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Real-world size of objects serves as an axis of
object space

Taicheng Huang® !, Yiying Song® 2™ & Jia Liu® '™

Our mind can represent various objects from physical world in an abstract and complex high-
dimensional object space, with axes encoding critical features to quickly and accurately
recognize objects. Among object features identified in previous neurophysiological and fMRI
studies that may serve as the axes, objects’ real-world size is of particular interest because it
provides not only visual information for broad conceptual distinctions between objects but
also ecological information for objects’ affordance. Here we use deep convolutional neural
networks (DCNNs), which enable direct manipulation of visual experience and units’ acti-
vation, to explore how objects’ real-world size is extracted to construct the axis of object
space. Like the human brain, the DCNNs pre-trained for object recognition also encode
objects’ size as an independent axis of the object space. Further, we find that the shape of
objects, rather than retinal size, context, task demands or texture features, is critical to
inferring objects’ size for both DCNNs and humans. In short, with DCNNs as a brain-like
model, our study devises a paradigm supplemental to conventional approaches to explore the
structure of object space, which provides computational support for empirical observations
on human perceptual and neural representations of objects.
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bjects are complicated, and humans have developed an

excellent ability to recognize them quickly and accurately

in natural environment. A possible underlying mechan-
ism for such a feat is to extract object features to construct an
object space whose axes carry critical information regarding
aspects of object properties’:2. Thus, object recognition is con-
sidered a computational problem of finding multiple axes to build
a simplified division surface to separate different objects repre-
sented by object features projected from these axes’. Previous
neurophysiological and fMRI studies suggest that this hypothe-
tical object space is implemented in human’s ventral temporal
cortex (VTC) and non-human primates’ inferotemporal cortex
with axes such as real-world size (big versus small)*-8, animacy
(animate versus inanimate)*>7-%10 and curvature (spiky versus
stubby)®11:12,

Among these object features, objects’ real-world size, which is
encoded along the medial fusiform sulcus (MFES)® in the VTC’
and medial temporal lobe (MTL)% is of particular interest,
because it provides critical information not only to support broad
conceptual distinctions between objects but also for us to
understand objects’ relation to the environment and to interact
with objects. Accordingly, the functionality of objects” real-world
size suggests at least three sources that may account for the
development of size sensitivity in the VIC. The most evident
source is that objects of different sizes likely have distinct mid-
level perceptual properties (e.g., local corners, junctions, and
contours) that are extracted at the early stages of visual proces-
sing, as in visual search the target object is detected faster when it
differs in real-world size with the distractor objects!3 and the
cortical region with size sensitivity is evoked by unrecognizable
objects of different sizes that only preserve coarse form
information!4.

On the other hand, the real-world size describes the scale of an
object in natural environment, which implies the potential layout
of the object®. For example, the size of whales suggests its co-
occurrence with seas but not creeks. Therefore, the size sensitivity
may derive from the context information that describes co-
occurrence of multiple objects and their relations to the envir-
onment observed in daily life. Finally, the real-world size provides
heuristic information for affordance!®, in which a specific real-
world size of an object is associated with a set of specific actions,
but not every action. Accordingly, the size sensitivity may be
guided by action, which is potentially realized through differential
connectivity with dorsal-manipulation versus medial-navigation
networks!®, Note that these three sources for the development of
the size sensitivity are not mutually exclusive, because in daily life
they are usually tightly intermingled and therefore hardly
decoupled in conventional experiments to evaluate the con-
tribution of each source independently.

Deep convolutional neural networks (DCNNs) provide a new
computational framework to explore sources in the development of
size sensitivity in biological systems. First, recent advance in DCNNs
shows great potential for simulating human and primates’ ventral
visual pathway in object recognition!’~21, such as retinotopy??,
semantic structure?3, coding scheme?* and face representation®>.
Besides, in DCNNs we can selectively deprive specific visual
experience?0, precisely activate or deactivate units’ responses®4, and
smoothly adjust levels of task demands?3, which provides unprece-
dented flexibility of conducting experiments. More importantly, a set
of DCNNs are specifically designated for perception (ie., object
recognition) without top-down semantic modulation or action-
based task demands; therefore, we can examine to what degree the
axis of real-world size is evident in the object space constructed in
the DCNNs that only analyze image statistics of objects.

To do this, we first examined whether a typical DCNN
designated for object recognition, AlexNet?’, encoded objects’

real-world size as an axis of object space. Then, we examined the
sources for the development of the size axis by systematically
manipulating factors of retinal size, context, task demands, shape
and texture of objects. Finally, we used fMRI to examine whether
the factors identified in DCNNs also contributed to the repre-
sentation of objects’” real-world size in the human brain.

Results

DCNNs encoded objects’ real-world size as an axis of object
space. We first evaluated whether AlexNet pre-trained for object
recognition encoded the feature of objects’ real-world size by
examining the correspondence of AlexNet’s responses and
objects’ size. An ideal observer was constructed as a baseline to
represent the size relation among objects, which was used to
measure how closely the representation of objects’ size matched
the ground truth (Fig. 1a, Supplementary Data 1). We found that
the representational similarity matrix (RSM) of objects’ sizes at
Conv4 layer of the AlexNet was highly correlated with that of the
ideal observer (Fig. 1b) (r = 0.96, p < 0.001), suggesting that
Conv4 layer represented feature of objects’ size. In addition, to
examine the similarity between AlexNet’s responses and human’s
subjective experience on objects’ size, we also measured human’s
judgment on objects’ size where participants were instructed to
choose a larger object from object pairs randomly sampled from
the same dataset. We found human’s subjective experience of
object size was highly similar to AlexNet’s responses to it (Fig. 1¢;
r = 094, p < 0.001), suggesting at least a weak equivalence
between DCNN and human in representing the size feature of
objects. Furthermore, the similarity was not restricted to Conv4
layer; instead, all convolution layers, except Convl layer, showed
sensitivity to objects’ size (Fig S1), with Conv4 layer showing the
highest correspondence. Similar results were observed in DCNN’s
with different architectures as well (Fig S2).

