
Health Science Reports

ORIGINAL RESEARCH OPEN ACCESS

A Novel Lysosome‐Related Gene Signature Predicts Lung
Cancer Prognosis: A Bioinformatics‐Driven Study
Wei Ye | Lin Sun | Cong Fu | Huajie Dong | Tong Zhou

Department of Oncology, Changzhou Tumor Hospital, Changzhou, China

Correspondence: Tong Zhou (zhoutong2930@163.com)

Received: 24 March 2024 | Revised: 5 November 2024 | Accepted: 13 November 2024

Funding: The study were funded by Science and Technology Project of Changzhou Health Commission (WZ202214) and Young Talent Development Plan of
Changzhou Health Commission (CZQM2023022).

Keywords: lung adenocarcinoma | lysosome | nomogram | prognosis

ABSTRACT
Background and Aims: The biological function of lysosomes has been increasingly appreciated in cancer. However, the

relationship between lysosome and lung adenocarcinoma (LUAD) was not well understood. In this study, a lysosome‐related
signature was developed for LUAD risk stratification and prognosis prediction.

Methods: Download RNA‐seq data of LUAD and clinical information of corresponding samples from the UCSC‐Xena platform.

GSE31210 databases is used as a validation cohort. The lysosome‐related genes was obtained from molecular signature database.

The differentially expressed genes (DEGs) as well as lysosome‐associated prognosis signatures were identified by using uni-

variate, multivariate cox, and Lasso regression. A nomogram was constructed and evaluated using ROC and DCA.

Results: A total of 109 lysosome‐related DEGs were identified and 30 prognostic related DEGs were subsequently screened.

Cluster analysis further divides the TCGA cohort into clusters 1 and 2. Patients in cluster 2 had a worse prognosis (p= 0.016),

lower LYSOSOME score. Enrichment analysis showed that 21 significantly enriched gene sets in the cluster 2 were activated.

And 10 pathways, such as E2F_TARGETS, G2M_CHECKPOINT were upregulated. Multivariate Cox regression analysis

identified 17 best prognostic genes as risk signature. An independent prognostic factor, the risk signature, was identified. A

prognostic nomogram including risk signature, age, TNM stage, and gender was constructed, and ROC and DCA curves proved

its excellent performance. We examined CTSZ and AP3S2 protein expression in 48 stage 3–4 NSCLC samples. Low AP3S2

expression was associated with better prognosis (median overall survival: 37.87 vs. 8.53 months, p= 0.0211). Increased CTSZ

expression also indicated better prognosis (median overall survival: 6.77 vs. 30.50 months, p= 0.0306).

Conclusion: We identified molecular subtypes and lysosomal‐based prognostic signatures for LUAD patients, as well as 17

genes that serve as a biomarker for evaluating the prognosis of LUAD patients.

1 | Background

Although new cancer cases and overall death rates have
declined globally in the past few decades [1], cancer‐related
deaths in China are primarily caused by lung cancer, which
accounts for about 27.2% of deaths [2]. Screening with low‐dose
spiral computed tomography has improved early detection rates

of this disease, but more than 70% of cases are still diagnosed at
advanced stage [3]. Even if the early patients are successfully
resected, a significant number of patients still experience local
or distant recurrence [4]. Patients with non‐small cell lung
cancer (NSCLC), especially lung adenocarcinoma (LUAD), have
significantly improved their survival with the development of
small molecule tyrosine kinase inhibitors and immunotherapy.
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This has also pushed the treatment of NSCLC to the forefront of
other cancer treatments and deepened our understanding of the
biology and pathogenesis of NSCLC. However, the problem of
drug resistance has greatly limited the therapeutic effect, making
the overall cure rate and survival rate of NSCLC still very low
[5, 6]. Therefore, it is urgently needed to develop a novel and
powerful prognostic stratification model to guide treatments and
improve prognoses of NSCLC.

