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Abstract: In this review, special emphasis will be placed on red grape polyphenols for their antioxidant
and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible
for activation of oxidative systems and expression and release of proinflammatory cytokines and
chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be
illustrated with special reference to the activation of T regulatory cells which support a tolerogenic
pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in
obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel
disease biomarkers and clinical course have been studied upon polyphenol administration, either
in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood–brain
barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols
seem to exert several beneficial effects, even if conflicting data are reported about their influence on T
regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of
allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great
antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability,
activity of metabolites, and interaction with microbiota, deserve deeper studies.

Keywords: red grape polyphenols; immunity; inflammation; obesity; allergy; cancer; cellular and
molecular rehabilitation

1. Introduction

Polyphenols are phenolic compounds largely spread in the vegetal kingdom where they play a
protective role coping with several environmental insults (e.g., ultraviolet lights, free radicals, and
temperatures) [1–3]. For instance, in the Mediterranean area, olives and grapes have been demonstrated
to increase polyphenol production due to their high sensitivity to stressors [4]. In nature, more than
8000 different polyphenols exist as major components of fruits, vegetables, cereals and their derivatives
(wine, extra virgin olive oil, chocolate, and juices) [1–3], and structurally can be divided into, flavonoids
and non-flavonoids compounds.

Flavonoids are based on a common structure composed by two aromatic rings which are bound
by three carbon atoms, finally, forming an oxygenated heterocycle [5]. On the other hand, stilbenes
and, especially resveratrol (RES), represent the non-flavonoid components present in low amounts in
human diet [1,2,6,7]. They are composed by two phenyl rings bound together by two carbon methyl
bridges [1,2].
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In this framework, it is worthwhile mentioning some polyphenols present in extra virgin olive
oil for their antioxidant and anti-inflammatory properties. For instance, lignans are fiber-associated
polyphenols whose structure is based on a 2,3-dibenzylbutane complex, derived from the dimerization
of two cinnamil acid residues [8]. Finally, thyrosol-derived compounds, such as oleuropein and
hydroxytyrosol, are the main polyphenols in extra virgin olive oil [9–11]. Chemically, thyrosols
are represented by a phenethyl alcohol moiety with a hydroxyl group at the fourth position of the
benzene group.

Polyphenol activity depends on their absorption rate and bioavailability of derivative metabolites.
In particular, once ingested, polyphenols interact with other nutrients such as proteins, sugars,
fats, fibers and the intestinal microbiota, thus leading to the generation of active metabolites [12].
Polyphenol absorption is a quite complex process since the majority of them are present as glycosides,
i.e., conjugated with sugars. Specifically, anthocyanins are absorbed intact, while others are converted
into aglycones via hydrolysis by the small intestine brush border (via hydrolase) or within epithelial
cells (via cytosolic β-glucosidase or lactase phlorizin) in the colon [13–15]. In turn, aglycones pass to
the circulation under conjugated forms, such as sulfate, glucuronide, and/or methylated metabolites,
this occurring within epithelial cells and in the liver [15]. Finally, aglycones undergo ring fixation with
production of bioactive metabolites, such as phenolic acids and hydroxycinnamates, which can be
detected in the plasma after 12–48 h from polyphenol ingestion.

Dietary polyphenols and fruit-derived polyphenol supplements contain a large array of different
polyphenols and, therefore, the mechanism of ingestion and metabolite production are more complex,
also depending on individual variations of microbiota composition [16]. Human beings acquire
polyphenols trough diet as in the case of Mediterranean-type diet (Med) [17,18]. In particular, dietary
flavonoids are the most common polyphenols which exert healthy effects in terms of metabolism,
weight, chronic disease, and neuroendocrine immune control [19–21].

Here, emphasis will be placed on red grape polyphenols. For instance, wine polyphenols represent
an important dietary source with flavonoids accounting for >85%,≥1 g/L of total phenolics [22]. A minor
component is represented by derivatives of carboxylic acids, hydroxycinnamate, tannins, and RES [23].
Flavonoids are extracted from grape skin, seeds, and stem, whereas tannins are present in oak barrels
during wine storage. RES is present in the grape as a result of several insults, such as mechanical
trauma, infections with fungi, and ultraviolet light radiations [24]. The healthy properties of red wine
have been emphasized in the context of the French paradox since in France (e.g., Bordeaux region) the
low incidence of cardiovascular disease has been attributed to the moderate consumption of red wine
in comparison to other western countries [25–27]. However, other authors have confuted the French
paradox claiming that reported healthy effects originate from MeD adoption and not only from red
wine intake [28–30].

Aim of the present review will be to describe and discuss the effects of red grape
polyphenols in experimental and clinical settings with special reference to their antioxidant and
anti-inflammatory properties.

2. Antioxidant and Anti-Inflammatory Activities Exerted by Red Grape Polyphenols

There is a wealth of information on the ability of dietary polyphenols to exert antioxidant
functions, scavenging reactive oxygen species (ROS), as well as anti-inflammatory activities, altering
the expression of genes like proinflammatory cytokines, lipoxygenase (LOX), nitric oxide synthase
(NOS), and cyclo-oxygenase (COX) [31–36]. ROS production is associated with oxidative stress
and protein oxidation which, in turn, account for induction of the inflammatory pathway [37,38].
Therefore, interruption of the oxidative process (e.g., ROS generation) attenuates triggering of the
inflammatory cascade. Polyphenols have been shown to exert antioxidant activity scavenging radicals
and chelate metal ions (e.g., quercetin chelates iron ion) [39]. Polyphenol-induced metal ion chelation
reduces the formation of O2

• in Chlamydia-primed THP1-monocytes, also protecting endothelial
cells from oxidative insults [40,41]. Other antioxidant mechanisms elicited by polyphenols are
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represented by blockade of the mitochondrial respiratory chain and adenosine triphosphatase and
xantine oxidase [42–44]. Finally, curcumin and epigallocatechin gallate (EGCG) are able to activate
antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, thus leading
to ROS detoxification [45,46].

With special reference to red grape polyphenols, RES could inhibit COX, peroxisome proliferator
activated receptor-γ and endothelial NOS in vitro and in vivo experiments with murine and rat
macrophages [47–49]. In this context, polyphenols extracted from high EGCG content Canosina red
grape cultivar were able to inhibit either in vitro or in vivo release of nitric oxide (NO) from human
monocytes of patients with nickel (Ni)-mediated contact allergic dermatitis (CAD) [50–52].