To examine whether the size feature served as an axis of object
space, we used principal component analysis (PCA) on Conv4’s
responses to 50,000 objects from the ImageNet validation dataset
to construct an object space with 50 orthogonal axes, and the
number of axes was determined based on the amount of the
response variance explained (i.e., > 90%). By iteratively removing
Conv4’s response variance aligned to an axis, we examined the
decrease in correspondence between the RSM of the residual
variance and that of the ideal observer. We found that only did
the removal of the second PC (PC2) significantly reduce the
correspondence (Fig. 2a, left), suggesting that PC2 alone encoded
the size feature (Fig. 2a, right. PC2: DI = 1.34, p < 0.05,
Bonferroni corrected; the rest: DIs < 0.01, ps > 0.05; Supplemen-
tary Data 2, 3). This finding was observed in other layers of
AlexNet (Fig S4), and other DCNNs tested (Fig S5a). In short, the
feature of objects’ real-world size was specifically encoded by one
axis of the object space alone.

A great challenge to encode objects’ size is that the size varies
greatly (e.g., airplanes are 2-3 orders of magnitude larger than
basketball) and the size of daily objects is in a heavy tail distribution,
with the concentration mainly in the range of centimeters to meters.
To examine how this axis efficiently encoded objects’ real-world
size, we tested a variety of encoding schemes, such as linear, power,
and logarithm functions. Among all functions examined, the best
function that maps the physical world (i.e., real-world size) to the
representational space (ie., values of PC2) was the common
logarithm scale (R? = 048, p < 0.001, Fig. 2b; Supplementary
Data 2). That is, the stimulus-representation mapping follows the
Weber-Fechner law, suggesting that AlexNet compresses large
physical intensity ranges (i.e., objects’ real-world size) into smaller
response ranges of units. Similar results were also found in other
DCNNs (Fig S5b).
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Fig. 1 Representation of objects’ real-world size emerged in AlexNet designated for object recognition. a The RSM of units’ responses at Conv4 layer to
objects with different sizes, and objects with similar sizes elicited similar response patterns indexed by warm colors. b The RSM of the ideal observer and
¢ human showed high correspondence to that of AlexNet. S small objects, B big objects.

Behavioral studies on humans have revealed that the sensitivity to
objects’ size significantly facilitates object recognition!3. Accordingly,
here we explicitly examined the role of the size axis in object
recognition with an ablation analysis that is not applicable in
biological systems. That is, we removed Conv4’s response variance
aligned to this axis to examine whether AlexNet’s performance on
object recognition was impaired. We found that with the residue
responses after removing PC2, AlexNet's Top-1 accuracy of
recognizing the ImageNet validation images was slightly but
significantly decreased from 52.6% to 48.5% (p < 0.001) (Fig. 2c,
left), indicating that the size axis contributed to object recognition.
This finding is consistent with the facilitation of objects’ size in
recognizing objects observed in humans. Similar results were found
in other DCNNs (Fig S5c¢) as well.

Objects’ shape and texture were used to infer objects’ size in
DCNNS . As expected, the size axis was absent in an untrained
AlexNet (Fig S3), showing the necessity of stimulus experience,
rather than DCNNG§’ architecture, in constructing the size axis. To
further explore factors that may contribute to the construction of
the size axis, we first examined the factor of object co-occurrence
(i.e., context) that provides the relative difference in retinal size
among objects. That is, in natural environment, objects are sel-
domly present alone, and the co-occurrence of multiple objects in
an image likely provides information on relative size among
objects (e.g., the person in Fig. 3a is smaller than the car), which
in turn may be used to infer objects’ real-world size. To examine
this possibility, we trained a new AlexNet with images containing
only one single object without any background (ie., the single-
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object AlexNet). Surprisingly, the single-object AlexNet was still
able to represent objects’ real-world size, supported by a close
correspondence of Conv4’s responses to the ideal observer
(Fig. 3b; r = 0.96, p < 0.001; Supplementary Data 1) and an axis
specifically encoding the size feature in object space (Fig. 3¢, DI =
0.87, p < 0.05, corrected; Supplementary Data 3) with a common
logarithm function (R? = 0.37, p < 0.001; Supplementary Data 2).
In addition, we directly manipulated the absolute retinal size of
the objects from the real-world size dataset, and the representa-
tion of objects’ real-world size remained unchanged (Fig S6).
Therefore, neither the relative nor absolute retinal size of objects
contributed to the construction of the size axis, ruling out the
possibility of context in extracting the feature of objects’ size.