As a key component of cellular homeostasis, the lysosome plays
an essential role in cell death, immune response, energy
metabolism, cell signaling, and endocytosis [7]. In recent
studies, it was found that lysosomes play an important role in
the occurrence and development of tumors. In cells and tissues
from patients and mouse models of renal cell carcinoma, pan-
creatic ductal adenocarcinoma, and melanoma, upregulation of
the MiT/TFE gene triggers RagD‐mediated mTORC1 induction,
leading to excessive cell proliferation and tumor growth [8]. In
prostate cancer, high expression of LAPTM4B‐35 was shown to
be significantly associated with poorer overall survival (OS),
and subsequent multivariate COX analysis found LAPTM4B‐35
to be an independent prognostic factor for OS [9]. In addition,
the SLC11A1 gene in the autophagy‐lysosome pathway was
associated with increased prostate cancer risk and prognosis
[10]. In breast cancer, lysosome‐associated genes were identi-
fied as having major potential roles in breast cancer develop-
ment and drug resistance [11]. As for NSCLC, overexpression of
SLCA38A7 in lung squamous cell carcinoma predicts poor
prognosis [12]. Additionally, advancements in nanotechnology
have led to the exploration of nanoparticles as potential thera-
peutic agents for lung cancer, further emphasizing the need to
understand the underlying molecular mechanisms governing
tumor behavior [13]. However, the relationship between
lysosome‐related genes and LUAD has not been fully eluci-
dated. In this study, we developed a lysosome‐related risk and
prognosis model for LUAD patients to assess risk factors for
cancer clinical care through bioinformatics and survival anal-
ysis, and identify potential therapeutic targets.

2 | Methods

2.1 | Data Acquisition, Differential Expression
Analysis, and Intersection Identification

Download the RNA‐seq data of TCGA‐LUAD from the UCSC‐
Xena platform (https://toil.xenahubs.net), as well as the clinical
information (including age, sex, TNM stage, and more) and
survival information of the corresponding samples. For the
RNA‐seq data, we implemented a rigorous normalization
strategy using FPKM method. This comprehensive approach
involved meticulously calculating expression count values and
incorporating gene length to derive the FPKM measure. To
further stabilize the variance and achieve a normal distribution
of the data, we applied a log2 (FPKM+ 1) transformation. This
step significantly enhanced the comparability and reliability of
our results across different samples and studies. In addition,
GSE31210 data set was downloaded from the GEO platform
(http://www.ncbi.nlm.nih.gov/geo/), which included a total of
226 LUAD samples as a validated cohort for a subsequent

model. Using the reference's gene annotation information, we
directly downloaded the processed and standardized probe ex-
pression matrix. A gene symbol was analyzed for a specific
probe by taking the average value from all probes that corre-
sponded to a particular gene symbol. The KEGG_LYSOSOME
(M11266) and LYSOSOME (M13845) pathway genes were
downloaded from the Molecular Signature Database (MsigDB
database, http://www.gsea-msigdb.org/gsea/index.jsp) and
were used as lysosome‐related genes. A total of 163 lysosome
related genes were selected by matching the genes in the TCGA
data above (Table S1).

2.2 | Lysosome Related Differentially Expressed
Genes (DEGS) Analysis

DEGs analysis between tumor tissue and adjacent tissue was
performed in the TCGA‐LUAD cohort. “Limma” package was
used to obtain the corresponding information of the lysosomal
gene, such as p value and logFC. The Benjamin & Hochberg
method was further used to carry out multiple testing and
correction, and the corrected p value was adjusted P value. The
threshold of differential expression was set as follows:
adjust p< 0.05.

2.3 | Cluster Analysis of Lysosome Related DEGS

Univariate Cox regression analysis of lysosomal‐related DEGs
was performed through the survival‐V3.2.13 package (https://
github.com/therneau/survival) to obtain candidate genes
related to prognosis. Unsupervised cluster analysis of lysosomal
prognostic‐related gene expression profile data was performed
using ConsensusClusterPlus (V‐1.56.0).

