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Virus-infected hepatocytes in vivo show an increased
sensitivity towards induction of cell death signaling
through the TNF receptor. Studying this hepatocyte-
intrinsic antiviral immune surveillance mechanism
has been hampered by the absence of model systems
that reciprocate the in vivo finding of increased
apoptosis of virus-infected hepatocytes challenged
with TNF. Herein, we report that an optimized proto-
col for generation of precision-cut liver slices can be
used to study this hepatocyte-intrinsic surveillance
mechanism ex vivo.
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Background & Aims: Increased sensitivity towards tumor necrosis factor (TNF)-induced cell death in virus-infected hepa-
tocytes has revealed a so far unrecognized hepatocyte-intrinsic antiviral immune surveillance mechanism, for which no
in vitro or ex vivo model is available. We aimed to establish precision-cut liver slices (PCLS) as a model system to study
hepatocyte-intrinsic regulation of apoptosis.
Methods: Preparation of PCLS from mouse and human liver tissue was optimized for minimal procedure-associated
apoptosis. Functionality of liver cells in PCLS was characterized using extracellular flux analysis to determine mitochon-
drial respiration, and viral infection with recombinant adenovirus and lymphocytic choriomeningitis virus (LCMV) was used
to probe for hepatocyte-intrinsic sensitivity towards apoptosis in PCLS. Apoptosis was detected by immunohistochemical
staining for cleaved-caspase 3 and quantified by detection of effector caspase activity in PCLS.
Results: We established an optimized protocol for preparation of PCLS from human and mouse models using agarose-
embedding of liver tissue to improve precision cutting and using organ-protective buffer solutions to minimize procedure-
associated cell death. PCLS prepared from virus-infected livers showed preserved functional metabolic properties. Impor-
tantly, in PCLS from adenovirus- and LCMV-infected livers we detected increased induction of apoptosis after TNF challenge
ex vivo.
Conclusion:We conclude that PCLS can be used as model system to ex vivo characterize hepatocyte-intrinsic sensitivity to cell
death. This may also enable researchers to characterize human hepatocyte sensitivity to apoptosis in PCLS prepared from
patients with acute or chronic liver diseases.
Lay summary: Virus-infected hepatocytes in vivo show an increased sensitivity towards induction of cell death signaling
through the TNF receptor. Studying this hepatocyte-intrinsic antiviral immune surveillance mechanism has been hampered
by the absence of model systems that reciprocate the in vivo finding of increased apoptosis of virus-infected hepatocytes
challenged with TNF. Herein, we report that an optimized protocol for generation of precision-cut liver slices can be used to
study this hepatocyte-intrinsic surveillance mechanism ex vivo.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Immune effector cell populations like virus-specific T cells and
natural killer cells, that recognize and kill virus-infected hepa-
tocytes, contribute to successful immune surveillance in the
liver.1 The selective elimination of virus-infected hepatocytes
was considered to rely entirely on the ability of virus-specific
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effector cell populations to execute their killing activity. Conse-
quently, research aiming to understand successful or failing
immune surveillance against viral infection in the liver has
mainly focused on studying the numbers and the breadth of
effector function of virus-specific T cells.2,3 Recently it has
become evident, however, that hepatocytes themselves
contribute to immune surveillance by developing a unique state
of responsiveness towards death signals.4 Virus-infected but not
healthy hepatocytes selectively respond to tumor necrosis factor
(TNF) receptor signaling with induction of caspase-induced cell
death, i.e., apoptosis. This reveals the existence of hepatocyte-
intrinsic antiviral surveillance that is independent of cytolytic T
cell effector function and that leads to death of hepatocytes.4,5

