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Abstract

Purpose

The noninvasive monitoring of mild hyperthermia or thermal ablation is important to guaran-

tee therapeutic safety and efficacy. The potential of ultrasound B-mode image texture fea-

tures in monitoring temperature or coagulation zones studied in this article.

Materials and methods

The experiments carried out on eighteen in vitro porcine liver samples heated from 20˚C to

60˚C in the water bath. The ultrasound radiofrequency signal at different temperature col-

lected to reconstruct B-mode ultrasound images. The texture features based on gray level

histogram (GLH), gray level co-occurrence matrix (GLCM), and gray level-gradient co-

occurrence matrix (GGCM) extracted, respectively. Accordingly, we analyze the correla-

tions between these texture features and temperature based on the experiment results.

Results

The results showed that five texture feature parameters closely related to temperature,

including mean gray scale of GLH, homogeneity of GLCM, hybrid entropy, inverse differ-

ence moment, and correlation of GGCM. Some of these feature parameters have correla-

tion coefficients larger than 0.9 within the temperature range of 20˚C to 60˚C.

Conclusions

The above-mentioned five feature parameters expected to apply for noninvasive monitoring

of MH or TA.

1. Introduction

Hyperthermia has become a new technology for tumor treatment in recent years, which

divided into mild hyperthermia (MH) and thermal ablation (TA). The MH heats the tumor to
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42–45˚C and maintains for certain time to inhibit tumor growth, which commonly used as an

adjuvant to radiotherapy or chemotherapy [1]. The TA generates a locally high temperature

(> 60˚C) in a short time to make coagulative necrosis of tumor tissues for in-situ inactivation

or partial eradication [2]. However, unlike the conventional open surgery in which the tumor

is visible during treatment. MH or TA requires imaging equipment to monitor the effect of

treatment and inform the physician of whether the tumor treated or not. Compared with MRI,

the Ultraonud (US) has the advantages of low cost, real-time data acquisition and processing

capability, and good human-body penetrability. Therefore, ultrasonic techniques have been a

hot topic in the research field of noninvasive thermal therapy monitoring [3]. Ultrasonic mon-

itoring of hyperthermia includes two aspects, i.e., temperature, and coagulation zones or ther-

mal lesions. The MH monitoring deals with temperature estimation only, while the TA

monitoring requires both temperature estimation and thermal lesions detection. Ultrasonic

monitoring techniques employ acoustic parameters mainly based ultrasound elastography [4]

and backscattering features [5–7], These acoustic parameters may be closely related with the

temperature range in conventional hyperthermia (42–45˚C). However, at high temperature,

especially when the tissue coagulated, the echo shift and backscattered energy have little varia-

tion with the change of temperature, and consequently it is hard to monitor the temperature

change of TA based on the existing ultrasonic temperature monitoring techniques.

Fortunately, B-mode ultrasound images can be acquired to monitor treatments during the

entire procedure of hyperthermia [8], which are always used for the guidance of ablation thera-

pies [9]. Wang et al. [10] using texture feature of B-mode ultrasound images to find the differ-

ences between fresh and frozen-thawed ex-vivo porcine liver tissue shows that image texture

can be used for tissue characterization. Li et al [11] demonstrated that the mean gradient and

mean gray scale of B-mode ultrasound images increase with the increase of tissue temperature

during microwave ablation. They also proposed the possible use of B-mode ultrasound images

in noninvasive monitoring of temperature changes in hyperthermia. There is a strong correla-

tion between texture parameters of ultrasound images and tissue temperature. To deal with

the problem that most of the current ultrasonic hyperthermia monitoring methods are not

applicable for TA, this paper systematically studies the majority of texture parameters to

explore the most significant ones that used for noninvasive monitoring of both MH and TA.

To accomplish this goal and eliminate the impacts of ROI selection on texture parameters, the

temperature-controlled water bath heating experiments are conducted on account of the rea-

son that the water bath heating can achieve homogenous temperature field and coagulation.