For the evaluation of gene enrichment scores of lysosomes in
two molecular subtypes, R's GSVA package (V‐1.40.1) was used,
along with the Wilcoxon rank test to assess the difference
between subtypes. The prognosis of the two subtypes was
compared using Kaplan‐Meier analysis (KM). The Complex-
Heatmap package (V‐2.8.0) is used to show the distribution of
clinical features across different subtypes. Further, 50 tumor
hallmark gene sets were downloaded from MSigDB data, and
the tumor hallmark enrichment score was calculated using the
clusterProfiler package to evaluate the differential hallmarks
between two subtypes. Functional enrichment outcomes were
evaluated via normalized enrichment score (NES) and false
discovery rate (FDR). In this analysis, an FDR cutoff of 0.05 was
utilized to ascertain the statistical significance.

2.4 | Lysosome Molecular Subtypes and Tumor
Immune Microenvironment (TIME)

To further explore the relationship between lysosome molecular
subtypes and TIME, the “ESTIMATE” package of R (V‐1.0.13,
https://bioinformatics.mdanderson.org/estimate/rpackage.html)
was used to determine the TIME score of TCGA‐LUAD samples,
and CIBERSORT was used to determine the infiltration score of
various immune cells. Finally, the Wilcoxon test was used to
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evaluate the distribution difference of TIME score and immune cell
infiltration ratio among different lysosome subtypes.

In addition, we analyzed expression data from the training cohort
for genes related to immune checkpoints (PMID: 36249031) and the
HLA family (reference PMID: 33724691). Lysosome subtypes were
compared using the Wilcoxon test to see if immune checkpoint
genes and HLA family genes differ in expression.

2.5 | Building and Validating the Prognostic
Signature

Based on the prognostic lysosome‐related genes mentioned
above, LASSO Cox analysis was performed using glmnet
package to screen characteristic genes for the construction of
lysosome‐related prognostic signature. For making the final
prognostic score model, only genes with regression coefficients
greater than 0 were included. The prognostic score is derived by
using the following formula based on the regression
coefficient (c):

Risk score = [c1* expression level of gene (1)] + [c2* expression
level of gene (2)] +…+ [cn* expression level of gene (n)].

The risk score of each patient in the TCGA‐LUAD data set was
calculated according to the formula, and then divided into a
high‐risk group and a low‐risk group according to the median
value of risk score, and the disease‐specific survival (DSS) of the
two groups was compared by KM analysis. As part of the eva-
luation of the prognostic ability of the risk model, a time‐related
receiver operating characteristic (ROC) analysis of 1, 3, and
5 years was performed. In the above analysis, GSE31210 was
selected as the external validated cohort through the GEO
database.

The TCGA‐LUAD and GSE31210 datasets were analyses using
both univariate and multivariate Cox regression analysis. Ac-
cording to the constructed risk prognostic signature, as well as
clinical characteristics (such as gender, age, TNM stage) of
LUAD patients and by using the rams package in R version
6.2.0, build a nomogram model. We also evaluated the accuracy
of the nomogram using the calibration curve, and the diagnostic
accuracy of the model using the decision curve analysis (DCA).
A KM curve was drawn after dividing patients into high‐score
and low‐score groups based on their median total score in the
column chart.

2.6 | Immunohistochemical (IHC)

To further validate our lysosomal central gene markers, we
initiated additional experiments to closely examine the expres-
sion patterns of CTSZ and AP3S2 proteins, particularly in a
clinical context. Using 48 stage 3–4 NSCLC samples (Table S5),
we performed IHC staining to carefully assess CTSZ and AP3S2
expression levels. Data collection followed CONSORT guide-
lines, including TNM stage, sex, and age. The specific method is
as follows: The tissue sample is fixed in formalin, embedded in
paraffin, and cut into 4–5 µm slices. The slices were then

dewaxed, hydrated, and used for antigen retrieval using EDTA
buffers. After being blocked with normal serum, the tissues
were incubated overnight at 4°C with anti‐CTSZ antibodies
(Sigma‐Aldrich, HPA049876, 1:100 dilution) and anti‐AP3S2
antibodies (Sigma‐Aldrich, HPA049270, 1:100 dilution),
respectively. A peroxidase‐conjugated secondary antibody is
applied for 1 h, and staining is developed using a peroxidase
substrate. Counterstaining with hematoxylin, dehydration,
clearing in xylene, and mounting with mounting medium
complete the process. The slides are examined under a micro-
scope to identify CTSZ and AP3S2 protein staining, with neg-
ative and positive controls included for validation.