Currently, there are no in vitro or ex vivo models in place to
study the contribution and mechanistic aspects of this increased
sensitivity to apoptosis in hepatocytes in liver diseases.
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Hepatocytes function within their microenvironment, which
may be important to sustain their metabolic and immune func-
tions and may explain why certain functions observed in vivo are
not observed in vitro in isolated primary hepatocytes.6,7 The
necessity to study organ context-dependent functions of cells
has been recognized as a general challenge, and has led to the
development of experimental model systems in many organ-
specific research fields that allow for contextual analysis of cell
functions in tissues.8 For the liver, different 3D cell culture
models have been developed, which simulate the hepatic
microanatomy like liver scaffolds and facilitate the growth of
different liver cell populations in defined 3D-structures.9 Stem
cell-derived liver cells were also used to construct human liver
tissue.10 Yet, all these approaches require sophisticated tech-
nologies. A more direct approach to generate 3D tissue models,
which reflect the complexity of tissue organization, for the study
of tissue context-dependent cell functions is the generation of
precision-cut tissue slices.11,12 Precision-cut liver slice (PCLS)
models were used in the past to explore pathophysiological
mechanisms underlying chronic liver damage,13–15 and mecha-
nisms underlying hepatic steatosis, steatohepatitis or drug
metabolism.16–21 Herein, we report on an improved PCLS model
that enables the ex vivo analysis of hepatocyte-intrinsic mecha-
nisms, which determine sensitivity of virus-infected hepatocytes
towards death signaling.
Materials and methods
Mouse and human liver
C57BL/6J mice were purchased from Charles River (Germany). All
mice used in the experiments were maintained under specific
pathogen-free conditions according to the guidelines of the
Federation of Laboratory Animal Science Association. Animal
experiments were approved by local authorities (ROB-
55.2.2532.Vet_02-18-16). Experiments with human liver samples
were approved by and performed in accordance with the regu-
lations of the Ethics committee at the Technical University of
Munich (86/17S) and the ethical guidelines of the World Medical
Association Declaration of Helsinki. Informed written consent
was obtained from each patient.

Preparation of PCLS
Murine livers were removed from anesthetized mice (2.5% iso-
flurane) and human liver tissue was obtained from patients
undergoing liver resection for colorectal tumor metastasis. PCLS
were generated as described here in short. After resection, liver
tissue was immediately stored in the organ-preservation buffer
solution custodiol® at 4�C (Köhler, Germany) and was immersed
in 4% low-melting agarose. Agarose-stabilized liver tissue
enabled the generation of PCLS using a vibratome Leica VT 1000S
(Leica Biosystems, Germany). The freshly generated PCLS were
maintained in Williams E Medium (PAN-Biotech, Germany), with
gentle orbital shaking (80 times/min) at 37�C in a CO2 incubator
to ensure tissue oxygenation and consistent exposure to reagents
during experiments (please visit our detailed protocol for gen-
eration of PCLS in the supplementary information).
Results
Improved preparation of mouse and human PCLS
In vivo the induction of apoptosis in hepatocytes infected with a
recombinant adenovirus coding for the marker genes GFP and
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luciferase (Ad-CMV-GL, 5x108 infectious units per mouse)
occurred within 2 hours after TNF challenge (Fig. 1A,B). However,
TNF-induced cell death after in vitro infection of hepatocytes
with Ad-CMV-GL, required more than 5 hours, measured by loss
of electrical impedance of the hepatocyte cell layer in a 96-well
plate (Fig. 1C). Since it is not possible to isolate viable virus-
infected hepatocytes for mechanistic in vitro studies of induc-
tion of cell death,4,5 we set out to establish a PCLS model that
could enable the ex vivo characterization of the unique respon-
siveness of virus-infected hepatocytes in vivo within the liver to
die by apoptosis.

We improved the generation of PCLS by stabilizing mouse and
human liver tissue in a low-melting agarose to allow for gentle
precision cutting of liver tissue into slices and by reducing tissue
damage during this procedure through use of an organ-
protective buffer solution (see detailed protocol for preparation
of PCLS). Histomorphological analysis demonstrated that neither
generation of PCLS nor subsequent incubation at 37�C for a
period of 2 hours led to detectable cell damage in mouse and
human PCLS (Fig. 1D). Consequently, we did not detect a release
of lactate dehydrogenase, a marker for cell death, from PCLS after
cutting or after incubation at 37�C (Fig. 1E). To confirm the
absence of apoptotic cell death in the improved PCLS, we
quantified induction of apoptosis by measuring cleaved-caspase
3, which is the apoptosis inducing active form of the effector
caspase 3. We found very few cleaved-caspase 3-positive cells by
immunohistochemistry in murine and human PCLS (Fig. 1F,G)
compared to a higher number of apoptotic cells in PCLS gener-
ated by the conventional method (Fig. S1). Numbers of cleaved-
caspase 3-positive hepatocytes were slightly higher in human
PCLS (0.54% ± 0.27) compared to murine PCLS (0.23% ± 0.5).
Taken together, these results demonstrated that the improved
method for generating PCLS yielded viable liver tissue without
generation of procedure-associated apoptotic cells (Fig. 1).

