO glass electrode

Nano-porous Alumina
Mask/Au

dot/L-cysteine/RGD-peptide
composite

CV [146]

hESCs ITO glass electrode Matrigel/GNPs/RGD
peptide/Gold layer DPV [147]

hESCs ITO glass electrode Matrigel/High density gold
nanostructure DPV [148]

Abbreviations: ITO: indium tin oxide.

Recently, Suhito et al. (2020) proposed a bio-multifunctional platform that can simul-
taneously perform 3D multicellular cancer spheroid formation and real-time assessment
of the anticancer drug treatment (Figure 5A) [145]. The indium tin oxide (ITO) glass
electrode was modified with HAuCl4 via electrodeposition, as previously reported. This
platform consists of highly conductive gold nanostructures (HCGN) that enable the spon-
taneous formation of spheroids and detect their viability using the electrochemical method.
The surface roughness of gold nanostructures reduces cell adhesion and thus supports
automatic spheroid formation. Furthermore, gold nanoparticles have high conductiv-
ity, long-term stability, and high biocompatibility favorable for their implementation in
electrochemical detection.
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DPV was performed toward co-culture spheroid formation in multiple ratios of SH-
SY5Y and U87-MG cells. Based on Figure 5B,C, the 1:1 ratio was the most preferable for the
electrochemical method and spheroid formation. However, the colorimetric method (CCK-
8 assay) results exhibited no significant differences of co-culture spheroid viability with
ratios of 1:1, 1:2, or 2:1, which suggests that electrochemical detection has higher sensitivity
than conventional analysis (Figure 5D,E). Furthermore, this co-culture spheroid system
on a multifunctional platform has been used for anticancer drug screening. The platform
can detect toxicity of a low concentration of curcumin (70 µM) after 35 h of incubation and
a high concentration of curcumin (500 µM) within a short amount of time (<7 h), which
is incredibly difficult to discern using conventional colorimetric methods. Therefore, this
platform is highly promising as a label-free high-throughput drug screening method for
3D cell culture systems.

4.2. Electrochemical Sensing of Stem Cell Pluripotency

Stem cells keep pace with the rapid development of high-precision medical technology,
use the genetic information of individuals to create the same tissue with the in vivo environ-
ment, and are derived from the patient’s tissue [152–155]. They exist in various types, such
as mesenchymal stem cell (MSC), embryonic stem cell (ESC), and neural stem cell (NSC),
which could further be differentiated into specific cells such as neurons, adipocytes, oligo-
dendrocytes, osteoblasts, and chondrocytes [156]. During the development of drugs, stem
cell differentiation is exceptionally favorable for obtaining specific cells of interest. These
cells are further treated with drug candidates to confirm drug safety and efficacy [157,158].
Many recent studies have reported the non-destructive and label-free detection of stem cell
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pluripotency and differentiation via electrochemical biosensors to avoid irreversible cell
damage after analysis [146,159–161].

Human embryonic stem cells (hESCs) are categorized as PSCs capable of differenti-
ating into specific cells and could constitute more than 210 human organs, which can be
widely used to treat intractable diseases. Nevertheless, the formation of teratoma due to
the undifferentiated state of PSCs is a serious problem in clinical applications. Thus, it is
vital to develop methods that can enable the precise characterization and screening of PSCs
without destroying or damaging the differentiated cells. Jeong et al. (2016) proposed a
modified hybrid film that consists of an arginyl-glycyl-aspartic acid (RGD)-MAP-C peptide,
gold nanoparticle (GNP) film, and a Matrigel layer, which manifests the electrochemical
detection of undifferentiated hESCs [147]. This platform exhibited detection ability with as
few as 25,000 hESCs, which was 2.8 times more sensitive than in previous research. Fur-
thermore, hESC-derived MSCs were subjected to DPV detection to confirm this platform’s
sensitivity toward hPSCs. The MSC electrical signals were negligible compared with the
DPV signal of undifferentiated hESCs.

Given the possibility of teratoma formation from the marginal number of hPSCs,
further optimizations are needed to significantly improve biosensor sensitivity. Accord-
ingly, Suhito et al. (2019) developed an hPSC-sensing platform by optimizing the Au-film
structure formation through the electrochemical deposition process, which further acceler-
ated the sensitivity and selectivity toward hESCs (Figure 6A); the composite was called
a high-density gold nanostructure (HDGN). This complex enhances the redox signal in
living cells, indicating that the cell adhesion and growth were functionally increased [148].
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The LOD was significantly increased (by twofold) with our developed platform com-
pared with the RGD–MAP–C on the Matrigel-coated GNP film—approximately 12,500 hESCs
were successfully detected by DPV measurement (Figure 6B). Furthermore, it exhibited
high selectivity toward hESCs in the presence of human cord blood-endothelial progenitor
cells (hCB-EPCs) as a normal cell (40,000 cells/chip). Hence, this platform is promising for
biosensors used in stem cell applications for tissue regeneration and clinical therapy.

5. Conclusions and Future Perspectives

This paper summarizes the successful electrochemical sensors that have been designed
to detect small biomolecules (e.g., DNA, enzymes, and hormones) and the complex of
cells. The electrochemical method is a rapid, precise, and non-destructive tool to analyze
a broad range of targets of interest. Functional peptides, aptamers, and nanomaterials
(e.g., metal nanoparticles, graphene, and graphene derivatives) have been used to increase
sensitivity. The interactions between targets and specific probes or composites generate
a detectable read-out signal during electrochemical measurement. Accordingly, methods
are considered to develop electrochemical platforms that can sense live cells precisely
and rapidly before diagnosis and drug discovery. The possibility of monitoring highly
proliferative cells through electrochemical devices has been confirmed, including detecting
cancer cell viability and monitoring stem cell pluripotency and differentiation status upon
their redox behaviors.

In the future, biosensing technology could contribute toward a useful cell-friendly anal-
ysis technique for precision medical diagnosis and POC. Electrochemical sensor technology
is an advanced development in biological research. The detection of various substances is
feasible, from small biomolecules (e.g., DNA and proteins, enzymes, and hormones) up to
the cellular level, corresponding to cell viability. Moreover, it has advantages in sensitivity,
selectivity, and processing time, which will be beneficial in future industries. Accordingly,
rapid, non-destructive, and applicable electrochemical sensors could be incorporated in
sophisticated large-scale systems for disease diagnosis and the quality assurance of stem
cell-based products.
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