2.7 | Statistical Analysis

We used R for all statistical analyses conducted in this study. To
ensure robustness and accuracy, we employed a variety of statistical
tests and utilized relevant R packages tailored to our specific needs.

For comparing nonparametric data from two independent
samples, we utilized the Wilcoxon test. This test was particu-
larly useful for assessing differences in immune cell infiltration
ratios, TIME scores, and expression levels of immune check-
point and HLA family genes among different lysosome
subtypes.

For parametric data, we employed both t‐tests and one‐way
ANOVA. T‐tests were used to compare means between two
groups, such as comparing the lysosome scores or clinical
characteristics between different clusters. One‐way ANOVA
was utilized when comparing means across three or more
groups, such as analyzing the expression levels of lysosomal‐
related genes across various subtypes or stages of LUAD.

We considered a p< 0.05 as statistically significant, with
p< 0.01 and < 0.001 denoted as ** and *** respectively, to
indicate higher levels of significance. These thresholds helped
us to identify which results were likely to be biologically
meaningful and worthy of further exploration.

To facilitate our statistical analyses and data visualization, we
utilized a range of R packages. We employed packages such as
ggplot2 and ggpubr for creating visually appealing and
informative graphs and plots. The survival and survminer
packages were essential for performing survival analyses,
including Kaplan‐Meier curves and Cox regression models.
Additionally, we utilized packages from the Bioconductor
repository, such as ConsensusClusterPlus for cluster analysis
and GSVA for gene set variation analysis.

3 | Results

3.1 | Identification of Lysosome‐Related DEGS
Between Tumor Tissue and Adjacent Sample

The lysosome‐related DEGs between tumor tissue and adjacent
tissue were compared. A total of 109 DEGs were found,
including 68 downregulated genes and 41 upregulated genes
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(Figure 1A, Table S2). Univariate Cox analysis was performed
on the 109 DEGs obtained above, and 30 genes with significant
prognostic correlation were identified (Figure 1B).

3.2 | Identification of Lysosome‐Based Molecular
Clusters Using Clustering Analysis

To identify lysosome‐based molecular clusters, cluster analysis
was performed on 30 prognostic‐related DGEs. The maximum
number of clusters, K, was set to 6. Based on the CDF curve and
Delta area, two lysosome‐based molecular clusters were con-
structed (Figure 2A,B). The LYSOSOME score of three LYSO-
SOME gene sets (KEGG_LYSOSOME, LYSOSOME, and total
LYSOSOME gene sets) was calculated respectively, and it was
found that in cluster 2, the LYSOSOME score was significantly
reduced (Figure 2C). More importantly, cluster 2 had a worse
prognosis (median DSS: 1492 vs 1288 days, HR: 1.61, 95% CI:
1.09–2.39, p= 0.016, Figure 2D). The clinical characteristics of
cluster 1 and cluster 2 are shown in Figure 2E, and there were
no statistical differences in age, gender and stage (Table S3).

3.3 | Cluster‐Based Analysis of Tumor Immune
Microenvironment

Based on immune score, stromal score, and tumor purity scores,
we assessed the differences in immune characteristics among
the subtypes using the “ESTIMATE” R package. Compared to

cluster 1, cluster 2 had lower immunological and stromal
scores, but higher tumor purity levels (Figure 3A). According to
these findings, immune and stromal components had a negative
correlation with prognosis in LUAD. We utilized the CI-
BERSORTx online tool for further exploration of immune cell
distribution in the microenvironment of tumors. Compared to
cluster 1, memory B cell, resting‐memory CD4 T cells, mono-
cytes, M2‐type macrophages, dendritic cells and mast cells in
cluster 2 were significantly reduced. Activated‐memory CD4 T
cells, M0‐type macrophages, and M1‐type macrophages, how-
ever, showed significant increases (Figure 3B,C). Additionally,
we analyzed the immune checkpoint genes and HLA genes and
found that the expression of HAVCR2, CD274, PDCD1LG2,
CTLA4, CD80 and CD86 were downregulated in cluster 2, and
all HLA genes showed the same trend (Figure 3D,E, all
p< 0.05). Obviously, patients in cluster 2 were im-
munosuppressed in a more severe way.