PCLS as ex vivo model system to study hepatocyte sensitivity
to apoptosis
Establishing PCLS that did not bear high numbers of apoptotic
cells allowed us to investigate whether these PCLS could be
employed to study ex vivo the apoptotic response of infected
hepatocytes observed in vivo. We first evaluated whether hepa-
tocytes infected in vivowere detected in PCLS ex vivo. To this end,
we generated a recombinant adenovirus coding for the fluores-
cence reporter gene iRFP720 (Ad-CMV-GIRO) that enables the
detection of in vivo fluorescence activity of Ad-CMV-GIRO-
infected hepatocytes due to the high tissue-penetration of light
with high wavelength (>700 nm) emitted from iRFP720. In vivo
fluorescence imaging of Ad-CMV-GIRO-infected mice demon-
strated successful adenoviral transduction of the liver (Fig. 2A).
Importantly, iRFP720-fluorescence was also ex vivo detected in
PCLS from livers of mice infected with Ad-CMV-GIRO (Fig. 2B,C).
No fluorescence signal was detected from uninfected livers
in vivo or from PCLS prepared from these livers ex vivo (Fig. 2A-
C). Histomorphological analysis of PCLS from infected livers
compared to non-infected livers by H&E staining or staining for
apoptotic cells (detection of cleaved-caspase 3) did not reveal
tissue damage after infection (Fig. 2D). Taken together, these
results demonstrated that virus-infected cells were present in
PCLS generated from Ad-CMV-GIRO-infected liver.

Viral infection leads to rapid expression of viral genes that
might cause changes in cellular metabolism.22 We therefore
investigated whether metabolic mitochondrial activity was
2vol. 4 j 100465
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Fig. 1. Absence of cell death in murine and human PCLS. (A) Serum ALT levels in mice after injection of TNF (400 ng/mouse) at d2 after infection with Ad-CMV-
GL (5x108 infectious units/mouse). (B) H&E staining of liver sections at 4 h after TNF-injection in Ad-CMV-GL-infected mice, scale bar: 100 lm. (C) Primary mouse
hepatocytes were grown to confluence in 2D-culture and were infected with Ad-CMV-GL before challenge with TNF 2 days later; time kinetics of hepatocyte
death after TNF challenge was determined by measuring change in electrical impedance of healthy, healthy/TNF challenged, Ad-CMV-GL-infected and Ad-CMV-
GL-infected/TNF challenged hepatocytes. (D) H&E staining of murine and human PCLS directly after preparation and after 2 h of incubation at 37�C, scale bar 100
lm. (E) Time kinetics of LDH release from murine PCLS after incubation at 37�C; lysed PCLS as positive control and culture medium alone as negative control. (F)
Immunohistochemistry of PCLS for detection of cleaved-caspase 3 to identify apoptotic cells directly after preparation and after 2 hours of incubation at 37�C. (G)
Quantification of cleaved-caspase 3-positive cells in human and murine PCLS (>−3,150 hepatocytes analyzed for each parameter) from (F). (A-G) Representative
data from at least 3 separate experiments are shown as mean ± SEM. Statistical significance was calculated using unpaired t test, *p <−0.05, **p <−0.01 and
***p <−0.001. LDH, lactate dehydrogenase; PCLS, precision-cut liver slices; sALT, serum alanine aminotransferase; TNF, tumor necrosis factor.
different in PCLS prepared from Ad-CMV-GIRO-infected livers
compared to healthy livers. There was no difference in mito-
chondrial respiration activity measured by extracellular flux
analysis of PCLS prepared from Ad-CMV-GIRO-infected
JHEP Reports 2022
compared to healthy livers (Fig. 2E, Fig. S2). In the absence of a
change in mitochondrial respiration after Ad-CMV-GIRO infec-
tion, we next characterized the response of Ad-CMV-GIRO-
infected cells to TNF challenge. Strikingly, in PCLS prepared
3vol. 4 j 100465
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Fig. 2. TNF mediates cell death in PCLS from virus-infected liver. (A) In vivo fluorescence imaging day 2 post infection (Ad-CMV-GIRO, 5x108 infectious units/
mouse). (B) Fluorescence images of PCLS prepared frommurine liver at day 2 post infection with Ad-CMV-GIRO (5x108 infectious units/mouse). (C) Quantification
of fluorescence intensity (radiance) from PCLS (B). (D) H&E staining and immunohistochemistry for cleaved-caspase 3 in PCLS prepared from Ad-CMV-GIRO-
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lipase C gamma; ROS, reactive oxygen species; TNF, tumor necrosis factor.
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from virus-infected livers we detected higher caspase 3 activity
than in PCLS from uninfected livers at 2 hours after ex vivo TNF
challenge (Fig. 2F). Since induction of apoptosis through TNF
receptor signaling in virus-infected hepatocytes in vivo requires
NADPH-oxidase and generation of reactive oxygen species
(ROS),4 we addressed the question of whether blockade of ROS
formation would rescue TNF-induced apoptosis in PCLS. Clearly,
incubation of PCLS prepared from Ad-CMV-GIRO infected livers
with the ROS-blocking agent luteolin prevented TNF-induced
caspase activation (Fig. 2G). To further evaluate the involve-
ment of signaling events downstream of ROS formation, we
studied the relevance of phospholipase C gamma (PLCg) activa-
tion and inositol-3-phosphate (IP3)-receptor signaling for in-
duction of apoptosis in Ad-CMV-GIRO-infected hepatocytes.
Incubation with the pharmacological inhibitor of IP3-receptor
signaling (xestospongin) prevented TNF-induced caspase 3 acti-
vation in PCLS prepared from Ad-CMV-GIRO-infected livers
(Fig. 2G). Furthermore, pharmacological inhibition of PLCg-
activation with edelfosin equally prevented caspase 3 activa-
tion in PCLS prepared from Ad-CMV-GIRO-infected livers at 2
hours after ex vivo TNF challenge (Fig. 2H). To demonstrate that
increased sensitivity of hepatocytes to apoptosis in PCLS was not
restricted to infection with recombinant adenoviruses, we used
the lymphocytic choriomeningitis virus (LCMV) strain WE to
infect the liver. PCLS prepared from LCMV-infected livers also
showed caspase 3 activation at 2 hours after ex vivo TNF chal-
lenge and the extent of liver damage increased with higher TNF
doses (Fig. 2I). Together, these results demonstrated that, in PCLS
prepared from virus-infected livers ex vivo, a TNF challenge
induced caspase 3 activation, which was prevented by inhibition
of ROS formation and by interfering with PLCg-activation or IP3-
receptor signaling (Fig. 2).
Discussion
Studying the response of hepatocytes within their liver micro-
environment to signaling processes requires either an in vivo
disease model, complex 3D cultures of hepatocytes mimicking
the complex liver microenvironment for in vitro studies, or viable
liver slice cultures for ex vivo studies. Herein, we demonstrate an
improved method for preparation of PCLS that yields liver tissue
JHEP Reports 2022
slices that could be used to characterize ex vivo the hepatocyte-
intrinsic response to induction of apoptosis. Improved cutting of
liver tissue through immobilization of liver tissue in agarose
blocks together with the use of a tissue-preservation solution
used in liver transplantation enabled the preparation of PCLS
from mouse and human liver tissue that showed almost no
procedure-associated cell death. However, PCLS prepared from
surgically resected human liver tissue showed few apoptotic
cells, which may be related to longer time spans of tissue hyp-
oxia before the start of PCLS preparation. In accordance with this
assumption, we did not find a further increase in numbers of
apoptotic cells over time after incubation of human PCLS.

