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Abstract: Families of symmetric, ionic, tetracatenar mesogens are described based on a rigid, N-
phenylpyridinium core, prepared as their triflimide, octyl sulfate and dodecyl sulfate salts for a
range of terminal chain lengths. The mesomorphism of the individual series is described before a
comparison is drawn between the different families and then more broadly with (i) neutral tetra-
catenar materials and (ii) related bis(3,4-dialkoxystilbazole)silver(I) salts. For the octyl and dodecyl
sulfates and the related triflates reported earlier, a SmA phase is seen at shorter chain lengths, giving
way to a Colh phase as the terminal chain lengthens. For the alkyl sulfate salts, an intermediate
cubic phase is also seen and the terminal chain length required to cause the change from lamellar to
columnar mesophase depends on the anion. Furthermore, there is an unexpected and sometime very
large mesophase stabilisation seen on entering the columnar phase. All of the triflimide salts show a
rectangular columnar (ribbon) phase.

Keywords: liquid crystal; ionic; polycatenar; ionic liquid

1. Introduction

The first formally ionic liquid crystals can be traced back to the work of Heinz in the
mid-19th century with magnesium tetradecanoate [1], followed (inevitably) by work on
other metal carboxylates from Vorländer [2]. Through systematic studies of carboxylate
salts starting in the late 1950s [3] and of alkylammonium halometallates in the 1970s [4],
ionic liquid crystals eventually collided with the burgeoning field of ionic liquids, along
with the first reports of mesomorphic imidazolium salts in the mid-1990s [5]. The field has
now expanded significantly and ionic liquid crystals are a unique class of materials as they
combine the properties inherent to ionic liquids with the long-range anisotropic order of
liquid crystals.

Of contemporary interest in liquid crystal science are the observations that come from
combining, in the same molecular system, functionalities that drive self-organisation by
different or complementary mechanisms. For example, the self-organisation of polycatenar
materials is influenced strongly when both hydrocarbon and semi-perfluorocarbon chains
are incorporated into the same mesogen [6]. Equally, there is interest in multifunctional
liquid crystals and, for example, Kato et al. [7]. demonstrated that ionic liquid crystals
forming columnar mesophases can show temperature-dependent ion conductivity. Simi-
larly, liquid-crystalline viologens remain a topic of interest due to their redox behaviour
that can be combined with liquid-crystalline self-assembly to produce redox materials with
anisotropic properties [8–14].

Recently, we reported the synthesis and mesomorphism of some polycatenar ionic
mesogens based on N-phenylpyridinium triflates [15], noting related studies on calamitic
N-phenylpyridinium salts [8,16] and some wedge-shaped N-phenylpyridium salts [17]
by Lai et al. The study was prompted both by a wish to compare truly ionic polycatenar
mesogens with the polycatenar stilbazole silver(I) salts that we had reported over several
years, and also to investigate how the different driving forces for mesophase formation
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between ionic mesogens (electrostatics) and polycatenar systems (chain/core interfaces
and volumes) may be accommodated simultaneously. The study has since been extended
to salts with different anions, the results of which are now reported.

