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Time-resolved small- and wide-angle X-ray scattering (SAXS and WAXS)

methods probe the structural dynamics of proteins in solution. Although

technologically advanced, these methods are in many cases limited by data

interpretation. The calculation of X-ray scattering profiles is computationally

demanding and poses a bottleneck for all SAXS/WAXS-assisted structural

refinement and, in particular, for the analysis of time-resolved data. A way of

speeding up these calculations is to represent biomolecules as collections of

coarse-grained scatterers. Here, such coarse-graining schemes are presented and

discussed and their accuracies examined. It is demonstrated that scattering

factors coincident with the popular MARTINI coarse-graining scheme produce

reliable difference scattering in the range 0 < q < 0.75 Å�1. The findings are

promising for future attempts at X-ray scattering data analysis, and may help to

bridge the gap between time-resolved experiments and their interpretation.

1. Introduction
X-ray solution scattering is a popular technique for gathering

structural information on biomolecules in solution (Petou-

khov & Svergun, 2007; Koch et al., 2003; Svergun & Koch,

2003; Makowski, 2010; Ihee et al., 2010; Westenhoff et al., 2010;

Andersson et al., 2009; Cho et al., 2010; Malmerberg et al.,

2011; Kim, Muniyappan et al., 2012; Kim, Lee et al., 2012;

Ibrahimkutty et al., 2011; Spilotros et al., 2012; Takala et al.,

2014). The angular intensity distribution of scattered X-rays is

recorded and advanced computational algorithms are avail-

able to determine three-dimensional structures from the

scattering patterns (Konarev et al., 2006; Petoukhov et al., 2012;

Liu et al., 2012). X-ray scattering at small angles (SAXS)

provides information on molecular envelopes. At wider angles

(WAXS), higher-resolution information is encoded, but low

scattering strength and a lack of uniqueness when assigning

structural features to the data hinders its practical application.

Time-resolved X-ray solution scattering is an emerging

technique for observing structural changes of proteins (Ihee et

al., 2010; Westenhoff et al., 2010; Andersson et al., 2009;

Makowski, 2010; Cho et al., 2010; Malmerberg et al., 2011;

Kim, Muniyappanet al., 2012; Kim, Lee et al., 2012; Ibra-

himkutty et al., 2011; Spilotros et al., 2012; Takala et al., 2014).

X-ray scattering is recorded as a function of reaction time and

referenced to the scattering patterns of the reactants. The

difference technique makes it possible to access higher spatial

resolution by detecting WAXS, since all background signals

are very precisely canceled. At modern synchrotron facilities

the time resolution is limited to approximately 100 ps, but

free-electron laser sources increase the resolution to <100 fs.

This opens up the way for studies of elementary structural

changes in proteins on the time scale of atomic motions.

Today the bottleneck in protein solution X-ray scattering

lies in interpreting the experimental data. One is forced to

model it in an iterative fashion, and to calculate scattering pat-

terns of a large number of trial structures. Since the total scat-

tering is a result of pairwise interference between all the atoms

in a protein, each such calculation is time consuming and

refinement quickly becomes too computationally demanding.

For a realistic representation of scattering from a molecule

in solution, the contributions to the form factor from the

electron density of the molecule, the electron density of the

displaced solvent and any excess electron density of the

solvation shell have to be evaluated. The first term is often

computed from the atomic coordinates of the molecule. To

represent the solvent displaced by the solute, it is common

practice to use modified atomic scattering factors (Fraser et al.,

1978). Whereas the use of this approximation is justified at

small angles, systematic deviations are introduced for higher

angles (Bardhan et al., 2009). The excess electron density in

the solvation shell is often modeled as a homogeneous border

layer, as implemented in the popular program CRYSOL

(Svergun et al., 1995). However this strategy is problematic as

two parameters describing the solvation shell are introduced

and adjusted ad hoc. Recent developments include explicit

solvent treatment (Grishaev et al., 2010; Park et al., 2009) or a

more realistic representation of the solute–solvent boundary

(Bardhan et al., 2009; Virtanen et al., 2011). By using these

more sophisticated methods, the reliability q range can be

extended to higher values. However these methods are

computationally demanding and it is hard to prove their

accuracy experimentally. We show explicitly below that the

need for accurate computation of the solvent layer is relaxed

when analyzing difference X-ray scattering.
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Given that solution scattering signals of proteins do not

encode enough information to reveal atomic level details, a

coarse-grained representation should often be suitable for

interpreting SAXS and WAXS data. Such representations

greatly decrease the computational cost of predicting X-ray

scattering curves (Yang et al., 2009; Stovgaard et al., 2010;