On the other end of DCNNG are task demands, which have been
demonstrated to modulate the representation of DCNNs232>, To test
top-down task demands on the representation of objects™ size, we
trained two new AlexNets with the same image datasets but to
differentiate objects at a coarse level of living things versus artifacts
(ie., the AlexNet-Cate2) or at a superordinate level of 19 categories
(ie, the AlexNet-Catel9, see Methods for all superordinate
categories; Fig. 4a). Again, the task demands had little effect on the
representation of objects’ size, with the best correspondence to the
ideal observer in Conv4 (Fig. 4b; AlexNet-Cate2: r = 0.95, p < 0.001;
AlexNet-Catel9: r = 0.96, p < 0.001; Supplementary Data 1) and the
same axis encoding objects’ size (AlexNet-Cate2: DI = 1.30, p < 0.05,
corrected; AlexNet-Catel9: DI=1.30, p < 0.05, corrected; Supple-
mentary Data 3) with a common logarithm function (AlexNet-Cate2:
R2 = 0.37, p < 0.001; AlexNet-Catel9: R2 = 0.46, p < 0.001) (Fig. 4c;
Supplementary Data 2).
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common logarithm.

Since factors other than objects’ own properties apparently had
little contribution to DCNNs in extracting the feature of objects’
size to construct object space, here we tested whether objects’ own
properties, such as shape and texture suggested by previous
studies on humans!3-28, were critical. Three types of stimuli were
created from the real-world size dataset: silhouette, texture and
shuffle images (Fig. 5a). To thoroughly decouple the effect of
shape and texture in representing objects’ size, silhouette images
were adopted, which preserve overall shape information with no
texture information, whereas texture images, on the other hand,
preserve only texture information. Shuffle images were used to
serve as a control condition, which contains neither shape nor
texture information. We found that AlexNet was able to infer
objects’ size with either shape (r = 0.89, p < 0.001) or texture
information (r = 0.73, p < 0.001) presented alone (Fig. 5b;
Supplementary Data 1), and the size feature was also encoded in
PC2 of object space (silhouettes: R = 0.34, p < 0.001; textures: R?
= 0.33, p < 0.001; Fig. 5¢; Supplementary Data 2). In contrast,
when both the shape and texture information were scrambled
(i.e., shuffle images), the AlexNet was no longer able to extract the
size feature (R = 0.01, p > 0.05). Taken together, DCNNs seem

to use objects’ shape and texture, rather than external factors of
objects’ absolute retinal size, context, and task demands, to infer
objects’ size.

The objects’ shape, not texture, was necessary for both DCNNs
and humans to infer objects’ size. The finding that either shape
or texture of objects alone was sufficient to infer objects’ size in
DCNNs echoes neuroimaging studies in human that texform
stimuli, which preserve both texture and shape information but
are not recognizable, can successfully recapitulate objects’
size!+2°. However, behavioral studies on humans show that tex-
ture alone is not able to infer objects’ size!3, which is apparently
contrary to the role of texture observed in DCNNs. To further
explore the role of texture on objects’ size in humans, we asked
whether the texture shown to AlexNet could activate cortical
regions with size sensitivity in the VTC. Specifically, we used
fMRI to scan human subjects when they passively viewed the
objects from the real-world size dataset and their silhouettes and
textures. First, we replicated the medial-to-lateral arrangement of
a big-to-small map separated by the MFS when the original
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Fig. 3 Factors of objects' retinal size in inferring objects’ real-world size. a Relative differences in retinal size among objects. In natural images, objects
with smaller retinal size (e.g., persons) are usually smaller than those with larger retinal size (e.g., cars, buildings). The effect of this factor was tested by
removing the background. b The RSM of Conv4's responses in the single-object AlexNet to objects’ real-world size. € The second axis in object space
specifically encoded the real-world size, and the best mapping function was the common logarithm. S small objects, B big objects.

objects and the silhouettes (i.e., shape) were presented (Fig. 6a,
top and middle panels). However, the textures failed to activate
the VIC (Fig. 6a, bottom panel). This observation was further
quantified by a region-of-interest (ROI) analysis, where the size-
sensitive ROI was pre-defined by the contrast of big versus small
objects. We found in the ROI a significantly higher BOLD
response to big objects in the silhouette condition (f = 4.92, p <
0.001), but not in the texture condition (t = 1.14, p = 0.27)
(Fig. 6b), suggesting the size-sensitive cortical region in human
used the shape information, but not texture information, to infer
objects’ size.

This finding was further confirmed by a finer multivariate
pattern analysis, where the activation pattern in the ROI was only
able to distinguish big objects from small objects in the silhouette
condition (classification accuracy = 0.80, p < 0.05; Fig. 6¢) but not
in the texture condition. A thorough whole-brain searchlight
analysis did not find any region capable of distinguishing objects’
size based on texture information (Fig. 6d). In short, the finding
from the fMRI experiment is in line with previous studies that
when shape information is removed from texform!3 or when
images are globally scrambled?839, the neural activation in the
VTC is no longer similar to that of their original ones. That is, the
human brain apparently relied extensively more on shape than
texture to infer object’s size.