2. Results
2.1. Synthesis

The synthesis of the N-phenylpyridinium triflates was as reported previously, but
Figure 1 shows modifications that allowed access to the related triflimides and alkyl
sulfates. Thus, heating under reflux a LiTf2N-saturated methanol solution of a triflate (1-n)
for three hours followed by dropwise addition of water to the cooled solution led to the
precipitation of the triflimide salts (5-n) in 69%–83% yield (dependent on aliphatic chain
length) following extensive washing and drying. However, direct metathesis from triflate
was not effective for alkyl sulfates as 19F NMR spectroscopy showed that the exchange was
not complete. Therefore, a different route was devised in which the tetracatenar chloride
salt (2-n) was first obtained using a Suzuki-Miyaura protocol from N-(4-iodophenyl)-4-(3,4-
dialkoxyphenyl)pyridinium chloride (2-n). These chloride salts were not very soluble and
as such they were difficult to purify (satisfactory elemental analyses were never obtained).
However, when stirred with a saturated solution of the appropriate sodium alkyl sulfate in
hot methanol (shorter-chain cations) or hot ethanol/methanol (longer-chain cations) and
precipitating by dropwise addition of water, they led smoothly to the octyl sulfate salts 3-n
in yields of 66–82% and dodecyl sulfate salts 4-n in yields of 65%–87% following extensive
washing and drying. Analytical data for all new salts are found in Tables S1–S3.
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boronic acid pinacol ester, THF / H2O / EtOH (3:3:1), Na2CO3, [Pd3(OAc)6], SPhos, N2, 65 °C; (v) NaO3SOCpH2p+1 / MeOH / 
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Figure 1. Preparation of the target salts; in all cases n = m. (i) AgOTf, DMF, 70 ◦C; (ii) 3,4-dialkoxybenzene boronic acid
pinacol ester, THF/H2O (1:1), Na2CO3, N2, [Pd3(OAc)6], SPhos, 65 ◦C; (iii) LiTf2N/MeOH/∆; (iv) 3,4-dialkoxybenzene
boronic acid pinacol ester, THF/H2O/EtOH (3:3:1), Na2CO3, [Pd3(OAc)6], SPhos, N2, 65 ◦C; (v) NaO3SOCpH2p+1/MeOH/∆
(p = 8 or 12).

2.2. Mesomorphism of the Octyl Sulfate Salts (3-n)

The mesomorphism of these and the other salts under study was investigated by
first examining the phase behaviour using polarised optical microscopy. Thus, the phase
diagram of the octyl sulfate salts, 3-n, is presented in Figure 2, their transition temperatures
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are collected in Table S4 and optical textures are found in Figure 3. In common with the
triflate salts 1-n, the shorter-chain homologues melted (3-6 at 93 ◦C and 3-8 at 81 ◦C) to give
a SmA phase, readily identified by its optical texture that showed a characteristic focal conic
fan texture, which persisted to clearing points of 130 and 101 ◦C, respectively. Perhaps
unsurprisingly given the greater volume occupied by the anion and its flexibility, the
melting points of these octyl sulfate salts was a little lower than those of the corresponding
triflates. When the cation terminal chain reached ten carbons, the range of the SmA phase
reduced to 7 ◦C and a cubic phase was seen above it which persisted to the clearing point at
121 ◦C and which was characterised by its isotropic nature and elevated viscosity compared
to the SmA phase. SmA and cubic phases were seen also for 3-12 with ranges of 5 and 12 ◦C,
respectively, but then the cubic phase gave way to a columnar phase at 106 ◦C that persisted
to the clearing point at 183 ◦C. At 3-14, neither the SmA nor the cubic phase was observed,
and the salt simply melted directly to the columnar phase at 83 ◦C, persisting through
to clearing at 189 ◦C. Interestingly, none of the salts crystallised on cooling; rather they
formed a glassy mesophase, with the glass transition being observed by DSC (Figure S6).
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Pseudo focal-conic textures with spine-like defects were observed for the colum-
nar phase formed by compounds 3-14 and 3-12 (Figure 3c shows the texture for 3-12),
suggesting strongly that the phase has hexagonal symmetry.
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The mesophases were investigated further by small-angle X-ray scattering (SAXS) and
the data are collected in Table S5. The SmA phases of 3-6 and 3-8 showed characteristic (001)
reflection (with additional (002) for 3-6) with accompanying diffuse, wide-angle reflection,
and the observed d-spacings (26.4 and 28.7 Å for 3-6 and 3-8, respectively) were shorter
than the length of the cation (e.g., 38.9 Å for 3-8 as determined from the X-ray single crystal
structure of 1-8 [15]). It was only possible to stabilise 3-10 in its cubic phase and here two
reflections were observed, a strong one corresponding to a spacing of 30.5 Å and a much
weaker shoulder at a spacing of 26.6 Å. It has not been possible to index these with any
confidence and the absence of higher-order reflections precludes the identification of a
space group.