Zheng & Tekpinar, 2011; Daily et al., 2012), rendering ambi-

tious iterative refinement schemes realistic for relatively large

protein systems. In recent years, the MARTINI model, based

on coarse-grained representations of biomolecules, has

become popular for simulating the dynamics of various

biological systems (Marrink et al., 2007; Monticelli et al., 2008;

López et al., 2009; Yesylevskyy et al., 2010; de Jong et al., 2013;

Marrink & Tieleman, 2013). It drastically reduces the

computational cost of molecular dynamics simulations,

allowing simulation on longer time scales and of larger systems

with modest computational resources. The force field is

designed to reproduce thermodynamic data and has been

successfully applied to several simulation problems, for

example, protein–lipid interactions (van den Bogaart et al.,

2011; Schäfer et al., 2011; Louhivuori et al., 2010).

In this study, we describe and compare methods for coarse-

grained X-ray scattering calculations, especially aiming at the

analysis of time-resolved difference scattering. We show how

difference X-ray scattering profiles can be calculated effi-

ciently from MARTINI coarse-grained representations of

proteins and we assess the reliability limits for these calcula-

tions. We find that coarse-grained scattering calculations are

reliable in a larger q range for difference scattering compared

with absolute scattering. We conclude that this method opens

up a way for structural refinement routines of large proteins,

especially in combination with time-resolved SAXS/WAXS

experiments.

2. Theory and methods

2.1. X-ray scattering from coarse-grained structures

The scattering amplitude from a collection of point-like

atomic scatterers (Warren, 1990) is described by

FðqÞ ¼
P

k

fk expðiq � rkÞ; ð1Þ

where q is the scattering vector and rk and fk are the position

and the scattering factor of atom k, respectively. For randomly

oriented molecules in solution, the scattered intensity is

obtained by multiplying this sum by its complex conjugate,

IðqÞ ¼

�P
k

fk expðiq � rkÞ

��P
l

fl expð�iq � rlÞ

�
¼
P

k

P
l

fkfl expðiq � rklÞ; ð2Þ

and then taking the spherical average with q ¼ jqj ¼

4�ðsin �=�Þ, where � is the wavelength of the radiation, 2� is

the scattering angle and rkl is the vector from scatterer l to

scatterer k. Equation (2) becomes

IðqÞ ¼ IðqÞ
� �

¼
P

k

P
l

fkfl expðiq � rklÞ

� �
¼
P

k

P
l

fkfl expðiq � rklÞ
� �

¼
P

k

P
l

fkfl
sinðqrklÞ

qrkl
: ð3Þ

The last result is known as the Debye equation and can be

used to predict the vacuum scattering of a biomolecule.

A complication is that solution scattering patterns contain a

large undesired solvent signal. This signal can be removed by

subtracting a buffer background, but at the cost of including a

negative term for the displaced solvent that must be accounted

for in predicted data. It can be introduced in an approximate

way, at the level of the atomic scattering factors, so that the

unmodified Debye equation [equation (3)] can still be used.

Such corrected atomic scattering factors f excl
k ðqÞ are derived

from fkðqÞ by subtracting a Gaussian sphere representing the

scattering amplitude of the displaced solvent (Fraser et al.,

1978):

f excl
k ðqÞ ¼ fkðqÞ � �k�s expð���2=3

k q2
Þ: ð4Þ

Here �k is the tabulated (Fraser et al., 1978) volume for each

atom and �s is the mean electron density of the bulk solvent.

In the remainder of this paper, all scattering factors contain

this displaced-solvent term unless stated otherwise.

For biomolecules, the computational cost for evaluating

equation (3) can be quite high. This is especially important for

iterative structural refinement procedures where many test

structures have to be evaluated. One strategy for decreasing

computational cost is to use a coarse-grained representation of

the structure, where each coarse bead represents a group of

atoms. It is convenient if each bead is described by a scattering

factor F(q), so that the scattering intensity is given by a coarse-

grained Debye equation, where the indices (m, n) denote

coarse beads and Rmn the distance between them:

IðqÞ ¼
X

m

X
n

FmðqÞFnðqÞ
sinðqRmnÞ

qRmn

: ð5Þ

Finding these FmðqÞ is not trivial and we review some possi-

bilities before describing the approach taken in this study.