To investigate the potential biological function of cluster 2, we
conducted gene set enrichment analysis of upregulated and
downregulated genes of cluster 2. The leading 10 significantly
enriched gene sets in the upregulated cluster 2 were E2F_TAR
GETS, G2M_CHECKPOINT, MYC_TARGETS_V1, MYC_TAR
GETS_V2, MTORC1_SIGNALING, MITOTIC_SPINDLE, UNFOL
DED_PROTEIN_RESPONSE, GLYCOLYSIS, DNA_REPAIR and
HYPOXIA (p< 0.05, Figure 3F). In addition, 21 pathways
including INFLAMMATORY_RESPONSE, IL6_JAK_STAT3_
SIGNALING, TNFA_SIGNALING_VIA_NFKB, METABOLISM,
and P53_PATHWAY were also activated in cluster 2
(Supplementary Figure S1).

FIGURE 1 | The role of lysosome‐related genes in tumor and adjacent tissue. (A) DEGs of lysosome‐related genes between tumor and adjacent

tissue. (B) Univariate Cox analysis.
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FIGURE 2 | Consensus clustering of molecular subgroups based on prognostic related DEGs. (A) CDF curve. (B) Consensus clustering matrix

with K as 2. (C). LYSOSOME score in KEGG_LYSOSOME, LYSOSOME, and total LYSOSOME gene sets, respectively. (D) KM survival curve.

(E) Distribution of clinical characteristics between two clusters. ****p< 0.0001.
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3.4 | Construction and Validation of Lysosome‐
Related Prognostic Signature

The DEGs‐based univariate Cox analysis among three subtypes
identified 17 prognostic genes (Table S4, Figure 4A). By using
univariate Cox analysis, prognostic genes were analyzed with
LASSO regression. Figure 4B shows the locus of each inde-
pendent variable. As the lambda (λ) value increases, the num-
ber of independent variables approaching zero also increases
(Figure 4C).

Each patient's risk score and survival time are shown in Fig-
ure 4D,E. Patients were grouped into high‐risk groups based on
their risk scores. As shown by the KM curve, low‐risk patients
have significantly better prognoses than high‐risk patients
(median DSS: not reached vs. 1288 days, HR: 0.33, 95% CI:
0.22–0.50, p< 0.001, Figure 4F). The area under the curves
(AUCs) of time‐dependent ROC curves for 1‐, 3‐, and 5‐year
DSS were 0.78, 0.72, and 0.69, respectively (Figure 4G), indi-
cating a good predictive performance. A similar phenomenon
also appeared in the GSE31210 cohort (Figure 4H,I). A signifi-
cant difference was found between low‐risk and high‐risk

patients in their prognosis (median DSS: not reached vs not
reached, HR: 0.35, 95% CI: 0.17–0.73, p= 0.0033, Figure 4J), and
the ROC curves of 1‐year, 3‐year, and 5‐year DSS were 0.65,
0.64, and 0.70, respectively (Figure 4K).

3.5 | Developing a Predictive Nomogram for DSS
Prediction

Cox regression was used to analyze clinical information and
risk scores to identify prognostic factors. It was found that risk
scores and TNM stage were associated with a poor prognosis
(p< 0.05, Figure 5A,B). To help predict clinical outcomes
accurately, a prediction nomogram was developed (Figure 5C).
A nomogram calibration map showed a good match between
predicted and observed DSS results, and 1‐year calibration
curves showed good consistency, but as time went on, some
deviation occurred (Figure 5D). At the same time, we also
plotted DCA and ROC curves of nomogram, demonstrating a
better discriminative ability than signature (Figure 5E,F). Ac-
cording to the median value of the nomogram score, the high‐
score group and low‐score group were distinguished, and the

FIGURE 3 | Cluster‐based analysis of tumor immune microenvironment. (A) Comparison of tumor immune microenvironment components.