SAXS data for 3-14 showed two reflections at spacings of 33.1 and 19.1 Å, which
indexed as the (10) and (11) reflections of a hexagonal plane group and were consistent
with the predictions from optical microscopy. Unfortunately, the (11) reflection was not
observed for 3-12, but identification of the phase as having hexagonal symmetry was
confirmed, as the columnar phases of 3-12 and 3-14 were found to be co-miscible.

2.3. Mesomorphism of the Dodecyl Sulfate Salts (4-n)

The phase diagram of the corresponding dodecyl sulfate salts, 4-n, is presented in
Figure 4 with the data collected in Table S6. The overall pattern of behaviour mirrors that of
the octyl sulfate salts, namely a progression from a lamellar phase to a columnar phase with
increasing terminal chain length, but there are aspects of detail that are different. Thus, on
heating 4-6, the solid melts at 93 ◦C to a SmA phase which gives way almost immediately
(95 ◦C) to a cubic phase which persists for 20 ◦C when a SmA phase is reformed that
eventually clears at 133 ◦C. This unusual mesomorphism was reproducible independent
of heating rate, although it is interesting that the cubic mesophase was never observed
on cooling from the isotropic liquid and a SmA glass eventually forms on cooling. Salt
4-8 also melts to a SmA phase (83 ◦C), but this time more conventional behaviour was
observed and a cubic phase was observed from 101 to 110 ◦C. The mesomorphism of 4-10
and 4-12 were dominated by the formation of a Colh phase, with 4-10 also showing a cubic
phase and neither showing a SmA phase. The clearing points of the Colh phases were very
much higher than those of the cubic or SmA phases. Phases were once more identified
by optical microscopy (Figure 5) and once more, pseudo focal-conic textures with spine
defects were observed on cooling compounds 4-10 and 4-12 from the isotropic liquid to
identify the hexagonal phase as columnar. Figure 5a shows the square edges of the cubic
phase growing in from the Colh phase in 4-10.
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Colh phase formed by compound 4-12 at 172 ◦C.

X-ray diffraction data for series 4-n are collected in Table S7. A single reflection was
observed in the diffraction patterns of compounds 4-6 and 4-8 that is consistent with the
formation of a SmA phase. The observed spacings of 26.8 and 28.8 Å, respectively, are all
but identical to those of the corresponding octyl-sulfate salts and show that the anion does
not have an effect on the layer spacing. Compounds 4-10 and 4-12 both showed the (10)
and (20) reflections of the hexagonal phase with the (11) reflection also being observed for
4-10 (Figure 6). For the cubic phase of both 4-8 and 4-10, two small-angle reflections were
found but once more there were insufficient data to begin to assign the space group.
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On comparing the phase diagrams of the octyl sulfate and dodecyl sulfate materials
(series 3-n and 4-n, respectively), it becomes apparent that the transition to Colh mesomor-
phism takes place at a shorter alkoxy chain length for the dodecyl sulfate materials. The
melting points remain broadly similar across both series so that the additional methylene
groups of the dodecyl sulfate anion are not sufficient to destabilise the crystal phase further.
In addition, compounds 3-n and 4-n display a similar trend in their clearing points in
that the SmA phases formed at short terminal chain lengths are steadily destabilised on
increasing terminal chain length; then, at the transition to Colh mesomorphism, the clearing
point increases dramatically.
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2.4. Mesomorphism of the Triflimide Salts (5-n)

For some time, there was a perception that triflimide would tend to suppress liquid
crystal phase formation in ionic systems and perhaps the origin of this thought is that
where the cation is small, for example in imidazolium salts, the size of the triflimide
anion is destabilising as it will compromise structural anisotropy. However, where the
anion is larger, for example with viologens [8–14] or 3-phenyl-1,2,4-triazines [18,19], then
triflimide will indeed support liquid crystal behaviour. Therefore, the triflimide salts of
these N-phenylpyridium cations were prepared and their mesomorphism is now described.