2.1.1. The bead position approximation. The simplest way

to express the overall scattering in terms of coarse-grained

scattering factors is to consider each atom to be located at the

center of its bead. All atom–atom distances are then

approximated by the corresponding bead–bead distances.

Where (k, l) are atomic indices and (m, n) denote coarse

beads, the Debye equation can be written as follows:

IðqÞ ¼
X

k

X
l

fkfl

sinðqrklÞ

qrkl

¼
X

m

X
n

X
k2m

X
l2n

fkfl

sinðqrklÞ

qrkl

’
X

m

X
n

X
k2m

X
l2n

fkfl

sinðqRmnÞ

qRmn

¼
X

m

X
n

sinðqRmnÞ

qRmn

 X
k2m

fk

! X
l2n

fl

!
: ð6Þ
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We then have

Fm ’
P
k2m

fk: ð7Þ

In this approximation, the internal structure of the beads is

completely ignored. We note that equation (7) holds exactly

for q = 0.

2.1.2. The spherical ‘glob’ approximation. Another option

is to take, for each bead, the spherical average of the ampli-

tude [equation (1)] before taking intensities. This is equivalent

to smearing each atom out on a sphere of radius rk around the

center of the bead (Harker, 1953):

FnðqÞ ¼ FnðqÞ
� �

¼
X
k2n

fk expðiq � rkÞ

* +

¼
X
k2n

fk

sinðqrkÞ

qrk

: ð8Þ

Here, the distance of each atom to the center of the beads is

considered, but the angular arrangement of the atoms is

ignored.

2.1.3. The self-consistent set approximation. The most

general approach described in this paper is to find, for a given

set of proteins, a self-consistent set of F(q) values that

reproduces all pairwise bead–bead scattering intensity terms

of the corresponding atomistic structures as well as possible.

Considering two beads with scattering factors FA and FB, the

total scattering intensity of the pair IAB is given by equation

(3). These quantities are related by applying equation (5) to

the pair of beads:

IAB ¼ F2
A þ F2

B þ 2FAFB

sinðqRABÞ

qRAB

: ð9Þ

If FB is held constant in the comparison, FA is obtained by

solving this quadratic equation, choosing the correct root by

comparing to equation (7), which actually holds for q = 0. A

self-consistent set of coarse-grained scattering factors can be

found from the following scheme.

(a) Generate starting guesses for the bead form factors, for

example, by using equations (7) or (8).

(b) Pick a random bead in the structure and call it A.

(c) Go through all other beads in the structure, letting each

act as B, and calculate FA for each case according to equation

(9).

(d) Take the average of all these FA, and assign it to bead A.

(e) Repeat (b)–(d) until the set form factors have

converged.

2.1.4. The single-bead approximation. Although concep-

tually simple, the last approach is cumbersome, especially for

large libraries of proteins. Yang et al. (2009) have presented a

simpler approach, where form factors are chosen such that

they reproduce the scattering intensities of isolated beads. In

this approach, numerically correct coarse-grained form factors

for entire amino acid residues can be obtained simply by

taking the square root of the scattering intensity from a group

of atoms:

FmðqÞ ¼

"X
k2m

X
l2m

fkfl

sinðqrklÞ

qrkl

#1=2

: ð10Þ

We note that this equation can only produce positive form

factors, which is not correct in general when the negative term

for the displaced solvent is included. For q = 0, the value of the

form factor of the bead must equal the sum of the atomic

scattering factors:

Fmðq ¼ 0Þ ¼
P
k2m

fkðq ¼ 0Þ: ð11Þ

With water as a solvent, fk(q = 0) is negative for the

hydrogen atom when the displaced-solvent contribution is

included. Thus, negative values of F(q) can occur for beads

containing hydrogen atoms [f(q = 0) = �0.72 electron units

(e.u.)]. Therefore, form factors obtained using equation (10)

that do not satisfy equation (11) must be corrected. In prac-

tice, this is the case for side-chain beads which contain only

hydrogen and carbon atoms. When the beads consist of entire

amino acids the f(q = 0) values are generally positive (Yang et

al., 2009). To correct the scattering factors that do not satisfy

equation (11), we use a common feature of all these scattering

factors, which is the appearance of a minimum with two

associated inflection points (Fig. 1). The data with q larger

than the high-q inflection point are used for a sixth-order

polynomial fit, constrained at q = 0 to satisfy equation (11).