Next, we investigated whether PCLS can be used to study
liver cell functions ex vivo. Fluorescence activity in hepatocytes
infected in vivo with recombinant Ad-CMV-GIRO was preserved
ex vivo in PCLS prepared from these livers, which pointed to-
wards conservation of functions of virus-infected hepatocytes.
Similarly, mitochondrial respiration was intact in PCLS as
determined by extracellular flux analysis of single mouse PCLS,
and showed similarity to mitochondrial respiration detected
from hepatocytes analyzed ex vivo,4 which further corroborates
that liver cell functionality was maintained in PCLS. Most
importantly, development of liver cell death was observed in
PCLS prepared from virus-infected livers after TNF challenge
ex vivo, which resembled the rapid response of virus-infected
hepatocytes to TNF in vivo.4 Such sensitivity to apoptosis of
liver cells in PCLS was not restricted to infection with adeno-
viruses, a DNA virus, but was also observed after infection with
an RNA virus (LCMV) suggesting that the unique sensitivity of
hepatocytes to apoptosis after TNF challenge might also be
present during infection with other viruses. The development
of an improved method to prepare PCLS may therefore allow
for the characterization of the underlying mechanism of
hepatocyte-intrinsic regulation of apoptosis induction in mo-
lecular detail using inhibitors that would exert systemic toxicity
in vivo. Furthermore, since we have also shown that human
PCLS can be generated with this protocol, PCLS-based analysis
of hepatocyte sensitivity to cell death may be extended to hu-
man diseases like acute or chronic viral hepatitis,23,24,25 non-
alcoholic steatohepatitis26 or drug-induced liver injury,27

where liver cell death is observed.
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