2.1. Regulation of NF-κB

Quercetin and EGCG—other flavonoids present in red grapes—are able to inactivate nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) in human epithelial cells and human
monocytes [53,54], thus leading to inhibition of proinflammatory cytokines, chemokines, adhesion
molecules, and growth factor release [55]. Particularly, by using quercetin the molecular mechanisms
implicated in deactivation of NF-κB nuclear translocation have been elucidated. This flavonoid,
prevented the nuclear translocation of p50 and p65 subunits of NF-κB, as well as the phosphorylation
of IκB kinase (IκB)α proteins in macrophages [56,57]. Also, in human mast cells, quercetin blocked
the activation of NF-κB through the above cited mechanisms, thus, decreasing release of tumor
necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 [58]. In mouse BV-2 microglia treated by
lipopolysaccharides (LPS) and interferon (IFN)-γ, quercetin hampered the binding of NF-κB to DNA,
thus preventing release of proinflammatory cytokines [59]. In sum, flavonoids are able to regulate
NF-κB activation either at early phases, inhibiting Iκκ activation or at late stages, preventing binding
of NF-κB to DNA [60–62].

2.2. Regulation of Mitogen-Activated Protein Kinases

The mitogen-activated protein kinases (MAPKs) regulate gene transcription and transcription
factor activities implicated in inflammation. Among them, extracellular signal-related kinases (ERKs)-1,
-2, c-Jun amino-terminal kinases (JNK)-1/2/3, p-38-MAPKs, and ERK-5 are able to interact with NF-κB,
thus, suggesting the intricacy of MAPK pathway. Evidence has been provided that both quercetin and
EGCG interfere with the MAPK signaling system reducing production of TNF-α and IL-12 in immune
and non-immune cells [63,64]. The above cited anti-inflammatory mechanisms mediated by catechin
and quercetin have also been reported to occur in mouse skin [65], and in human coronary endothelial
cells [66]; thus, indicating the protective role of these compounds in inflammation.

2.3. Regulation of Arachidonic Acid

Among other mechanisms of anti-inflammation promoted by polyphenols, inhibition of
arachidonic acid (AA) pathway plays a paramount role. AA is released by membrane phospholipids
following phospholipase A (PLA)2 cleavage. In turn, AA is metabolized by COX and LOX with
generation of prostaglandins (PGs) and thromboxane A2 by COX and leukotrienes (LTs) by LOX [67].
Polyphenols are able to reduce release of PGs and LTs via inhibition of PLA2, COX, and LOX, as
experimentally seen with quercetin, red wine, and EGCG [68–70]. Quite interestingly, some polyphenols
share structural and functional similarities with anti-inflammatory drugs as in the case of oleocanthal,
which mimics the activity of ibuprofen, inhibiting COX-1 and COX-2 [71].

For the sake of clarity, evidence has been provided that LOX may act as a pro-resolving mediator in
the resolution on neo-intimal hyperplasia [72]. Also, PGE2 has been shown to play an anti-inflammatory
role in allergen-induced airway response when inhaled by asthma patients [73].

Major antioxidant and anti-inflammatory effects exerted by red wine polyphenols are illustrated
in Table 1.
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Table 1. Red grape polyphenol-induced antioxidant and anti-inflammatory activities.

Polyphenol Activity

Quercetin Inhibition of: COX, PPARγ, eNOS, in rodent macrophages [47–49]

Quercetin, epigallocatechin-gallate

Inhibition of: NF-κB translocation and phosphorylation of IκBα proteins
in macrophages and microglia [53–57,59];
MAPK pathway with reduced release of TNF-α and IL-12 in immune
and non-immune cells [63,64]

Quercetin, epigallocatechin-gallate,
red wine

Inhibition of arachidonic acid pathway via reduction of prostaglandin
and leukotriene release, inhibiting PLA2, COX and LOX [67]

Abbreviations: COX: cyclo-oxygenase, eNOS: endothelial nitric oxide synthase, IL: interleukin, LOX: lipoxygenase,
MAPK: Mitogen-activated protein kinases, NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells,
PLA2: Phospholipase A2, PPAR: peroxisome proliferator activated receptor, TNF: tumor necrosis factor.

3. Regulation of Immune Functions by Polyphenols

3.1. Receptors for Polyphenols

There is a large body of evidence that polyphenols can regulate immune functions via binding to
various receptors. Aryl hydrocarbon receptor (AhR) is located on the cytoplasm of several immune and
non-immune cells in association with heat shock protein 90 and the co-chaperone 23 [74]. At intestinal
level, AhR has been found in the cytoplasm of intraepithelial lymphocytes, innate lymphoid cells,
dendritic cells (DCs), macrophages and T helper (h)-17 cells. Then, dietary polyphenols binding to
AhR may modulate gut immune response. For instance, dietary naringenin induces T regulatory
(Treg) cells binding to intestinal AhR [75]. Furthermore, EGCG is able to bind to the 67 kDa laminin
receptor, the zeta-chain-associated 70kDa protein (ZAP-70), and the retinoic acid-inducible gene
(RIG)-I, respectively [75–77]. Neutrophils, monocytes/macrophages, mast cells, and T cells express
ZAP-70 [78,79]. Inhibition of ZAP-70 by EGCG regulates CD3-mediated T cell receptor signaling in
leukemic cells [80]. EGCG also suppresses signaling by the dsRNA innate immune receptor RIG-I [81].
Specific protein 1 is a transcription factor expressed on many cancer cells and its inhibition by RES
suppresses growth of human mesothelioma cells [82]. Other receptors, such as Toll-like receptor
(TLR)-4, T cell receptor-αβ and surface IgM B cell receptor are common binding sites for baicalin,
a flavone glycoside [83], thus leading to innate and adaptive immune response modulation.