This polynomial is then accepted as the actual form factor of

the coarse bead (Fig. 1).

To illustrate the differences between the above four

approaches, the coarse-grained X-ray scattering of hen egg-

white lysozyme was calculated from a MARTINI (the

MARTINI coarse-grained representation of proteins will be

described later in x2.2) coarse-grained structure and compared

with the all-atom calculation (Fig. 2). To enable a direct

comparison of the form factor calculation methods, the scat-
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Figure 1
Example of bead scattering factor correction (proline, side chain 1): the
dashed curve is calculated according to equation (10). The value for q = 0
does not satisfy equation (11) (cf. Table 1). Therefore only the points
after the inflection point (following the minimum) were used for the
sixth-order polynomial curve fitting (stars). The value at q = 0 (from
Table 1) is used as an equality constraint (filled circle). This yields the
corrected bead scattering factor (solid line).



tering was calculated without the displaced-solvent model. For

q < 0.25 Å�1, all approaches are in good agreement with the

all-atom calculation. This is reasonable because long inter-

bead distances are probed in this q range. Regarding the high-

q region, the bead-position approximation shows significant

deviations for q > 0.4 Å�1. The spherical glob approximation

reproduces the all-atom calculation well for q < 1.2 Å�1 but

deviates for larger q values. The self-consistent set approx-

imation and the single-bead approximation yield almost

identical results and agree relatively well with the all-atom

calculations even for high q values.

This degree of agreement corresponds to the order with

which the internal structure of the bead is accounted for: the

bead-position approximation neglects the internal structure,

the spherical glob approximation smears the atoms out on

spheres around its center, and the single-bead approximation

as well as the self-consistent set approximation include the

internal bead structure most accurately. The latter two

approximations agree remarkably well with the all-atom

calculation. The single-bead approximation is computationally

less expensive than the self-consistent set approximation. We

therefore chose to use the former for calculating coarse-

grained scattering factors in the remainder of this study.

2.2. Application to the MARTINI model

We now turn our attention to applying the single-bead

approximation to the MARTINI model (Marrink et al., 2007;

de Jong et al., 2013; Marrink & Tieleman, 2013) as an efficient

way to calculate X-ray scattering from coarse-grained struc-

tures. In the MARTINI model, four non-hydrogen atoms and

their associated hydrogen atoms are mapped, on average, onto

one bead, with each amino acid residue composed of a

backbone bead and up to four side-chain beads (Monticelli et

al., 2008). The beads are grouped by their polarity and

hydrogen bonding ability, yielding a total of 20 different bead

types whose interactions are specified by the MARTINI force

field.

For X-ray scattering calculations the geometrical similarity

and the molecular formula (number of electrons) of the beads

is of main importance, not the polarity or hydrogen bonding

ability. We therefore derive X-ray form factors for each

MARTINI bead as it appears in every amino acid residue type.

This yields the 49 different scattering types listed in Table 1.

The original mapping of atoms into beads according to the

MARTINI model is retained for the X-ray scattering calcu-

lations. This means that MARTINI coarse-grained structures

can be used directly as an input for these calculations.
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Table 1
Bead types used for the coarse-grained X-ray scattering calculations and
their elemental formulae.

The sums of the atomic scattering factors at q = 0, corrected with the
displaced-solvent model, are shown in the last columns. The form factors of all
beads with

P
f(q = 0) < 0, marked in bold, were corrected as described in the

text.

Number of atoms

AA Bead C H N O S f(q = 0)