The difference between humans and DCNNs in relying on
texture information to infer objects’ size may reflect the fact that
DCNNs are heavily biased by objects’ texture3!32, which
primarily originates from the training data33. Therefore, it is
not surprising that DCNNs used texture information to infer
objects’ size as well. However, the finding from human’s VIC
raised an interesting question of whether texture information is
necessary for DCNNs to infer objects’ size, given that texture
information is unstable in the natural environment, and largely
affected by climates, air, or illumination. To address this question,
here we used the stylized AlexNet32, which is trained on a stylized
version of the ImageNet (i.e., Stylized-ImageNet). With randomly
selected painting styles (Fig. 7a), objects’ shape and texture are
decoupled as objects’ texture is significantly distorted. We found
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that the stylized AlexNet showed a similar pattern as the original
AlexNet, where Conv4’s responses showed sensitivity to objects’
real-world size (correspondence with the ideal observer: r = 0.86,
p < 0.001; Fig. 7b; Supplementary Data 1) and only one axis of
object space encoded the size feature (Fig. 7¢; DI = 0.45, p < 0.05,
corrected; Supplementary Data 3) with the mapping function of
common logarithm (R? = 0.29, p < 0.001) (Fig. 7d; Supplemen-
tary Data 2). Importantly, this size axis was much less sensitive to
the texture information (R = 0.08, p < 0.001 for texture images)
as compared to the shape information (R* = 0.22, p < 0.001 for
silhouette images). Taken together, the visual experience of
correct texture information of objects was not necessary to infer
objects’ size, implying a strong equivalence between DCNNs and
humans in representing objects” real-world size.

Object’s size was independent encoded from curvature and
animacy in object space. Both the fMRI and DCNN experiments
suggest the critical role of shape in extracting the feature of objects’
size. Among all types of shapes, curvature (spiky versus stubby) is
most related because it is an axis of object space’ and a mid-level
stimulus property that may provide important information for
objects’ size (e.g., big objects are boxier but small objects curvier).
Therefore, it is possible that curvature and objects’ size may share
the same axis of object space. To test this possibility, we measured
objects’ curvature by calculating objects’ aspect ratio®, with larger
values indicating spiky objects and small values for stubby objects.
We found that there was no significant correlation between curva-
ture and real-world size of objects (Fig. 8a; R? = 0.01, p = 0.41).
Besides, the loading of curvature on PC2 was small (Fig. 8b; R? =
0.001, p = 0.72), which was much smaller than the loading of
objects’ size (R* = 0.48), suggesting that the size axis unlikely relied
on curvature as an important shape property to represent objects’
size. Another well-established axis of object space is animacy (ani-
mate versus inanimate), which forms a tripartite organizational
schema with objects’ size (ie., big artifacts, animals, and small
artifacts)’”. Consistent with the observation in human, the size axis
was not sensitive to the size of animals (Fig. 8¢; t = 1.78, p = 0.08).
Instead, the feature of animacy was apparently encoded in the first
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Fig. 4 Factors of objects’ task demands in inferring objects’ real-world size. a Task demands. Three DCNNs with the same architecture (i.e., AlexNet)
were trained to classify objects at different levels of categorization. DCNNs were trained to categorize a car as cab (basic level), conveyance (superordinate
level), or artifact (coarse level). Note that the DCNN for the basic-level categorization is the same as the one used in the previous experiments. b The RSM
of Conv4's responses of the AlexNets with different task demands. From left to right: basic level, superordinate level, and coarse level. € The second axis of
the object space also specifically encoded the real-world size with the mapping function of the common logarithm. S small objects, B big objects.

principal component (PC1) of the object space, as the values of PC1
distinguished animacy from artifacts (Fig. 8d; t = 13.05, p < 0.001).
In sum, the feature of objects’ size was independent of the feature of
curvature and animacy in the object space.

Discussion

In this study, we used both DCNNs and fMRI to examine how
objects’ real-world size serves as an axis of object space. We
showed that DCNNs designated for object recognition auto-
matically extracted the feature of objects’ real-world size and used
it for object recognition. This size feature was mapped to one axis
of object space through nonlinear transformation of the common
logarithm. Because the DCNNs relied purely on the experience of

perceiving objects, the emergence of the size axis in the DCNNs
suggests that experience-dependent mechanisms of detecting
visual image statistics are sufficient for constructing the size axis
without innately predisposed sensitivity to objects’ size. Further in
silico experiments revealed that the intrinsic properties of the
objects (i.e., shape and texture), rather than the external factors
such as absolute retinal size, context, or task demands, were the
key factors for DCNNGs to infer objects’ size. Finally, echoing the
fMRI finding that humans relied extensively more on shape than
feature to infer objects’ size, we also found that in DCNNs the
visual experience of correct texture information of objects was not
necessary to infer object’s size. Taken together, with DCNNs as a
brain-like model, we showed how objects’ real-world size serves
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S small objects, B big objects.

as an axis of object space, which provides computational support
for empirical observation on this feature in human perceptual and
neural representations of objects.

Object space has been proposed as a computational framework
to efficiently encode objects by critical object features that con-
struct axes of object spacel»»34-36, Under the view of vision for
perception, previous studies mainly focus on the physical attri-
butes of objects, such as physical appearance (e.g., having furs,
wings), curvature (e.g., spiky, stubby), and conceptual knowledge
(e.g., animate, artifacts) as candidate features for axes. In this
study, we focused on the feature of objects’ real-world size that
not only facilitates object recognition (vision for perception) but
also heuristically affects our action on objects (vision for
action)3”. We found that DCNNGs solely designated for perception
automatically encoded the feature of object’s size, immune to
context and action-based task demands, implying that the per-
ceptual analysis of objects’ shape was likely the main source for
our brain to develop the sensitivity to objects’ size, to infer
objects’ relation to the environment, and to find appropriate
actions upon objects. In fact, neuropsychological studies on
patients reveal that objects’ shape was used for actions on the
objects, though the patients were not consciously aware of the
objects?3-40, and our fMRI experiment, along with previous
studies!31429, also showed that shape information alone (i.e.,
silhouettes) was sufficient to activate the size-sensitive regions in
the VTC. Therefore, the perceptual analysis of objects’ shape
seems a pre-requisite for action on the objects.