3.2. Anti-Inflammatory Mechanisms

As reported by in vitro and in vivo studies, polyphenols contained in red grapes and red wines
are able to perform a potent immunomodulation. Quercetin treatment of DCs led to reduced
production of proinflammatory cytokines and chemokines with a decrease in Major Histocompatibility
Complex class II and costimulatory molecules in the context of the immunological synapsis [84].
Consequentially, evidence has been provided that quercetin-induced deactivation of LPS-stimulated
DCs down-regulates T cell response to specific antigens [85]. Similar results have been obtained in vitro
treating peripheral human monocytes from healthy donors with red wine-derived polyphenols, even
including quercetin [86]. Particularly, co-incubation of monocytes with polyphenols and LPS abrogated
the LPS-mediated activation of NF-κB likely by a phenomenon of steric hindrance. As a result of such
an inhibitory mechanism, the storm of proinflammatory cytokines released by human monocytes was
noticeably attenuated [87]. In the same direction, in vitro quercetin treatment of peripheral blood
mononuclear cells from multiple sclerosis patients reduced release of IL-1β and TNF-α, and this effect
was potentiated in the presence of IFN-β [88].

Fisetin is a flavonoid contained in a number of plants and fruits, even including grapes. Fisetin has
been shown to in vitro inhibit production of Th1 and Th2-related cytokines and modify the ratio
CD4+/CD8+ T cells [89].
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This effect seems to depend on the down-regulation of NF-κB activation and nuclear factor
of activated T cell signaling. In vivo, fisetin suppressed murine delayed-type hypersensitivity
reactions, thus supporting its inhibitory role on T cells [89]. RES exerts anti-inflammatory and
immunomodulating functions through activation of sirtuin-1 (Sirt-1) [90]. Sirt-1 operates by disrupting
the TLR-4/NF-κB/signal transducer and activator of transcription (STAT) pathway with decreased
production of cytokines, platelet activating factor and histamine [91,92]. Sirt-1, as a deacetylase, plays
an important role in immune tolerance and its abrogation leads to a spontaneous development of
autoimmune disease [93,94]. RES binding to Sirt-1 enhances its attachment to p65/RelA substrate [95],
which, as a member of the NF-κB pathway, activates leukocytes and the proinflammatory cytokine
pathway [96]. Then, Sirt-1 activation by RES hampers RelA acetylation with decrease of NF-κB-induced
expression of TNF-α, IL-1β, IL-6, metalloproteases (MMPs), and COX-2 [93]. As recently reviewed by
Malaguarnera [97], RES induces AMP-activated protein kinase which, in turn, controls Sirt-1 activity,
regulating the cellular levels of nicotinamide adenine dinucleotide (NAD+). The, NAD+-induced
Sirt-1 activation leads to deacetylation and activation of peroxisome proliferator-activated receptor γ
coactivator-1α.

Quite importantly, the anti-inflammatory activity mediated by RES via activation of Sirt-1 is
abrogated by genetic deletion of Sirt-1 or its inhibitors such as sirtinol [98–100]. Furthermore, RES
is able to modulate macrophage function acting upon TLR-4 and TRAF5-mediated inflammatory
responses, deactivating LPS-dependent NF-κB activation and COX-2 expression [101,102].

Nucleotide oligomerization domain-like receptors (NLRs) belong to the pattern recognition
receptor family and their activation is involved in the development of inflammatory diseases. In this
respect, evidence has been provided that RES inhibits the increase of α-tubulin-mediated assembly of
the NLR pyrin domain containing 3 (NLRP)3 inflammasome [103]. Therefore, RES may represent an
important therapeutic tool in the management of NLRP3-inflammasome-induced disease.

3.3. Modulation of Cytokines Production

Several reports have demonstrated the ability of RES to modulate cytokine production, e.g.,
inhibiting release of granulocyte-macrophage colony-stimulating factor, IL-1β, and IL-6; thus,
attenuating low grade chronic inflammation as well as atheroma formation [104–107].

With special reference to T cells, RES exerts anti-inflammatory effects, reducing numbers of Th17
cells and production of IL-17, an inflammatory cytokine, in murine collagen-induced arthritis [108].
On the other hand, it is well known that RES mediates T cell tolerance via upregulation of Sirt-1 in
activated T cells [109]. In the same direction, another report has demonstrated that RES increased release
of IL-10, an anti-inflammatory cytokine produced by Treg cells [110]. Similar results were attained
stimulating human healthy peripheral blood lymphocytes with polyphenols from fermented grape marc
(FGM), thus, leading to induction of FoxP3+ Treg cells and enhanced release of IL-10 [111]. However,
other data have reported a RES-mediated suppression of CD4+CD25+ cells with decreased production
of transforming growth factor (TGF)-β and enhanced expression of IFN-γ in CD8+ cells [112].

With special reference to natural killer (NK) cells, RES has been shown to enhance their killing
activity against leukemia and lymphoma cells [113]. In another study, evidence has been provided on
the capacity of RES to up-regulate perforin expression on NK cells; thus, supporting the enhancement
of their lytic activity [114]. Also, in an infectious model of acute pneumonia in rats, RES treatment
increased NK cell activity which correlated with a decreased bacterial burden and mortality [115].

Polyphenol-mediated immunomodulation is described in Table 2.
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Table 2. Red grape polyphenol-induced immunomodulation.

Polyphenol Activity

Quercetin, red
wine-derived polyphenols

Inhibition of DC and monocyte function with reduced production of
proinflammatory cytokines and chemokines [85,86]

Fisetin Inhibition of Th1 and Th2-related cytokines in vitro [87];
Suppression of murine delayed-type hypersensitivity in vivo [89];

RES

Activation of Sirt-1 with disruption of the TLR-4/NF-κB/STAT pathway and
decreased production of cytokines, PAF and histamine [90–92];
Induction of AMP-activated protein kinase with increased levels of NAD+ which,
in turn, activates Sirt-1 [97];
Inhibition of the NLRP3 inflammasome [103];
Inhibition of the GM-CSF, IL-1β and IL-6 in the context of atheroma [104–107];
Inhibition of IL-17 release by Th17 cells and increase of IL-10 by Treg cells [108–110];
Increase of NK cell activity against leukemia and lymphoma cells via up-regulation
of perforin expression and decrease of bacterial burden and mortality in acute
pneumonia in rats [113–115]

Abbreviations: DC: dendritic cell, GM-CSF: granulocyte-macrophage colony stimulating factor, IL: interleukin,
MAPK: mitogen-activated protein kinases, NAD: nicotinamide adenine dinucleotide, NF-κB: nuclear factor
kappa-light-chain-enhancer of activated B cells, NK: natural killer, NLRP3: NLR pyrin domain containing 3, PAF:
platelet activating factor, ROS: reactive oxygen species, Sirt-1: sirtuin-1, STAT: signal transducer and activator of
transcription, Th: T helper, TLR: Toll-like receptor, TNF: tumor necrosis factor, Treg: T regulatory cells.