ALA BB 3 5 1 1 0 9.04
ALA BB 3 5 1 1 0 10.69
ARG SC1 3 6 0 0 0 �2.79
ARG SC2 1 5 3 0 0 15.39
ASN BB 2 2 1 1 0 10.69
ASN SC1 2 4 1 1 0 9.25
ASP BB 2 2 1 1 0 10.69
ASP SC1 2 2 0 2 0 9.48
CYS BB 2 2 1 1 0 10.69
CYS SC1 1 2 0 0 1 8.44
GLN BB 2 2 1 1 0 10.69
GLN SC1 3 6 1 1 0 8.32
GLU BB 2 2 1 1 0 10.69
GLU SC1 3 4 0 2 0 8.55
GLY BB 2 3 1 1 0 9.97
HIS BB 2 2 1 1 0 10.69
HIS SC1 2 2 0 0 0 �0.42
HIS SC2 1 1 1 0 0 5.95
HIS SC3 1 1 1 0 0 5.95
ILE BB 2 2 1 1 0 10.69
ILE SC1 4 9 0 0 0 �4.44
LEU BB 2 2 1 1 0 10.69
LEU SC1 4 9 0 0 0 �4.44
LYS BB 2 2 1 1 0 10.69
LYS SC1 3 6 0 0 0 �2.79
LYS SC2 1 5 1 0 0 3.07
MET BB 2 2 1 1 0 10.69
MET SC1 3 7 0 0 1 5.86
PHE BB 2 2 1 1 0 10.69
PHE SC1 3 3 0 0 0 �0.63
PHE SC2 2 2 0 0 0 �0.42
PHE SC3 2 2 0 0 0 �0.42
PRO BB 2 1 1 1 0 11.41
PRO SC1 3 6 0 0 0 �2.79
SER BB 2 2 1 1 0 10.69
SER SC1 1 3 0 1 0 3.30
THR BB 2 2 1 1 0 10.69
THR SC1 2 5 0 1 0 2.37
TRP BB 2 2 1 1 0 10.69
TRP SC1 3 2 0 0 0 0.09
TRP SC2 2 2 1 0 0 5.74
TRP SC3 2 2 0 0 0 �0.42
TRP SC4 2 2 0 0 0 �0.42
TYR BB 2 2 1 1 0 10.69
TYR SC1 3 3 0 0 0 �0.63
TYR SC2 2 2 0 0 0 �0.42
TYR SC3 2 2 0 1 0 4.53
VAL BB 2 2 1 1 0 10.69
VAL SC1 3 7 0 0 0 �3.51

Figure 2
Comparison of the four ways of determining coarse-grained form factors.
All calculations were performed without the displaced-solvent model for
hen egg-white lysozyme (PDB code 6lyz).



The average form factors for the MARTINI beads following

the single-bead approximation were acquired from a ration-

ally selected library of protein structures that covers a wide

range of protein folds and different secondary structure

contents (Oberg et al., 2003). We excluded seven proteins with

missing non-hydrogen atoms. This resulted in a library of 43

proteins shown in Table 2. Missing hydrogen atoms were

added with the pdb2gmx tool which is part of the GROMACS

suite (Hess et al., 2008). To investigate the effect of the bead

size on accuracy, an additional coarse-grained mapping with

one amino acid per bead was used (Yang et al., 2009; Zheng &

Tekpinar, 2011). Both the amino acid and the MARTINI

beads were positioned at the centers of mass of the respective

atom groups.

To keep these calculations simple and universally applicable

a few structural details were ignored. First of all, the N- and C-

termini were not differentiated for the coarse-grained calcu-

lation. The respective amino acids were included in the

calculation of the average bead scattering factors, and thus the

larger number of electrons for the C-terminus is reflected by

this averaging. Charged atoms were also ignored, both to limit

the number of bead types and since information on the charge

is not always available.

3. Results

3.1. The library average of bead form factors

A central aim of this work is to estimate the reliability of

coarse-grained X-ray scattering calculations with respect to

the size of the beads. Two coarse-grained mapping schemes

were used: the amino acid mapping as used by Yang et al.

(2009) and our MARTINI-bead approach. A first comparison

can be made at the stage of form factor averaging. The smaller

the variation between the individual form factors being aver-

aged, the greater the reliability of the coarse-grained scat-

tering calculation. This is especially important for small

proteins or proteins of unusual structure or amino acid

content.

The bead scattering factors for all methionines in the library

are shown in Fig. 3. The data were computed with equation

(10). Deviations for the amino acid bead and the backbone

MARTINI bead at q = 0 are the result of the inclusion of N-

terminal amino acids, which contain two additional hydrogen

atoms. Since the hydrogen scattering with the displaced-

solvent correction is negative for low q, the corresponding

bead scattering factors for low q are below the majority of the

curves.

The calculated form factors for the amino acid beads show a

large variation (Fig. 3a), whereas the form factors of the finer

MARTINI beads are more homogeneous (Figs. 3b and 3c).