In addition, our study also revealed two characteristics of the
size axis, which may provide insights into other axes of object
space. First, we found that the size axis, like axes for animacy and
curvature”-% 1112, was statistically orthogonal to other axes. This is
important, because from the perspective of the resource
rationality*1:42, it is uneconomical if object features used for
constructing object space are redundant and correlated. There-
fore, orthogonality among axes of object space is likely to reduce
the redundancy of visual details effectively*>44. Second, the
mapping from objects’ real-world size to the size represented in
the size axis was not linear; instead, the coding scheme adopted
by the size axis followed the Weber-Fechner Law that the scale for
large size was compressed exponentially, similar to the nonlinear
coding strategy adopted by human?>. The advantage of the
compressed scaling is likely to enlarge coding space to avoid
explosions in the number of preferred neurons needed*® and to
increase the tuning range of neurons®” so that they can efficiently
encode objects with sizes differing in order of magnitude. With
these two characteristics, objects’ real-world size is encoded effi-
ciently in object space.

In sum, with brain-like DCNNs, our study revealed how
objects’ real-world size was extracted and used to construct an
axis of object space. However, several unresolved issues need
future studies. First, in this study we only focused on objects’ size,
and it is interesting to know how this feature works collabora-
tively with other features to construct object space to represent
objects as a whole. Second, objects’ shape was found as a key
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factor to infer objects’ size; however, in the study, we only tested
one mid-level perceptual property of curvature, and found that it
had little contribution in representing objects’ size. Future studies
need to explore which mid-level properties, such as local corners,
junctions, and contours, embedded within shape information,
provide real-world size distinctions between objects. Finally,
because of the discriminative nature of DCNNS, in this study we
only explored the role of bottom-up factors, such as shape and
object co-occurrence, to infer objects’ sizes, which are unlikely to
differentiate the size of toy cars from that of real cars. Future
studies with generative models on top-down factors, such as
semantic interference and action-based task demands, may help
understand how objects’ size is represented comprehensively.

Materials and Methods
Neural network models. Multiple pre-trained DCNNs were used in this study.

The AlexNet?’ includes 8 layers of computational units stacked into a
hierarchical architecture; the first 5 layers are convolutional layers and the last 3
layers are fully connected layers. The second and fifth convolutional layers are
followed by the overlapping max-pooling layers, while the third and fourth
convolutional layers are connected directly to the next layer. Rectified linear unit
(ReLU) nonlinearity was applied after all convolutional and fully connected layers.
Layer 1 through 5 consisted of 64, 192, 384, 256, and 256 kernels.

Several extra DCNNS, including VGG11, VGG13, ResNet18, ResNet34, and
Inception_v3, were used to verify whether results from the AlexNet could be
replicated in other network architectures.

Two VGG networks*8, VGG11 and VGG13, were used to examine the effect of
layer numbers on the formation of real-world size preference in DCNNs. The
VGGI1 and VGGI13 include 11 and 13 layers respectively, with the first 8 and 10

8

layers being convolutional layers and the last 3 layers being fully connected layers.
All hidden layers are equipped with the ReLU nonlinearity. For VGG11,
overlapping max-pooling layers follow the 1, 2, 4, 6, 8 convolutional layers. For
VGG13, overlapping max-pooling layers follow the 2, 4, 6, 8, 10 convolutional
layers.

Two ResNet networks?’, ResNet18 and ResNet34, were used to examine the
effect of residue blocks on the formation of real-world size preference in DCNNs.
ResNet18 and ResNet34 include 18 and 34 layers respectively, with all layers being
convolutional layers except for the last one being a fully connected layer. A residue
block was constructed between every two convolutional layers by inserting a
shortcut connection. All hidden layers are also equipped with the ReLU
nonlinearity.

Inception_v3°0 was used to examine the effect of inception structure on the
formation of real-world size preference in DCNNs. Inception_v3 includes 5
independent convolutional layers, 10 Inception modules, and 1 fully connected
layer in total. Each Inception module consists of several convolutional layers with
small kernel sizes arranged in parallel. The 10 Inception modules could be classified
into InceptionA, InceptionB, InceptionC, InceptionD or InceptionE modules.
Among the 10 Inception modules, three are InceptionA modules, followed by one
InceptionB module, four InceptionC modules, one InceptionD module and two
InceptionE modules. The detailed architecture could be referred toC.

Each neural network model was pre-trained to perform object classification on
the ILSVRC2012 ImageNet dataset’!, which includes about 1.2 million images of
objects belonging to 1,000 categories. The object classification accuracy was
evaluated on 50,000 validation images that were not seen by the model during
training. The Top-1 and Top-5 accuracies of AlexNet are 52.6% and 75.1%. The
network weights of all neural network models were downloaded from the PyTorch
model Zoo (https://pytorch.org/vision/0.8/models.html)>2.