4. Polyphenol-Mediated Immune Responses in Pathological Conditions

In this review, the illustration of antioxidant and anti-inflammatory effects exerted by polyphenols
will be restricted to major pathologies such as obesity, inflammatory bowel disease (IBD), cancer,
neurodegeneration, and allergy/autoimmunity.

4.1. Obesity

Overweight/obesity is pandemic and affects more than 2.5 billion adults, even including those
living in developing countries [116,117]. Of importance, obesity leads to the outcome of metabolic
syndrome, such as type 2 diabetes, cardiovascular disease, neurodegeneration, and cancer [118].
Obesity can be defined as a low grade chronic inflammation maintained by the visceral adipose tissue,
as a continuous source of inflammatory mediators [119,120]. In particular, obesity is characterized
by an exaggerate lipolysis with secretion of free fatty acids, which, in turn, trigger inflammatory
responses, production of ROS, and insulin resistance [121,122]. On these grounds, a number of
experimental and clinical studies have been focused on the effectiveness of polyphenols to attenuate
the oxidative/inflammatory status in obesity. Gallic acid, as a component of red grape polyphenols,
is able to decrease body weight in obese rodents, inhibiting lipid droplet formation in the liver or
adipose tissue, as well as reducing serum levels of triglycerides and low density lipoproteins and
improving glucose tolerance [123–126]. There is evidence that gallic acid controls glucose and lipid
metabolism, regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and AMPK
signaling pathways [127]. In obese people, clinical trials based on the administration of gallic acid
have been quite controversial. Two studies failed to demonstrate weight loss or reduction of markers
associated to obesity upon administration of gallic acid, as reported by [121]. On the other hand, other
investigations documented that administration of gallic acid reduced waist circumference, body mass
index (BMI), and visceral fat in pre-obese individuals, also decreasing oxidative and inflammatory
markers [128–131]. It is likely that divergent results obtained with gallic acid may depend on patient
selection since more efficacy has been observed in those trials with pre-obese people.

With special reference to peripheral immune markers, red grape polyphenols extracted from Nero
di Troia cultivar were in vitro used to stimulate blood lymphomonocytes isolated from obese people.
This treatment was able to reduce the inflammatory status of obese lymphomonocytes, decreasing
release of IL-17 and IL-21 (an inducer of Th17 cells), while enhancing production of IL-10 [132]. At the
same time, release of IL-1β and TNF-α also dramatically dropped.
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These data indicate the imbalance of peripheral immune responses in obese people and the ability
of polyphenols to attenuate inflammatory biomarkers.

There is evidence that childhood obesity is increasing, thus representing an emerging clinical
problem worldwide [133]. In this respect, unhealthy dietary habits predispose to childhood obesity,
as reported in a group of normal weight children under a MeD regimen for one year [134]. In fact,
those children, who disattended dietary advice, increased BMI, salivary levels of IL-17, and decreased
salivary IL-10 amounts. Conversely, in children who attended MeD IL-10 levels increased with a
reduction of IL-17 salivary levels.

These results indicate that MeD, based on polyphenols, unsaturated fatty acids, vitamins and
oligoelements can prevent overweight/obesity in early childhood [134].

Diabetes is very often associated to obesity and evidence has been provided that polyphenols (e.g.,
quercetin and epicatechins) can also correct diabetic complications [135–138]. In particular, experiments
with insulin releasing cell lines and isolated pancreatic islets have demonstrated that polyphenols
protect β cell survival, inhibiting NF-κB activation, triggering the PI3K/AKT pathway while inhibiting
ROS generation [139].

Even if lack of clinical trials on the effects of flavonoids onβ cells represents a limitation of the above
reported experimented data, nevertheless, flavonoids have been shown to exert anti-hyperglycemic
activity in diabetic patient [140,141]. According to Ghorbani [139] the anti-hyperglycemic effects
mediated by flavonoids may be ascribed to decrease in glucose absorption, improved insulin resistance,
enhanced insulin secretion from β cells, and inhibition of gluconeogenesis.

Major effects of polyphenols on obesity/diabetes are expressed in Table 3.

Table 3. Effects of red grape polyphenols on obesity/diabetes.

Polyphenols Disease Activity

Gallic acid Obesity
Reduction of body weight in rodents with inhibition
of lipid droplet formation in the liver or adipose
tissue, and normalization of lipid profile [128–131]

Red grape polyphenols from Nero
di Troia red grape cultivar Obesity

In vitro experiments demonstrated inhibition of
IL-21/IL-17, IL-1β and TNF-α release from obese
lymphomonocytes with increase of IL-10 [132]

Quercetin, epicatechins Diabetes Protection of β cell survival with inhibition of NF-κB
activation and ROS generation [139]

Abbreviations: IL: interleukin, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, ROS: reactive
oxygen species, TNF: tumor necrosis factor.

4.2. Inflammatory Bowel Disease

IBD are chronic pathologies of the intestinal mucosa exhibiting a multiple pathogenesis. In fact,
genetic factors, abnormal functions of the immune response, alteration of the intestinal barrier and
dysbiosis seem to contribute to disease outcome and maintenance [142–145].

The beneficial effects of polyphenols have been evaluated in the course of experimental
colitis [146,147]. Red grape polyphenols extracted from FGM were able to attenuate dextran sulfate
sodium (DSS) murine colitis when orally administered [148]. This experimental regimen abrogated
shortening of intestine length and reduced content of IL-1β and TNF-α in intestinal homogenates from
treated mice. In a recent paper, administration of bronze tomatoes, enriched in flavonols, anthocyanins
and stilbenoids, as well as red grape skin, reduced intestinal damage in the course of DSS-induced
experimental colitis with improvement of stool consistency, fecal blood content, and weight loss [149].

In two rat model of 2,4,6-trinitrobenzenesulfonic acid, RES mitigated intestinal inflammation
decreasing PG production, COX-2 expression, neutrophil recruitment and TNF-α secretion [150],
also regulating genes involved in IL-6 signaling, apoptosis, mitochondria fatty acid oxidation, and
Wnt-signaling [151]. In a model of DSS-induced murine colitis, oral administration of RES was effective
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in the inhibition of inducible NOS expression and NF-κB activation, thus, preventing the onset of
intestinal inflammation [152].