When the two MARTINI beads (backbone and side chain) are

compared, the backbone bead scattering factors are more

heterogeneous, whereas the side-chain scattering factors are

remarkably well represented by the mean value.

To identify the structural origin of the variation in bead

scattering factors, we clustered the protein library based on

their prevailing secondary structure. According to the classi-

fication of Oberg et al. (2003), the scattering factors of the

proteins that show a high percentage of �-helices and �-sheets

are shown in different colors (Fig. 3). The MARTINI back-

bone bead scattering factors clearly cluster into two groups

according to secondary structures. In contrast, the amino acid

beads do not show such a clear picture.

3.2. Calculation of difference scattering from coarse-grained
protein structures

The analysis of time-resolved WAXS experiments often

requires repeated evaluation of difference scattering from

many different trial structures and thus depends on fast but

reliable scattering calculations over a q range up to approxi-

mately 1 Å�1. In order to estimate the accuracy of difference

scattering calculations from coarse-grained structures, the

predicted difference scattering between the crystal structures

of human deoxy hemoglobin (PDB code 2hhb; Fermi et al.,

1984) compared with human carbonmonoxy hemoglobin
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Table 2
PDB structures used for the determination of the average bead form
factors.

PDB entry Atoms Amino acids MARTINI beads

1ARV 4845 336 682
1AVD 3854 247 555
1BP2 1842 123 276
1BPI 892 58 130
1COL 6006 394 804
1CSE 4827 337 685
1CSH 6765 435 952
1DHR 3527 236 493
1GAL 8700 581 1242
1HCB 3973 258 585
1HEL 1960 129 283
1HML 1946 123 277
1HRC 1672 104 236
1HRS 2775 174 385
1ISC 5852 384 862
1LPE 2364 144 310
1MOL 3124 188 440
1PNK 11708 750 1675
1PPN 3245 212 469
1RTP 4974 327 705
1SCS 3564 237 518
1SXC 4320 302 616
1THW 3031 207 445
1TOP 2466 162 338
1UBI 1231 76 163
1XYP 5636 378 856
1YMB 2411 153 343
2AAI 8212 529 1149
2CGA 7154 490 1022
2GST 7246 434 1036
2OHX 11278 748 1576
2PSG 5425 369 780
2SBL 25698 1614 3636
2ST1 3837 275 540
2TGA 3222 223 465
3EBX 920 62 139
3PGK 6376 415 878
3PTE 5163 347 728
4CMS 4854 320 704
4PEP 4672 325 679
6RAT 1857 124 273
7TIM 7556 494 1050



(PDB code 1bbb; Silva et al., 1992), as calculated with all-atom

and coarse-grained methods, are shown in Fig. 4. This model

system has already been used for time-dependent X-ray

scattering studies and high-quality data are available

(Cammarata et al., 2008). The amino-acid-based result devi-

ates considerably from the all-atom calculation for q >

0.4 Å�1, but the MARTINI coarse-grained calculation is

accurate for q < 0.75 Å�1. This finding is reasonable consid-

ering that the level of structural detail is highest in the all-

atom representation, reduced in the MARTINI coarse-

graining scheme and lowest in the amino acid approach. The

computation times for the three curves in general scale

approximately as 50 (all atom):1 (MARTINI):0.2 (amino acid

approach).

Comparing the model calculations with the experimental

difference scattering from Cammarata et al. (2008) shows that

the agreement between the structural model and the experi-

ment is excellent for q < 0.4 Å�1, but that the model fails for

higher q values. This is most likely because the crystal struc-

ture does not represent the solution structure of hemoglobin

very well (Cammarata et al., 2008). It is obvious that the

MARTINI coarse-grained calculations could be used for any

refinement algorithm to improve the agreement, but that the

amino acid approach would not contain enough structural

detail to achieve this. Conversely, such refinement schemes are

very likely to benefit from the reduced computational cost of

the MARTINI representation relative to the atomistic scat-

tering model.

The calculations shown in Fig. 4 include the displaced-

solvent term, but any excess electron density of the solvation

layer was neglected. This is reasonable when considering

difference scattering, as errors cancel to some degree when

taking differences. The data in Fig. 5 demonstrate this. The

difference scattering for three systems is shown: sperm whale

myoglobin (deoxy and carbonmonoxy state), human hemo-

globin (deoxy and carbonmonoxy state) and deinococcus

radiodurans phytochrome (Pr and Pfr state). These systems

were selected since they cover a wide range of magnitudes in

conformational change as shown by the root-mean-square

deviations of the respective structure pairs (cf. Fig. 5). The two

solution difference scattering curves for each test system are

computed by (i) considering the atomic scattering and the

displaced solvent [as formulated in equation (4)], and (ii)

additionally including the scattering due to the solvation layer.