The phase diagram is presented in Figure 7 (with the data collected in Table S8) and
shows that all homologues from 5-8 to 5-14 were mesomorphic, while 5-4 simply melted
directly to an isotropic fluid. All compounds exhibited the same liquid crystal phase which
presented a slightly odd, spherulitic texture that corresponded neither to a SmA nor a Colh
phase. In fact, only on cooling extremely slowly from the isotropic liquid (at 0.1 ◦C min−1)
could any clear textures be obtained, which showed large pseudo focal-conic defects that
would normally be associated with a columnar mesophase. Contact preparations between
the triflimide salts and the SmA and Colh phases of the triflate series showed a miscibility
gap, so failing to provide any evidence as to the identity of this mesophase (see Figure 8c,d)
for photomicrographs of these miscibility studies).
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Figure 7. Structure and phase diagram of the tetracatenar triflimide salts, 5-n.

The melting points of the mesomorphic homologues were comparable to those of
the triflate salts and remained fairly constant across the series (Table S9), while a small
accompanying decrease in the clearing point was seen, so that the mesophase range reduced
from 44 ◦C in 5-8 to 36 ◦C in 5-14. Compounds 5-8 to 5-14 melted into a mesophase with
an odd spherulitic texture (Figure 8a) at normal cooling rate that corresponded neither
to a SmA nor a Colh phase. A clearer texture showing large, pseudo focal-conic defects
typical of a columnar phase was obtained on much slower cooling from the isotropic liquid
(Figure 8b). Contact preparations between the triflimide salt 5-8 and the SmA phase of 1-12
or with the Colh phase of 1-18 showed a miscibility gap as did a similar contact preparation
with the SmA phase of a phenyl-1,2,4-triazolium triflimide [19], so failing to identity this
mesophase (Figure 8c,d).

While optical microscopy could not identify the phase unequivocally, X-ray methods
gave more insight and, on prolonged exposure, an additional medium-angle reflection
could be observed (Figure 9), which could be indexed as the (11) reflection of a rectangular
system, the low intensity likely reflecting weak correlations in this dimension. As the data
show (Table 1), indexed in this was the a-dimension of the lattice increases with increasing



Molecules 2021, 26, 2653 7 of 12

terminal chain length (47.6 Å for 5-8 to 65.6 Å for 5-14), while the b-dimension remains
effectively constant at 10.8 ± 0.1 Å. Unfortunately, the small number of reflections does not
allow the plane group to be identified.
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Figure 8. Photomicrographs of the Colr phase formed by compound 5-8: (a) cooling from the isotropic
liquid at 10 ◦C min−1 at 158 ◦C, (b) slow cooling of the same compound at 0.1 ◦C min−1 at 159 ◦C,
(c) miscibility gap between this phase and the Colh phase of the OTf compound 1-18 (5-8 is bottom
left and 1-18 is top right) and (d) miscibility gap between the phase of 5-8 (top and left) and the SmA
phase of the OTf compound 1-12 (right).

Table 1. Diffraction data for series 5-n.

n dobs/Å hk Parameter/Å

8 23.8 20 a = 47.6
11.8 40 b = 10.9
10.6 11
8.8 60
5.3 halo

10 27.0 20 a = 54.0
13.5 40 b = 10.9
10.7 11
9.0 60
5.3 halo

12 29.9 20 a = 59.8
15.0 40 b = 10.7
10.5 11
10.0 60
5.3 halo

14 32.8 20 a = 65.6
16.4 40 b = 10.7
10.6 11
5.3 halo
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3. Discussion