The IL-10−/− mouse model represents a suitable model of IBD [153]. In these mice, administration
of RES induced activation of myeloid-derived suppressor cells (MDSCs), thus attenuating mucosal
and systemic inflammation [154].

As recently reviewed by Nunes and associates [155], RES administration to mice with DSS-induced
ulcerative colitis (UC) decreased inflammatory and oxidative markers, also ameliorating clinical
symptoms (loss of body weight, diarrhea, and rectal bleeding) [156], and reducing rate of mortality [157].
In another study dealing with a DSS-induced murine model of UC, RES was able to modulate Th17/Treg
cell ratio, decreasing number of the former and upregulating number of the latter [158].

With special reference to clinical trials, Samsami-Kor and associates [159] evaluated the effects of
RES supplementation (0.5 g/day for 6 weeks) in a group of patients affected by UC. C-reactive protein
(C-rp), TNF-α, and NF-κB levels decreased with an improvement of clinical colitis activity index score.
Finally, in RES-treated patients superoxide dismutase and total antioxidant capacity increased, while
malondialdehyde levels decreased.

In Table 4 effects of polyphenols on IBD are illustrated.

Table 4. Effects of red grape polyphenols on inflammatory bowel disease.

Polyphenols Disease Activity

Fermented
grape marc

DSS-induced
murine colitis

Abrogation of intestine length shortening [148];
Decreased content of inflammatory cytokines in
intestinal homogenates [148]

Bronze tomatoes
red grape skin

DSS-induced
murine colitis

Improvement of: stool consistency, fecal blood content
and weight loss [149]

RES
Rat-induced colitis

(2,4,6-trinitrobenzene
sulfonic acid model)

Reduction of: PG, COX-2 expression, neutrophil
recruitment and TNF-α release [150]

RES DSS-induced murine
colitis/UC

Decrease of: IL-6 expression, apoptosis, mitochondrion
fatty acid oxidation, Wnt signaling, iNOS expression and
NF-κB activation in murine colitis;
Up-regulation of Treg cells and amelioration of clinical
symptoms [151,152]

RES IL-10−/− mouse model
of IBD

Activation of myeloid derived suppressor cells and
reduction of inflammation [153,154]

Abbreviations: COX-2: ciclo-oxygenase-2, DSS: dextran sulfate sodium, IBD: inflammatory bowel disease, IL:
interleukin, iNOS: inducible nitric oxide synthase, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B
cells, PG: prostaglandin, RES: resveratrol, TNF: tumor necrosis factor, Treg: T regulatory cells, UC: ulcerative colitis.

4.3. Neurodegeneration

Among neurodegenerative disorders, Alzheimer’s disease (AD) and Parkinson’s disease (PD)
are increasing also in relation to life style changes, aging, environmental, and genetic risk factors.
Quite interestingly, polyphenols have been experimented in vitro and in vivo models of AD and PD,
in view of their ability to cross the blood brain barrier (BBB) and accumulate into the brain. For instance,
in an in vitro model, penetration of methylated conjugates of polyphenols through the BBB was higher
than that of sulfated or glucuronidated molecules [160,161]. Another report demonstrated catechin
and epicatechin transport across BBB [162].

In vivo studies have shown the ability of RES, EGCG, quercetin, cathechins and curcumin to
accumulate into the central nervous system [163–167]. There is also evidence that persistent intra-gastric
administration of EGCG led to an elevated concentration of the aglycone form (5–10% of plasma
concentrations) in various organs, even including brain [164].
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Another important aspect of the neuroprotective effects of polyphenols is their capacity to act
synergistically. Combinations of RES and catechins exhibited a synergistic protective activity against
amyloid (A)β toxicity, oxidative stress, and oxygen-glucose deprivation in vitro [168–171]. Synergy
has also been shown between polyphenols, drugs, and hormones. For instance, a potentiation of effects
on neurite outgrowth has been reported, in vitro using the combination brain-derived neurotrophic
factor and catechins [172]. In a murine model of PD, rasagiline, an inhibitor of dopamine metabolizing
monoamine oxidase B, synergized with polyphenols in promoting survival of the dopaminergic
nigrostriatal pathway [173–175]. In this context, a Vitis vinifera red grape seed and skin extract (GSSE)
exhibited in vitro and in vivo neuroprotective activity in a mouse model of PD [176]. GSSE protected
dopamine neurons from neurotoxin 6-hydroxydopamine (6-OHDA) damage, reducing apoptosis, ROS
production, and inflammatory markers. Also, motor function was improved in the same model of
6-OHDA-induced PD.

As recently reviewed by Azam and associates [177], TLRs are involved in the pathogenesis of
neurodegenerative disorders. For instance, quercetin loaded into nanoparticles prevented AD progression
via inhibition of TLR-4 signaling [178]. In addition, it decreased expression of TLR-4 and TLR-2, thus
hampering proinflammatory cytokine production [179]. RES was shown to attenuate LPS and Aβ-mediated
microglia neuroinflammation, inhibiting the TLR-4/NF-κB/STAT pathway [180]. EGCG was able to abrogate
LPS-impaired adult hippocampal neurogenesis, silencing the TLR-4 signaling in mice [181–183].

Until now, a few clinical trials have been conducted to evaluate the efficacy of polyphenols in
human neurodegeneration. RES administration has been found to attenuate neuroinflammation,
cognitive decline and reduce liquoral levels of Aβ40 in AD patients [184,185]. Prolonged administration
of RES and cocoa flavonols increased dentate gyrus-related cognitive functions and hippocampal
memory [186–188].

The PROMESA-protocol is a phase III clinical testing based on daily oral treatment of 400 mg EGCG
for 48 weeks in multiple system atrophy (MSA) patients [189]. MSA is a rare neurodegenerative disease
where aggregation of α-synuclein in oligodendrocytes and neurons has been found. The above-indicated
treatment did not modify disease progression in MSA and hepatotoxicity was reported in a few cases [190].

In Table 5, effects of polyphenols on neurodegeneration are described.

Table 5. Effects of red grape polyphenols on neurodegeneration.