The data were calculated using CRYSOL (Svergun et al.,
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Figure 4
Calculated solution difference scattering between human deoxy and
carbonmonoxy hemoglobin crystal models (2hhb–1bbb), compared with
experimental solution data from Cammarata et al. (2008). The cofactors
were not taken into account in the calculation. The experimental curve
has been scaled to the calculated data at q = 0.18 Å�1.

Figure 3
Form factors calculated with displaced solvent for all methionines in the
library with amino acid (a) and MARTINI bead (b), (c) coarse-graining.
Bead form factors are colored according to the prevalent protein
secondary structure motif (blue: �-helical proteins; green: �-sheet
proteins; gray: unique assignment not possible). The red curves represent
the average over all individual form factors.



1995), with its highest resolution (L = 50) and default para-

meters for the solvation shell and displaced solvent (Svergun

et al., 1995). The program approximates the solvation layer

effect by assuming a uniform electron distribution around the

protein that differs from bulk water by +10%, which is known

to be inaccurate in the high-q region (Park et al., 2009).

However, the simple solvation layer treatment in CRYSOL

can be used as a prototype to estimate the effect of a solvation

layer model on the calculation of difference scattering. It is

evident that the calculation with displaced solvent is in good

agreement with the one that additionally models the solvation

layer scattering for all three test systems.

3.3. Reliability of absolute X-ray scattering calculated from
coarse-grained protein structures

We now turn our attention to assessing the accuracy of the

calculations of absolute X-ray scattering from coarse-grained

structures. Fig. 6 shows the effect of coarse-graining on X-ray

scattering calculations for a hen egg-white lysozyme [PDB

code 6lyz (Diamond, 1974); Fig. 6(a)] and human carbon-

monoxy hemoglobin [PDB code 2hhb, Fig. 6(a)]. These

structures are not part of the protein structure library used to

derive the coarse-grained form factors. For both structures, the

agreement between the all-atom calculation and the coarse-

grained calculations are good for low q and start to become

worse at higher q. As expected, coarse-graining according to

the MARTINI scheme agrees with the all-atom calculation to

higher q than the amino acid approach. To quantify this

agreement we use the average relative squared error in the

range from 0 to q(N) with N being the number of data points

in the respective range:

error ¼
1

N

XqðNÞ
q¼0

ðSaa � ScgÞ
2

S2
aa

: ð12Þ

The dotted lines in Fig. 6 mark the maximum q value for the

coarse-grained calculations (qthreshold), for which the error

[equation (12)] is smaller than 0.2%. The error limit of 0.2% is

arbitrary but was chosen with respect to the absolute scat-

tering curves of hen egg-white lysozyme (Fig. 6a). For hen egg-

white lysozyme and human carbonmonoxy hemoglobin, the

qthreshold values are 0.31 and 0.25 Å�1, respectively, for the
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Figure 6
(a) Determination of qthreshold (see text for details) for reliable coarse-
grained calculation of protein X-ray scattering for hen egg-white
lysozyme (PDB code 6lyz) and carbonmonoxy hemoglobin (PDB code
2hhb). The cofactors were removed before evaluating the scattering. (b)
For each structure of the protein structure library, the maximum q value
with an error lower than 0.2% [according to equation (12)] was
determined. The histogram illustrates the distribution of these qthreshold

values for both coarse-grained methods (amino acid and MARTINI).

Figure 5
Solution difference scattering of three model systems with different
magnitudes of conformational changes calculated with CRYSOL
(Svergun et al., 1995). The root-mean-square deviations (rmsd) for the
respective conformers are shown in the panels. To evaluate the effect of
displaced solvent and solvation layer scattering, two difference curves are
shown: (i) atomic X-ray scattering with displaced solvent and (ii) atomic
X-ray scattering with displaced solvent and solvation layer. The following
structures were used (PDB codes in brackets): sperm whale deoxy
myoglobin (2g0v, second state; Aranda et al., 2006), sperm whale
carbonmonoxy myoglobin (2g0r; Aranda et al., 2006), human deoxy
hemoglobin (2hhb) and human carbonmonoxy hemoglobin (1bbb); these
structures were used without cofactors. The deinococcus radiodurans
phytochrome solution structures were taken from Takala et al. (2014).



amino acid approach and 0.48 and 0.47 Å�1, respectively, for

the MARTINI bead approach.