The factors that control mesomorphism can be many and how they tension against
one another from material to material can vary greatly. Therefore, to begin the discussion it
is useful to recall the behaviour of the tetracatenar N-phenylpyridinium triflates (1-n) [15]
(Figure 10) and first consider their behaviour in the light of that of neutral polycatenar
liquid crystals. Thus, shorter-chain homologues of 1-n show a SmA phase rather than the
SmC phase seen in neutral analogues, which was rationalised by two factors. First were
the strong electrostatic attractions between neighbouring anions and cations that stabilise
self-organisation into layers and, indeed, the SmA phase is the most common (and often the
only) mesophase seen for calamitic ionic mesogens. Second is that the effective molecular
core volume is increased by the presence of the associated anion. This acts to cancel out
the imbalance between core and chain cross-sectional areas at their interface, therefore
removing the need for the mesogens to tilt in order to self-organise into layers (see the
following references for a detailed discussion of driving forces in the mesomorphism
in polycatenar liquid crystals [20,21]). These factors combine to allow the molecules to
self-organise with their long axes orthogonal to the layer normal (the SmA phase) rather
than having to tilt. It is then only at much longer chain lengths (n ≥ 14) that the lamellar
phase can no longer be supported and a columnar phase is observed instead.
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Although in cross-section the alkyl sulfate anions are reasonably similar to triflate, it
is noticeable that, while in the triflate salts the Colh phase (indicative of surface curvature)
appears at n = 14, for octyl sulfate the lamellar phase is lost at n = 10 where a cubic phase is
observed; for dodecyl sulfate, a cubic phase appears at n = 6. As such, there is a different or
additional effect of the alkyl sulfate chains that affects the phase behaviour. In a detailed
SAXS study of the mesomorphism of mono-alkoxy-stilbazole complexes of silver(I) with
dodecyl sulfate anions for which a cubic phase is seen between a SmC and a SmA phase,
the analysis led to the conclusion that the dodecyl chain extended alongside the cation and,
importantly, beyond the rigid stilbazole core [22]. This conclusion was later demonstrated
via the X-ray single crystal structure of related complexes that contained the dodecylene-
1,12-disulfate anion [23]. The effect of this is that the anion chain contributes to the volume
of the terminal chain and so leads to the disruption of lamellar phases at shorter terminal
chain lengths on the cation. In fact, with the slightly shorter core of 4-phenylpyridine
compared with stilbazole, this also occurs with octyl sulfate, too (length of the octyl sulfate
anion is 11.3 Å [24], while half of the length of the phenylpyridinium cation is 8.4 Å [15]).
Thus, both octyl sulfate and dodecyl sulfate anions promote the formation of a cubic phase
in the N-phenylpyridinium salts in a manner analogous to that in the stilbazole complexes
of silver(I) dodecyl sulfate. The longer dodecyl sulfate anion contributes even more to the
terminal chain volume and so the cubic phase is seen at a shorter terminal chain length.

The other significant feature of note in these materials is the very significant mesophase
stabilisation that is found within the homologous series when the columnar phase is
introduced. Thus, for 3-n the clearing point increases as 110 ◦C (n = 8, Cub-Iso), 159 ◦C
(n = 10, Colh-Iso), 189 ◦C (n = 12, Colh-Iso), while for 4-n the equivalent trend is 110 ◦C
(n = 8, Cub-Iso), 159 ◦C (n = 10, Colh-Iso), 183 ◦C (n = 12, Colh-Iso). Recall also that
for 1-n, the clearing point jumped suddenly from 141 ◦C (n = 13, SmA-Iso) to 210 ◦C
(n = 14, Colh-Iso) [15] and that this contrasts markedly with the behaviour of neutral,
polycatenar materials (see Supplementary Information in reference 15). Indeed, revisiting
the behaviour of the tetracatenar stilbazole complexes of silver(I), the same effect is seen
even if the differences in clearing point are a little more modest [25].
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As noted previously, lateral substituents have little effect on the phase diagrams of
neutral, polycatenar compounds [26,27], although in reality the anions being considered
here are very much bigger than the lateral substituents that are referenced. Nonetheless and
as discussed, there is a strong tendency for rod-like ionic mesogens to form SmA phases,
yet as well as stabilising the lamellar phase electrostatically, sterically they will act to
destabilise it, and so there is a balance of two opposing factors. It was concluded therefore
that on entering the columnar phase the destabilising effect of the anion is lost and the
cation-anion pairs are more readily accommodated from a packing point of view, reflected
in the phase stabilisation. As such, it is possible to conclude that the large difference in
phase stability is due to the anion acting to destabilise the lamellar phases. Moreover, the
fact that the same stabilisation is not found for the cubic phase when compared to the Colh
phase may suggest that the local organisation in the cubic phase is closer to that in the
lamellar than in the columnar phase.