Polyphenols Disease Activity

Red grape skin
and GSSE Murine PD

Protection of neurons against 6-OHDA-induced damage
with decrease in apoptosis, ROS production and
inflammatory markers [176]

Quercetin Murine AD Inhibition of TLR-4 signaling and reduced expression of
TLR-4 and TLR-2 [178,179]

RES LPS and Aβ-mediated
microglia neuroinflammation Inhibition of TLR-4/NF-κB/STAT pathway [180]

EGCG LPS-impaired adult
hippocampal neurogenesis Inhibition of TLR-4 [181]

RES AD (clinical trial)
Decrease in neuro-inflammation and in liquoral levels of
Aβ40 and increase in dentate-gyrus-related cognitive
functions and hippocampal memory [184,185]

EGCG MSA (clinical trial) No effects [190]

Abbreviations: Aβ: Amyloid β, AD: Alzheimer’s disease, EGCG: epigallocatechin gallate, GSSE: grape seed and
skin extract, 6-OHDA: 6-Hydroxydopamamine, IBD: inflammatory bowel disease, LPS: lipopolysaccharide, MSA:
multiple system atrophy, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, PD: Parkinson’s
disease, RES: resveratrol, ROS: reactive oxygen species, STAT: signal transducer and activator of transcription, TLR:
Toll-like receptor.

4.4. Cancer

Immune escape mechanisms evoked by cancer cells have extensively been explored and readers
are referred to pertinent reviews for further details [191–193]. Particularly, immune suppression in
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cancer is mediated by Treg cells, MDSCs, and tumor-associated macrophages (TAMs) [191,194,195].
Here, the effects of polyphenols on these suppressive cells in cancer will be described.

With special reference to Treg cells, RES administration could decrease their frequency in mice
bearing renal carcinoma [196]. In a model of Eg7 (syngenic lymphoma)-bearing C57BL/6 mice RES
treatment led to a dramatic reduction of Treg cell percentage and TGF-β production, whereas intranodal
CD8+ cells increased release of IFN-γ [197].

In a clinical trial based on the oral administration of EGCG for 6 months to chronic lymphocytic
leukemia patients Rai stage O, a sharp decrease of Treg cells and of IL-10 and TFG-β in serum was
detected [198]. Of note, despite the above cited examples of Treg cell suppression by polyphenols,
other reports failed to demonstrate clear-cut effects of polyphenols on Treg cells [199,200].

As far as TAMs are concerned, these cells resemble M2 macrophages which promote tumor
progression [201]. Strong evidence has been provided on the ability of RES to inhibit TAM activation
via suppression of STAT3. This has been demonstrated in a lung cancer xenograft model where
RES inhibited proliferation and expression of p-STAT-3 [202]. In another study, RES inhibited
lymphangiogenesis in the context of a tumor, suppressing differentiation and activation of M2
macrophages [203]. The effects of polyphenols on MDSCs have also been demonstrated with other
polyphenols such as curcumin. In mice bearing 4NQO-induced oral squamous carcinoma and in mice
challenged with B16F10 melanoma cells lines, curcumin administration led to a dramatic reduction of
MDSCs [204,205]. In a large-cell carcinoma lung cancer model, administration of curcumin reduced
MDSCs in spleen and tumor infiltrates, increasing frequency of CD4+ and CD8+ cells, while decreasing
IL-6 levels [206].

Other few studies have been focused on the effects of red wine extract (RWE) on cancer cell
progression [207]. In BALC/c mice, RWE reduced growth of C26 cancer, suppressing angiogenesis and
promoting apoptosis [208]. In preclinical studies, mice administered with RWE underwent a dramatic
reduction of precancerous lesions in the colon [209,210]. In particular, reduction of fecal excretion
of nitrosyl iron seems to play a fundamental role in the above model of inhibition of precancerous
lesions [210]. Furthermore, evidence has been provided that muscadine grape skin extract was able to
induce an unfolded protein response-mediated autophagy with apoptosis of human prostate cancer
cells [211]. In this framework, Liofenol™ a RWE enriched in polyphenols, reduced colon cancer cell
growth with an increase in p53 and p21 protein expression [212].

Polyphenol effects on cancer are summarized in Table 6.

Table 6. Red grape polyphenol effects on cancer.

Polyphenols Effector Cells Activity

RES Treg cells
Decrease in Treg cell frequency in murine renal carcinoma, and Eg-7
(syngenic lymphoma) with reduced release of TGF-β and increased
production of IFN-γ by intranodal CD8+ cells [197]

EGCG Human chronic lymphocytic
leukemia (clinical trial) Decrease of Treg cells and serum levels of IL-10 and TGF-β [198]

RES TAM cells (murine cancer) Suppression of STAT3, inhibition of lymphangiogenesis and deactivation of
M2 macrophages [203]

RWE Murine cancer Suppression of angiogenesis and induction of apoptosis, reduction of
precancerous lesions [208–210]

Muscadine
grape skin

extract
Prostate cancer Induction of autophagy with apoptosis of cancer cells [211]

LiofenolTM

(RWE)
Colon cancer cells Arrest of cell growth with increase in p53 and p21 protein expression [212]

Abbreviations: EGCG: epigallocatechin gallate, IFN: interferon, IL: interleukin, RES: resveratrol, RWE: red wine
extracts, STAT: signal transducer and activator of transcription, TAM: tumor associated macrophages, TGF:
transforming growth factors, Treg: T regulatory cells.
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4.5. Allergy and Autoimmune Diseases

Nowadays, allergic and autoimmune diseases are increasing; thus, likely depending on
environmental factors and/or modifications of skin, lung and intestinal microbiota [213].

Polyphenol effects have been evaluated in various allergic and autoimmune conditions [214].
In vitro studies conducted with FGM from red grapes have demonstrated their ability to inhibit

IgE binding to rat basophilic leukemia cells and to reduce human basophil degranulation [215,216].
Polyphenols extracted from seeds of red grape (Nero di Troia cultivar), when in vitro incubated with
peripheral blood lymphomonocytes from patients with Ni-mediated CAD, reduced release of NO,
IL-17 and IFN-γ, whereas enhancing IL-10 production they exerted antioxidant and anti-inflammatory
activities [51]. In a clinical trial, oral administration of Nero di Troia red grape polyphenols to patients
with Ni-mediated CAD confirmed in vitro experiments in that they decreased serum levels of IFN-γ,
IL-4, IL-17, NO, and pentraxin 3, whereas levels of IL-10 were augmented [217]. This nutraceutical
regimen led to an amelioration of CAD cutaneous manifestations.