The qthreshold [equation (12)] values for the amino acid and

the MARTINI approach for all proteins in the library are

depicted as a histogram in Fig. 6(b). It is evident that the

MARTINI coarse-grained calculations provide a wider q

range (on average 0.53 Å�1) compared with the amino acid

bead approach (on average 0.27 Å�1). This shows that the use

of MARTINI beads significantly extends the range in which

scattering can be reliably calculated compared with amino

acid coarse-graining.

We note that the results presented in Fig. 6 do not include a

model of the solvation layer around the protein. A number of

sophisticated methods to incorporate this are already avail-

able, and this is critical for comparison with absolute experi-

mental SAXS/WAXS data (Grishaev et al., 2010; Park et al.,

2009; Bardhan et al., 2009). However, the underlying physics,

which is that a coarser representation of structure leads to a

loss in resolution, is well captured in the model that was used

to compute the data shown in Fig. 6.

4. Discussion

The increasingly popular method of time-resolved WAXS

requires advanced computational structural refinement

schemes. In this paper, we have shown that coarse-graining the

structures leads to a loss of accuracy at wide angles. Thus,

when choosing the coarseness of the structural model,

computational cost should be carefully balanced against the

accuracy needed, a decision which critically depends on the q

range of interest. For the case of human hemoglobin presented

above, high-resolution crystal models deviate from experi-

mental solution data for q > 0.4 Å�1. Thus a MARTINI

representation and scattering model would be suitable for

interpreting the available difference data up to q = 0.75 Å�1.

To the best of our knowledge, there are three refinement

schemes for time-resolved X-ray scattering experiments of

proteins. Ahn et al. (2009) have successfully applied a biased

molecular dynamics simulation to time-resolved X-ray scat-

tering data, Andersson et al. (2009) and Ahn et al. (2009)

moved rigid bodies, and Kim, Lee et al. (2012) used ab initio

determination of the three-dimensional structure. For these

three approaches, a large number of X-ray scattering calcu-

lations had to be performed and this was the limiting factor in

the studies. A treatment of larger proteins becomes prohibi-

tively expensive. The MARTINI coarse-grained calculations

offer a good compromise between accuracy in the X-ray

scattering calculation and computational speed. The compu-

tation of X-ray scattering from coarse-grained protein struc-

tures on the MARTINI level is 50 times faster than the

corresponding all-atom calculation (around 7–8 atoms go into

the average MARTINI bead, 72 = 49). This speed-up could

break new ground for applying difference scattering-assisted

structural refinement to larger proteins.1

When many trial structures are to be evaluated, using

computationally demanding state-of-the-art methods to

account for solvation effects is not feasible. We show here that

less sophisticated solvation treatment can be used to reliably

model difference WAXS. This is rationalized by the fact that

the shape of the solvent shell does not change very much

between different protein conformations, and that its contri-

bution to the scattering simply cancels out in the difference

scattering. Another advantage of using difference scattering as

an experimental observable is that it is free of experimental

artifacts stemming from incorrect subtraction of scattering

from the buffer and the capillary. This means that the

discrepancy between calculation and experiment significantly

diminishes compared with standard SAXS/WAXS.

5. Conclusion

The speed of computations of X-ray scattering from

(bio)molecules can be controlled by coarse-graining the

underlying structures. Our results provide the basis for

matching the level of coarse-graining with the required reso-

lution. When the beads contain entire amino acids and for the

finer MARTINI scheme, we estimate reliability q ranges of 0–

0.3 Å�1 and 0–0.5 Å�1, respectively. The MARTINI coarse-

grained model thus covers the q range available in standard

SAXS experiments and is 50 times faster than the all-atom

calculation. When difference X-ray scattering is analyzed, for

example, in time-resolved SAXS/WAXS, the reliability q

range is significantly extended to 0.75 Å�1, which we showed

for the model system human hemoglobin. We anticipate that

the increased efficiency in computation of protein X-ray

scattering will enable more comprehensive structural analyses

in the growing field of time-resolved difference X-ray scat-

tering of proteins.
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