(B) Box plots present differential immune infiltration. (C) ssGSEA results of differential immune infiltration. (D) Immune checkpoint genes

expression. (E) HLA family genes expression. (F) Significantly enriched pathways with GSEA between cluster 1 and cluster 2. *p< 0.05. ***p< 0.01.

****p< 0.0001.
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FIGURE 3 | (Continued)
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FIGURE 4 | Prognostic model of LUAD based on prognostic genes. (A) Histogram of coefficient distribution of feature genes. (B) LASSO

coefficient profiles. (C) A plot of the error rates from 10‐fold cross‐validation. Distribution of risk score (D), survival time (E) for each patient, KM

survival curve (F) and ROC curve (G) of the predictive value of the risk model in the TCGA cohort. Distribution of risk score (H), survival time (I) for

each patient, KM survival curve (J) and ROC curve (K) of the predictive value of the risk model in the GSE31210 cohort.

FIGURE 5 | Construction of the nomogram for predicting DSS of LUAD patients. Univariate forest plots (A) and multivariate forest plots (B) of

the risk score model and clinicopathological characteristics associated with DSS. (C) The nomogram was constructed. (D) Calibration plot of the

nomogram. (E) DCA curve. (F) ROC curve. (G) KM survival curve.
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prognostic survival curve was drawn. The results showed that
patients with a low score had a better prognosis (p< 0.001,
Figure 5G).

3.6 | Expression of CTSZ and AP3S2 Proteins

We examined the expression of CTSZ and AP3S2 proteins in 48
stage 3–4 NSCLC samples. Results showed that low AP3S2 ex-
pression was a favorable prognostic factor (median OS: 37.87 vs.
8.53 months, HR: 0.51, 95% CI: 0.24–1.05, p= 0.0211, Fig-
ure S2A). Increased CTSZ expression was a favorable prognostic
indicator (median OS: 6.77 vs 30.50 months, HR: 2.66, 95% CI:
0.65–10.87, p= 0.0306, Figure S2B,C).

4 | Discussion

The lysosome is a crucial component of the cell membrane and
participates in a wide range of biological processes within the
cell, including intracellular transport, autophagy, metabolism,
cell division, cell migration, and gene expression [14–16]. In
recent years, increasing evidence has shown that lysosomes play
an important role in the occurrence and progression of cancer
[17–19]. For example, in cholangiocarcinoma, PTEN deficiency
impairs lysosomal biogenesis in a TFEB phosphorylation‐
dependent manner, promoting exosome secretion and cancer
metastasis [18]. Gefitinib selectively degrades COX6A1, an
important antiapoptotic factor in the autophagy‐lysosome
pathway, and then activates apoptosis, thereby causing liver
injury [20]. Moreover, some studies have found that con-
structing a lysosome‐related gene signature, combined with
Gleason score, could well predict the prognosis of prostate
cancer [21]. Although the role of lysosomes in cancer initiation
and progression is becoming increasingly apparent, their exact
role in predicting the prognosis of LUAD remains unclear. In
recent years, TIME has gained widespread attention in the
cancer research arena. Stromal cells, as well as tumor cells,
contribute to cancer's initiation, development, and metastasis.
Some researchers even believe that stroma, as a mutagenic
agent, plays a more direct role in tumorigenesis, potentially
slowing or reversing tumor progression by “normalizing” tumor
stroma [22].

In light of these characteristics, we established a prognostic
model of lysosome‐related genes that can provide potential
therapeutic targets for clinical treatment and prognosis in
LUAD patients through bioinformatics technology.