With special reference to asthma models, the flavonoid polymer oligomeric proanthocyanidins
reduced airway inflammation, Th2 cytokine release and antigen presentation in a mouse model
of asthma [218]. Furthermore, evidence has been provided that flavones, such as luteolin and
tetramethoxyluteolin acted on mast cells, decreasing release of histamine and PGD2, which are
mediators implicated in asthma pathogenesis [219,220]. The above described inhibitory mechanisms
seem to depend on blockade of intracellular calcium and inhibition of NF-κB [220].

Quercetin, a flavonoid contained in red grapes as well as in onions, broccoli, and apples, reduced
recruitment of eosinophils and production of IL-4 and IL-5 in the bronco-alveolar fluid from mice with
experimental asthma [221,222]. Cyanidin, another anthocyanidin, was able to reduce the binding of
IL-17 to the IL-17RA subunit of the IL-17 receptor in a murine model of asthma [223]. Neutralization of
IL-17 activity decreased inflammation and hyper-reactivity.

Food allergy is an adverse reaction to food which is mediated by IgE upon activation of Th2
cells. Dietary isoflavones have been demonstrated to suppress costimulatory molecules (CD83 and
CD80) on DCs; thus, hampering activation of Th2 cells in a murine model of peanut allergy [224].
Also, in an intestinal cell model of food allergy, quercetin was able to suppress IgE-mediated allergic
inflammation [225].

Autoimmune diseases share a common pathogenic mechanism of action such as the immune
attack against self-components of the body [226–230]. Then, several factors contribute to autoimmune
disease development and, among them, genetic, epigenetic, and environmental conditions should be
stressed out.

In view of their antioxidant and anti-inflammatory activities, polyphenols have been used for the
treatment of autoimmune disorders [231,232].

EGCG was shown to be effective in a murine model of human Sjogren’s syndrome, attenuating
the TNF-α induced damage of salivary acinar cells [233].

In an experimental model of rat autoimmune myocarditis, quercetin afforded cardioprotection,
decreasing phosphorylated forms of ERK1/2 and p38 [234].

RES has been shown to be very effective in type 1 diabetes either in vitro or in vivo studies [235]
via increased expression of Sirt-1 [236]. In animal studies, oral or subcutaneous administration of RES
to non-obese diabetic mice, led to a decreased traffic of Th1 cells and macrophages from periphery to
pancreas, thus attenuating insulitis [237]. Also in a model of streptozotocin-induced diabetes in rats,
RES administration by gavage prevented islet destruction [238].

In animal models of IBD, RES administration was very effective in reducing mucosal
inflammation via inhibition of malondialdehyde and increase of glutathione peroxidase activities,
respectively [239–244]. Furthermore, in the above models, decrease in neutrophil infiltration and
proinflammatory cytokine release and increase in number of Bifidobacteria and Lactobacilli with
reduction of intestinal wall fibrosis have been observed [239–244].
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RES has been experimented either in vitro or in vivo in rheumatoid arthritis. Using human
fibroblast-like synoviocytes, RES mitigated NADPH oxidase activity and ROS generation, increased
Sirt-1 mRNA, and inhibited release of MMPs and receptor activator of NF-κB ligand [245–248]. RES
also attenuated rheumatoid arthritis, blocking p38 and JNK pathways with decrease in ROS and
inflammatory markers in rat RSC-364 synovial cells [249].

In rabbit arthritis, intra-articular injection of RES dramatically reduced cartilage destruction [250].
On the other hand, in various models of experimental arthritis oral administration of RES reduced
severity of disease, dampening release of proinflammatory cytokines, even including IL-17 [108,251,252].

Psoriasis is an autoimmune disease mainly characterized by hyperproliferation of keratinocytes
and production of IL-23 and IL-17 with inflammatory infiltrates in the dermis [253]. In vitro studies
have demonstrated that RES induced apoptosis of HaCaT keratinocytes via Sirt-1 activation [254].
Furthermore, evidence has been provided that RES inhibited proliferation of normal human
keratinocytes, hampering aquaporin 3 activation [255]. In a murine model of psoriasis-like skin
inflammation RES attenuated skin damage, decreasing mRNA expression of IL-17 and IL-19 [256].

As far as clinical trials are concerned, patients affected by multiple sclerosis were administered
with 600 mg/day of EGCG for 12 weeks [257]. At rest, metabolic responses were determined in treated
patients in comparison to those administered with placebo. Results demonstrated that expenditure of
post-prandial energy, glucose oxidation, and supply as well as adipose tissue perfusion were reduced
in men but remained more elevated in women. During exercise, post-prandial energy expenditure was
reduced in the EGCG group when compared to placebo.

Quercetin has been found to be beneficial in sarcoidosis patients, decreasing oxidative and
inflammatory markers (TNF-α and IL-8), when administered at a dose of 4 × 500 mg within 24 h [258].

In a double-blind trial supplementation of RES to UC patients (500 mg/day for six weeks) reduced
clinical manifestations, decreasing oxidative stress. [259].

The effects exerted by polyphenols on allergy and autoimmune diseases are synthesized in Table 7.

Table 7. Effects of grape polyphenols on allergy and autoimmune diseases.

Polyphenols Effector Cells/Disease Activity

FGM Rat basophilic leukemia cells Inhibition of IgE binding to cells [215,216]

Polyphenols extracted
from seeds of red grape
(Nero di Troia cultivar)

Peripheral blood
lymphomonocytes from

Ni-mediated CAD

In vitro decrease of: NO, IL-17 and IFN-γ release with
increase of IL-10 release [51]

Polyphenols extracted
from seeds of red grape
(Nero di Troia cultivar)

Ni-mediated CAD In vivo decrease of: serum levels of IFN-γ, IL-4, IL-17,
NO and pentraxin 3 with increase of serum IL-10 [217]

Flavones Murine asthma mast cells Decrease of histamine and PGD2 [219,220]

Quercetin Murine asthma Reduction of eosinophil recruitment and IL-4 and IL-5
levels in bronchoalveolar fluid [221,222]

Cyanidin Murine asthma Decrease of IL-17 binding to the IL-17RA subunit of the
IL-17 receptor [223]

Isoflavones Murine model of peanut allergy Suppression of costimulatory molecules (CD83 and
CD80) on DCs with reduced activation of Th2 cells [224]

Quercetin Food allergy Suppression of IgE-mediated allergic intestinal
inflammation [225]

EGCG Murine Sjogren’s syndrome Decrease in TNF-α-induced damage of salivary acinar
cells [233]

RES Rat RSC-364 synovial cells Blockade of p38 and JNK pathways and decrease of ROS
and inflammatory markers [249]

Quercetin Rat autoimmune myocarditis Cardioprotection via decrease of phosphorylated ERK1/2
and p38 [234]
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Table 7. Cont.