A stylized AlexNet3?, which has the same architecture as the classical AlexNet
but is trained with a Stylized-ImageNet dataset (SIN) was downloaded from
https://github.com/rgeirhos/texture-vs-shape/tree/master/models. The SIN was
constructed by replacing the style (i.e., texture) of images from the ImageNet
ILSVRC2012 training dataset with styles of different paintings (see Fig. 5a for
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examples). The object recognition ability of the stylized AlexNet was mainly
achieved via shape but insensitive to texture variance of the object images.

Stimulus datasets and model training. To examine whether real-world size
preference emerges in the AlexNet pre-trained for object classification, we used a
real-world size dataset downloaded from https://konklab.fas.harvard.edu/
ImageSets/OBJECT 100Database.zip, which was previously used*® to evaluate real-
world size preference in humans. This dataset includes 100 background-free object
images spanning the range of real-world size from small objects (e.g., thumbtack)
to large objects (e.g., colosseum). Each image consists of a single object, labeled
with the measured real-world size of this object. The real-world size of each object
was measured as the diagonal of its bounding box, ignoring the depth of the object,
and quantified in centimeters.

Silhouette, texture, and shuffle versions of the real-world size dataset were
separately generated to examine the contribution of shape and texture information
to the representation of real-world size in AlexNet. In detail, to generate a
silhouette of the original object, we first detect the edges of an object using the
canny edge detection algorithm, then set all values within edges as 0 (i.e., black
color); this removed texture information from the original objects. Curvature of
objects was measured using the aspect ratio, which is defined as a function of
perimeter P and area A:

A t Ratio = —— ()
i 1
spect Ratio

where P was measured by the number of pixels lying on the object’s contour, A was
measured by the number of pixels of the silhouette.
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On the other hand, a texture version of the original object was synthesized using
the Portilla-Simoncelli algorithm (https://github.com/LabForComputational Vision/
textureSynth)3. In detail, the Portilla-Simoncelli algorithm obtained four sets of
parameters from the target image and altered a random-noise image into a
synthesized texture image by iteratively matching its parameter distributions with
those of the target image. The four sets of parameters included (1) a series of first-
order constraints on the pixel intensity distribution, (2) the local autocorrelation of
the target image’s low-pass counterparts, (3) the measured correlation between
neighboring filter magnitudes, and (4) cross-scale phase statistics. This procedure
ensured that the random-noised images converged as a texture counterpart of the
original images but reserved no shape information. The shuffle format of the real-
world size dataset was generated by randomly shuffling the original images, which
destroyed all shape and texture information of the object.

To evaluate whether the retinal size difference among objects accounted for
real-world size preference of the AlexNet, we re-trained the AlexNet from scratch
with a single-object version of the original ImageNet dataset that contains no
background information. To do this, we first downloaded annotations of object
bounding boxes from http://image-net.org/download-bboxes, which were
annotated and verified through Amazon Mechanical Turk. 544,546 bounding boxes
are corresponding to the original training images and 50,000 bounding boxes
correspond to the original validation images, respectively. We removed the
background of each image by setting pixels outside the bounding box to 255 (i.e.,
white color). For images containing multiple bounding boxes, we randomly
selected one bounding box as our target. Note that the retinal size of objects
remained unchanged with only the background removed from the original images.
The AlexNet was trained for 50 epochs, with an initial learning rate of 0.01 and a
step multiple of 0.1 in every 15 epochs. Parameters of the model were optimized
using stochastic gradient descent with the momentum and weight decay fixed at 0.9
and 0.0005. The Top-1 and Top-5 accuracies of the AlexNet that trained with the
single-object image dataset (i.e., the single-object AlexNet) were 46.7% and 72.0%,
respectively.

To evaluate the effect of task demand on the emergence of the real-world size
axis in object space from the AlexNet, we separately re-trained two AlexNets from
scratch. One was to classify objects into two coarse categories, the living things and
artifacts (the AlexNet-Cate2), the other was to classify objects into 19 superordinate
categories (the AlexNet-Catel9), including fungus, fish, bird, amphibian, reptile,
canine, primate, feline, ungulate, invertebrate, conveyance, device, container,
equipment, implement, furnishing, covering, commodity, and structure suggested
by WordNet>*. All object images were selected from the ImageNet dataset, which
consisted of 866 categories in total. The number of images for training is 1,108,643,
and for validating is 43,301. The AlexNet-Cate2 and AlexNet-Catel9 shared the
same architecture as the original AlexNet, except that we added one extra FC layer
after the FC3 layer for the classification of two coarse or 19 superordinate
categories. The AlexNet-Cate2 and AlexNet-Catel9 were trained following the
same procedure as the single-object AlexNet. The Top-1 and Top-5 accuracies of
the AlexNet-Cate2 were 94.7% and 100.0%, and the Top-1 and Top-5 accuracies of
the AlexNet-Catel9 were 68.7% and 95.6%, respectively.

To investigate the relationship between the size axis and objects’ animacy, an
animacy-size dataset was downloaded from https://konklab.fas.harvard.edu/
ImageSets/AnimacySize.zip, which contains background-free objects of big
animals, big artifacts, small animals, and small artifacts. For each type of object, the
dataset included 60 images, which consists of 240 images in total.

Calculate representational similarity matrix (RSM) of real-world size in
AlexNet. Representational similarity between objects in different real-world sizes
was used to evaluate whether real-world size preference automatically emerges in a
DCNN that is trained for object recognition.