We analyzed immune scores between class 1 and class 2 sub-
groups and found significant differences in tumor‐infiltrating
lymphocytes (TILs), immune checkpoint genes, and major
histocompatibility complex. In general, the efficacy of clinical
treatment depends on the quantity and nature of TILs, which is
a favorable prognostic factor for NSCLC [23]. TILs have been
shown to be associated with a higher neoadjuvant pathologic
response or better prognosis [24, 25]. In HLA, it was found that
the infiltration of T cells and NK cells was reduced in patients
with selective downregulation of HLA‐related genes in cancer
cells, and the OS was shortened [26]. This is consistent with our

results that patients in the cluster 2 subgroup had a lower
lysosome score, a more severe immunosuppressive state, and a
poorer prognosis.

In this study, we further found that 17 lysosome‐related genes
were significantly associated with LUAD prognosis through Cox
analysis. Notably, most of them have rarely been studied for
cancer‐related diseases, and some genes have been the subject
of several studies. Firstly, adapter related protein complex 1
subunit mu 2 (AP1M2) has been shown to be significantly
overexpressed in a variety of solid tumors (e.g., breast cancer,
liver cancer, lung cancer, cholangiocarcinoma, prostate cancer,
gastric cancer, thyroid cancer, and common genital tumors) and
associated with cancer cell death [27]. High expression of
AP1M2 was linked to poor prognosis in breast‐infiltrating car-
cinoma (p= 0.039) and cutaneous melanoma (p= 0.0015) [28].
Regarding adapter related protein complex 3 subunit sigma 1
(AP3S1), researchers found that AP3S1 was overexpressed in
the majority of tumors and significantly associated with lower
survival. To explain this phenomenon, its expression is posi-
tively correlated with the level of infiltration of immuno-
suppressive cells (tumor‐associated macrophages, cancer‐
associated fibroblasts, Tregs) and negatively correlated with
the level of immune killer cells (including NK cells and CD8+ T
cells) [29]. Similarly, in patients with LUAD, AP3S1 promotes
the growth and migration of LUAD cells in vitro [30]. As for
cathepsin Z Gene (CTSZ), Liu et al. demonstrated that the
natural compound deguelin inhibits the migration, invasion
and metastasis of NSCLC cells in vitro and in vivo by inhibiting
CTSZ expression [31]. To further validate our lysosome‐centric
gene signature, we embarked on additional experiments, par-
ticularly scrutinizing the expression patterns of CTSZ and
AP3S2 proteins in a clinical context. Our comprehensive IHC
analysis unveiled a significant correlation between CTSZ pro-
tein expression and the prognosis of NSCLC patients, as illus-
trated in Supplementary Figure S2. Notably, elevated CTSZ
expression emerged as a favorable prognostic indicator, aligning
with previous findings across diverse cancer types such as
kidney renal papillary cell carcinoma, glioblastoma multiforme,
and childhood acute myeloid leukemia, where similar trends
have been reported for CTSZ [32–34]. However, we acknowl-
edge the existence of contrasting reports, notably in kidney
renal clear cell carcinoma [34], emphasizing the intricate and
disease‐specific nature of gene expression patterns and their
prognostic implications. These inconsistencies underscore the
paramount importance of adopting multi‐gene signatures to
mitigate the limitations inherent in single‐gene predictors,
thereby enhancing the accuracy and reliability of prognosis in
cancer.

Our study offers significant prognostic insights for LUAD;
however, it does have some limitations. First, the data utilized
in our research is retrospective, and incorporating prospective
samples will be essential to validate our findings. Second, while
we emphasize clinical prognosis, further investigation into the
specific molecular mechanisms is needed. Third, as our study
primarily involves bioinformatics, further research is needed for
direct experimental validation.

In summary, our study classified NSCLC patients into two
clusters based on lysosome‐related genes. Functional analysis
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and immune scoring indicated that a low lysosome score was
correlated with a suppressed immune status and poor progno-
sis. Additionally, we developed a corresponding risk model
aimed at enhancing clinical treatment strategies and providing
theoretical support for future research.
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