Polyphenols Effector Cells/Disease Activity

RES T1D

-Decrease of in vitro apoptosis via increased Sirt-1
expression [236];
In vivo, in an obese model attenuation of insulitis due to
diminished traffic of Th1 cells and macrophages from
periphery to pancreas and prevention of islet
destruction [237]

RES IBD

Reduction of mucosal inflammation via decrease of:
malondialdehyde, COX-2, PGE-synthase 1, TGF-β,
neutrophil infiltration and increase of: glutathione
peroxidase activity, Bifidobacteria and
Lactobacilli [239–244]

RES Rheumatoid arthritis

In vitro, using, fibroblast-like synoviocytes, decrease in:
NADPH oxidase activity, MMP release, RANKL and
ROS generation with increase in Sirt-1 mRNA [245–248];
In experimental models, reduction of IL-17 and
reduction of cartilage destruction [250]

RES Psoriasis

In vitro induction of keratinocyte apoptosis via Sirt-1
activation and keratinocyte inhibition via decrease of
aquaporin 3 activation [254,255];
In an in vivo model of murine psoriasis decrease in
mRNA expression of IL-17 and IL-19, thus, mitigating
skin damage [256]

Abbreviations: CAD: contact allergic dermatitis, COX-2: cyclo-oxygenase-2, DCs: dendritic cells, EGCG:
epigallocatechin gallate, ERK: extracellular signal-related kinases, FGM: fermented grape marc, IBD: inflammatory
bowel disease, IFN: interferon, IL: interleukin, JNK: c-Jun amino-terminal kinases, MMP: metalloproteinases,
NADPH: nitrate reductase, Ni: nickel, NO: nitric oxide, PG: prostaglandin, RANKL: receptor activator of nuclear
factor kappa-B ligand, RES: resveratrol, ROS: reactive oxygen species, Sirt-1: sirtuin-1, T1D: type 1 diabetes, TGF:
transforming growth factors, Th: T helper cells, TNF: tumor necrosis factor, Treg: T regulatory cells.

5. Discussion

The effects of polyphenols either as a dietary source or as supplements have intensively been
investigated. Molecular studies have revealed the activity of these compounds on major signaling
pathways. Moreover, different cell receptors for polyphenol binding have been characterized, thus
indicating their capacity to modulate endocrine, metabolic and immune functions.

Among several activities they may exert, polyphenols are endowed with antioxidant and
anti-inflammatory functions which justify their employment in different human diseases, as discussed
in the present review. Nevertheless, there is still a lack of knowledge about the exact polyphenol
concentration in foods and drinks, their degree of absorption as well as metabolism in human body.
Another issue to be clarified is the assessment of which compound accounts for a given function, since
a plethora of polyphenols are absorbed via dietary source. It seems that a combination of polyphenols
rather than a single compound may lead to more effective beneficial effects.

Quite importantly, evidence has been provided on the effects of grape and red wine polyphenols
on gut microbiota [260]. On the other hand, gut microbiota may account for the formation of a
number of polyphenolic metabolites that may contribute to human health effects. However, due to the
individual variations in microbiota composition, more studies are needed for a better understanding
of the mutual interaction between polyphenols and gut microbiota.

Finally, one should take into consideration that polyphenols, when used as nutraceuticals and/or
cosmetics, raise problems of safety and toxicity in view of their increased bioavailability and biological
activity. In fact, some dietary supplements contain concentrations of polyphenols 100 times more
elevated than those related to a western diet [261]. In a number of studies, administration of
antioxidants has caused severe side effects such as mortality or stroke [262–265]. In this context, the
possible interaction between polyphenols and drugs requires more intensive studies to understand the
existence of synergism or neutralization in relation to their therapeutic activity.
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Abbreviations

AA Arachidonic acid
Aβ Amyloid β

AD Alzhemeir’s disease
AhR Aryl hydrocarbon receptor
AKT Protein kinase B
BBB Blood brain barrier
BMI Body mass index
CAD Contact allergic dermatitis
COX Cyclo-oxygenase
C-rp C-reactive protein
DCs Dendritic cells
DSS Dextran sulfate sodium
EGCG Epigallocatechin gallate
ERK Extracellular signal-related kinases
FGM Fermented grape marc
GSSE Grape seed and skin extract
IBD Inflammatory bowel disease
IFN Interferon
IκB IκB kinases
IL Interleukin
JNK c-Jun amino-terminal kinases
LOX Lipoxygenase
LPS Lipopolysaccharide
LTs Leukotrienes
MAPK Mitogen-activated protein kinases
MeD Mediterranean-type diet
MDSC Myeloid-derived suppressor cell
MMPs Metalloproteases
MSA Multiple system atrophy
NAD Nicotinamide adenine dinucleotide
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRs Nucleotide oligomerization domain-like receptors
NLRP3 NLR pyrin domain containing 3
Ni Nickel
NK Natural killer
NO Nitric oxide
NOS Nitric oxide synthase
RES resveratrol
REW Red wine extract
RIG-I Retinoic A acid-inducible
6-OHDA 6-Hydroxydopamamine
PD Parkinson’s disease
PGs prostaglandins
PI3K Phosphatidylinositol 3-kinase
PLA Phospholipase A
ROS Reactive oxygen species
Sirt-1 Sirtuin-1
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STAT Signal transducer and activator of transcription
TAM Tumor associated macrophages
TGF Transforming growth factor
Th T helper
TLR Toll-like receptor
TNF Tumor necrosis factor
Treg T regulatory
UC Ulcerative colitis
ZAP-70 Zeta chain-associated 70 kDa protein
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