To achieve that, we extracted responses to objects from the real-world size
dataset in different layers of the AlexNet. All images were transformed with resize
and normalization to match the input requirement of the AlexNet. No ReLU was
performed for the responses. We averaged responses from the convolutional layers
within each channel, resulting in a response pattern of 256 channels in Conv4 for
each image. We grouped objects into eight size ranks according to their real-world
sizes (see Table S1). Each size rank included no less than six objects in different
viewpoints, colors, and object shapes, to balance unrelated confounding factors. We
averaged object response patterns within each size rank, and calculated similarity
between these averaged response patterns in different size ranks to examine
whether the response patterns in nearer size ranks are more similar with each other
than those further apart, resulting in an RSM of size ranks in the AlexNet.

The degree of real-world size preference was quantified by comparing it with an
ideal observer model. The RSM of the ideal observer model was constructed by the
consistency between each pair of size ranks, which was defined as follows:

Rank; — Rank;

s @

Consistency; = 1 —

where i and j are indicators to denote different size ranks, Rank; and Rank; are size
ranks, which ranged from 1 to 8. High correspondence between the RSMs of the
AlexNet and the ideal observer suggested real-world size preference emerged in the
AlexNet.

We also measured the real-world size representation of humans. Two
participants (two males; 22 and 27 years) were recruited to separately compare the
sizes of the objects from the real-world size dataset. For each pair of objects,
participants were required to indicate which object is bigger than the other. Each
participant completed 4,950 comparisons (i.e., C3,) for all pairs of the 100 images,
which provided a proportional value for each object with the following formula:
100
= 1y 3
100
where [[; equals to 1 when the ith object is judged to be bigger than the jth object.
An object with a higher proportional value indicated a larger real-world size in a
human’s mind. The proportional value of a size rank was calculated as the averaged
proportional value across objects belonging to the same size rank. The RSM of
humans was constructed by the consistency between each pair of size ranks
measured as

Prop; =

Prop; — Prop;

. @

Consistency; =1 —

where Prop; and Prop; are proportional values of the ith and jth size rank.

Evaluate the role of real-world size in object space. To evaluate whether real-
world size played a role as a principal axis in object space, we used Principal
Component Analysis (PCA) to recover an object space using images from the
ImageNet validation dataset. Specifically, we first fed all 50,000 validation images
into a pre-trained AlexNet. Responses from the layer with the highest real-world
size preference (i.e., Conv4) were extracted and then averaged within each channel
to generate a response matrix (Image numbers x Channel numbers). We further
normalized it by dividing its second-order norm across images. Then we used PCA
to decompose the response matrix of the AlexNet into multiple principal axes. This
yielded a linear transformation between responses and principal components (PCs)
as follows:

C=XxV (5)

where C is the PCs, X is the responses and V is the principal axes in object space.
We retained the first 50 principal axes, which captured 94.7% of the variance in the
response of the AlexNet (More than 90% for other DCNNs).

We further investigated whether the real-world size was represented as a
principal axis in object space. We first extracted responses to images from the real-
world size dataset in the same layer that was used for the construction of principal
axes, and got the projected principal components. To evaluate the effect of each
axis on the real-world size preference, we iteratively removed the variance of each
component from the original responses, and re-calculated the RSM of real-world
size in the AlexNet. Reduction of correspondence to the ideal observer was
measured with a dropout index (DI) defined as follows:

DI, = Z(R) — Z(r,) 6]

where 7; is the correspondence between the real-world size RSMs of AlexNet and
the ideal observer after removing the ith PC, and R is the correspondence without
removing any PCs. Z(*) is the Fisher z-transformation. The higher value indicated
the larger effect of a PC on the real-world size preference.

The significance of DIs was evaluated by comparing it with a null distribution,
which was generated from an untrained AlexNet with repetition of the same
procedures 5000 times for each principal axis. Multiple comparison correction was
performed using Bonferroni correction after considering an integrated null
distribution across all principal axes. The PC with a significant DI value was
identified as the axis encoding real-word size.

The quantitative relationship of this axis to the real-world size of objects was
evaluated with a series of functions in different scales:

Linear : y = x (7)
Exponential : y = x*% (©)]
Exponential : y = x%° 9)

Exponential : y = x? (10)
Exponential : y = x® (11)
Logarithmic : y = log, x (12)

where x is the value of the real-world size PC, and y is the measured real-world size
of objects. The scale with the best fit was taken as the relationship that best
describes the data.

The role of the size axis in object recognition was evaluated with an ablation
analysis by examining the impairment of the Top-1 accuracy from the last fully
connected layer. Similar to the measurement of DI, we first removed the variance of
each PC from the original responses in Conv4, and then fed these responses into
higher layers to get the Top-1 accuracy of the AlexNet for each category.
Significance was tested by comparing it with a null distribution, which was
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generated from baseline object spaces originating from an untrained AlexNet with
a repetition of 1000 times.

fMRI Experiments

Participants. 10 participants (5 males, age range: 18-27 years) from Beijing Normal
University participated in this study to examine the effects of shape or texture on the
real-world size representation in the human brain. All participants had a normal or

corrected-to-normal vision. Informed consent was obtained according to procedures
approved by the Institutional Review Board of Beijing Normal University.