Now considering the triflimide salts 5-n, the mesomorphism is different again and
the X-ray data would appear to point to the formation of a mesophase of rectangular
symmetry. Triflimide is much less flexible when compared to alkyl sulfates and somewhat
more ‘board-shaped’ and much more charge-dispersed when compared to triflate. This
last factor may be significant as the more dispersed electrostatic attraction may stabilise
the SmA phase less well to allow the formation of the columnar phase, which in this case
has rectangular plane symmetry. This is turn may result from the different nature of the
packing of cation and anion on account of the shape of the anion, allowing the formation
of the ribbon structure that characterises rectangular phases such as Colr, SmÃ and B1.

It is then instructive to perform a second comparison of compounds 1-n, 3-n and 4-n
with related silver stilbazole complexes 5-n (Figure 11) to which they bear significant struc-
tural similarity and whose phase diagrams are found in the Supplementary Information
(Figures S11 and S12).
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The first thing to note is that none of these complexes shows a lamellar phase and
the phase diagrams show cubic and columnar organisation only. For the alkyl sulfate
complexes, conductivity measurements showed that the complexes exist as tight-bound ion
pairs and so in some ways they are more akin to neutral materials. For reasons discussed in
detail elsewhere, [22] it is clear that there is intermolecular electrostatic attraction, but the
absence of a lamellar phase suggests that it is likely to be weak, so that steric factors win
out totally and a cubic phase is seen at shorter chain lengths. However, another significant
factor is likely to be that, as evidenced by single-crystal X-ray structures for octyl sulfate [24]
and triflate salts, [28] the complexes exist as dimers with the anions acting as a bridge
between the two silver cations. Thus, in the phase diagram of 5b-n, there is once more a
significant phase stabilisation on introduction of the columnar phase, which is mirrored in
5c-12 (the only homologue prepared for this anion), whereas the phase diagram for 5a-n
shows a much more modest stabilisation of the columnar phase. This observation would
imply that the triflate is better ‘tolerated’ sterically in the dimeric arrangement within
the cubic organisation which, as concluded above, is closer to that in the lamellar phase
compared to the columnar phase.
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4. Conclusions

The mesophase behaviour of these ionic, tetracatenar N-phenylpyridinium salts is
remarkable for a variety of reasons. They represent extremely rare examples of ionic
tetracatenar mesogens and, effectively, unique examples of tetracatenar mesogens showing
a SmA phase, which behaviour is seen with triflate and alkyl sulfate anions. Perhaps
the most intriguing feature of their phase behaviour is the observation that the columnar
hexagonal phases of these salts are very much more stable than that of the SmA phases,
with some very sharp increases in clearing point observed. It is argued that this in fact
arises from a destabilisation of the lamellar phase consequent on the presence of the
anion, which acts as a destabilising lateral group. That said, these effects are evidently
subtle, for when the anion is changed to triflimide the ribbon-like Colr phase is seen for
all homologues studied, showing that in these salts the simple lamellar phase cannot be
stabilised. This argument is supported further by comparisons with the silver stilbazole
salts where reduced intermolecular electrostatic attractions precludes the formation of
lamellar phases. Further, the better steric tolerance of the smaller triflate anion on account
of the dimeric structure of the silver salts results in a smaller stabilisation on entering the
columnar phase.

As such, these salts show a delicate interplay between electrostatic interactions, charge
density and the steric effects of accommodating both anions in relation to their cations
and terminal chains in relation to their cores. Therefore, the study of liquid crystals
with multiple competing organisational requirements represents a fertile area for study
rewarded by the possibility of unanticipated observations.

Supplementary Materials: The following are available online, Experimental details; thermal and
X-ray data and a selection of figures.
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