Image Acquisition. Imaging data were collected on a 3T Prisma Siemens MRI
Scanner with a 64-channel phased-array head coil at Beijing Normal University
Imaging Center for Brain Research. The anatomical images were acquired with a
magnetization-prepared rapid gradient-echo (MPRAGE) sequence. Parameters for
the T1 image are: TR/TE = 2530/2.27ms, flip angle = 7°, voxel Resolution = 1 x 1 x
Imm. Blood oxygenation level-dependent (BOLD) contrast was obtained with a
gradient-echo-planar T2* sequence. Parameters for the T2* image are: TR/TE =
2000/34.0ms, flip angle = 90°, voxel Resolution = 2 x 2 x 2 mm, FoV = 200 x
200 mm.

Experiment design. All participants completed eight runs of fMRI scanning. Parti-
cipants were shown images of big or small objects in a standard block design. All
objects were displayed at the same visual angle (5.3° x 5.3°, visual distance = 100cm)
to exclude the confounding effect of different retinal sizes of objects. Big objects were
selected as the largest 40 objects from the real-world size dataset, and small objects
were selected as the smallest 40 objects from the same dataset. In addition, the same
objects in a silhouette or texture were also used to evaluate the effect of shape and
texture on the real-world size representation in the occipitotemporal cortex. Each run
consisted of six conditions (i.e., big origin, small origin, big silhouette, small silhouette,
big texture, and small texture). Each run lasted 320 s, which included four block sets.
Each block set lasted 60 s, consisting of three conditions during which all 40 images
were shown for each condition. Each image was presented for 200 ms, followed by a
300ms fixation, consisting of a 500 ms trial. The position of each object on the screen
was slightly jittered to increase the attention of the participant. The first two block sets
presented images from all of the six conditions without repetition, and the last two
block sets presented images in palindrome. Five fixation periods of 16s intervened
between each block set. Participants were instructed to pay attention to the images
and to press a button when a red frame appeared around an object, which appeared
twice per condition randomly.

Preprocessing. Anatomical and functional data were preprocessed using fMRIPrep
(version 20.2.0)>>. Preprocessing included skull stripping, slice-time correction, co-
registration to T1w with boundary-based registration cost-function, correction for
head-motion and susceptibility distortion, and temporal high-pass filtering (128 s
cut-off). All structural and functional images were projected into a 32k _fs LR
space®® using the ciftify toolbox°”. The functional images were spatially smoothed
with a 4 mm FWHM kernel.

Univariate analyses. First-level statistical analyses were performed for functional
images of each participant in each run using the general linear model (GLM) from
the HCP Pipelines. Second-level statistical analyses were separately performed on
the activation maps generated from the first-level analysis.

To define the size-sensitive ROI, a whole-brain group analysis across
participants was conducted based on the second-level statistical maps of the even
runs (i.e, run 2, 4, 6, 8) using the Permutation Analysis of Linear Models
(PALM)>8. A contrast was performed at an uncorrected threshold of p < 0.005 to
identify the regions selectively active to original big objects versus original small
objects. The identified regions from the origin condition were used as a mask of
regions sensitive to real-world size in the following analyses.

Activation magnitude was measured as Cohen’s d with the formula,

d= __B (13)

y/dof x var(f)
where { is the contrast of parameter estimation (COPE), and dof is the degree of
freedom. Activation magnitude in the pre-defined ROIs was extracted from odd
runs (i.e, run 1, 3, 5, 7) for origin, silhouette and texture conditions of each
participant, respectively.

Multivariate analyses. Multivariate analyses used data from odd runs (i.e., run 1, 3,
5, 7). We assessed whether the multivoxel patterns of different conditions (i.e.,
origin, silhouette, and texture) in the mask of the real-world size were sufficient to
classify the size category (i.e., big or small) of the object being viewed. The clas-
sification was performed on a support vector machine (SVM) with a linear kernel
using the leave-one-out cross-validation (LOOCV) across participants, and its
accuracy was evaluated as the averaged accuracies from all runs of the LOOCV.
The significance of classification accuracy was evaluated with a null distribution,
which was built by classifications after permutating the pooled activations from the
original conditions 10,000 times. Significance (p < 0.05) was achieved when clas-
sification accuracy was larger than 0.75. Searchlight analysis was also performed to

test for coding of real-world size in the whole brain. The same procedure of
classification was evaluated in small spherical ROIs (radius 10 mm) centered on
each vertex of the brain in turn. This generated three whole-brain maps corre-
sponding to original objects, silhouettes, and textures. The searchlight maps were
spatially smoothed using a Gaussian smoothing kernel with FWHM as 2mm.

Statistics and reproducibility. Statistical analyses were conducted using the sta-
tistical computing programming language Python (version 3.8.0). Results were
visualized with Python package Matplotlib (https://matplotlib.org). Replicated
analyses were performed in multiple DCNNs, including two VGG networks, two
ResNet networks and one Inception network (Please see Supplementary Materials
for replications). All visual stimuli used in this study were downloaded from open
datasets. The fMRI experiment replicated the previous finding® of the medial-to-
lateral arrangement of a big-to-small map separated by the MFS when the original
objects were shown to the participants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data underlying our study and necessary to reproduce our results are available on
Github: https://github.com/helloTC/RealWorldSizeAxis. The single-object version of the
ImageNet ILSVRC2012 dataset is available on ScienceDB: https://www.scidb.cn/en/doi/
10.57760/sciencedb.01674. Other datasets presented in this study can be found in online
repositories, the names of each repository and the download location can be found in the
article.

Code availability
All code underlying our study and necessary to reproduce our results are available on
Github: https://github.com/helloTC/RealWorldSizeAxis.
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