2. Materials and methods

2.1. Experimental apparatus and data acquisition

As the porcine livers have similar compositions as human’s, they were chosen as the experi-

mental materials. Fresh porcine livers bought from a slaughterhouse; each of them cut into

two cubic samples (6×5×4 cm), as shown in Fig 1A. The schematic diagram of the experimen-

tal system shown in Fig 1B. Eighteen in vitro porcine liver samples applied, and each sample

thoroughly immersed in the solution to improve uniform heating. The ultrasound probe stabi-

lized by a holder and placed orthogonal to the porcine liver sample. Besides, the thermometer

inserted into the samples 1 cm deep. The system setup shown in Fig 1C. The ultrasound device

was TH-600 equipped with an original radiofrequency (RF) signal output port. The tempera-

ture range of the thermometer (TP3001, the length of probe was 150 mm, and the diameter of

probe was 21 mm) was from 0˚C to 200˚C, with the resolution of 0.1˚C. The thermostatic

water tank was HH-W21-600C from Beijing Changfeng Instrument Company, China, and the

temperature fluctuation and uniformity of the tank was within ±0.5˚C.
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The modified diagnostic ultrasound system consisting of one 128-element linear array

imaging probe at the central frequency of 3.5 MHz (TH-600, Teknova Medical Systems Lim-

ited, China) was utilized to capture RF signals backscattered by the samples and digitize RF sig-

nals at a sampling rate of 14MHz with the precision of 16 bits, as shown in Fig 2A. To obtain

the ultrasound image of porcine liver at a certain temperature, the water bath experiment con-

ducted. When the temperature reading of the electronic thermometer was the same as that of

the water tank thermometer, it assumed that the temperature inside the porcine liver became

uniform. To ensure the uniformity of temperature distribution, we used 5 minutes for the tem-

perature to rise by one degree Celsius in pre-warming, therefore, from 20˚C to 60˚C, it took

about 200 minutes for one sample in the whole experiment process. The ultrasound echo sig-

nal collected and stored in computer for further data analysis.

2.2. Fundamental physical mechanism

The physical properties of the tissue used in diagnostic ultrasound originates from scattering

processes. Tissue identification and clinical diagnosis performed by the observation of scat-

tered ultrasound [12]. The B-mode contrast observed from tissue is caused by physical phe-

nomenon called “ultrasound scattering”, and the scattering properties of tissues can be defined

quantitatively by using two statistical parameters, i.e., velocity fluctuation coefficient and cor-

relation length [13]. Ultrasound speed is correlate with tissue temperature. The ultrasound

transducers receive backscattered signals whose envelope results into B-mode images. B-mode

ultrasound image textures are form based on the differences among ultrasound absorption,

attenuation, and reflection in various tissue fibers. Therefore, the images of different tissues

Fig 1. Experimental acquisition of ultrasonic images for porcine liver tissues. (a) Measure the porcine liver tissue to control the size

of each sample. (b) The schematic diagram of the experimental system. (c) The set-up of the experimental system, when the temperature

reading of the electronic thermometer was the same as that of the water tank thermometer, the temperature inside the porcine liver

became uniform, and then the ultrasound echo signal collected and stored in the computer for further data analysis.

https://doi.org/10.1371/journal.pone.0266446.g001
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can show different special texture characteristics. Thermal effects caused by MH or TA may

result in hyperemia, vesicular, gasification, coagulation, carbonization, etc., as ablation contin-

ues. These effects further lead to the changes in tissue structures and properties. In short,

image textures can change during MH or TA. In the case that the B-mode image has tempera-

ture dependency, the image textures correlated with temperature.

2.3. Reconstruction of B-mode images

Medical ultrasound B-mode imaging is a popular detection method, which can clearly reflect

the cross-sectional anatomy of a tissue with important clinical value. As shown in Fig 2B, the

steps for the reconstruction of the ultrasound B-mode images from original RF signal are as

follows:

(1) Acquire the envelope of RF signal of each scan line. To reduce the data distortion due to

mathematical transformation, the most original method utilized to reconstruct the ultra-

sound image, i.e. using the maximum value of certain length of data to detect the envelope

instead of Hilbert and other mature algorithms. To improve the resolution of reconstructed

ultrasound image, the method of the maximization of 4 points used to obtain more image

texture information for analysis. The reconstructed image consists of 128 scan lines, each of

Fig 2. Reconstruction of B-mode images. (a) The ultrasound RF data of one frame B-mode image. (b) Reconstruction B-mode

ultrasound image of liver tissue at 20˚C during water-bath experiment which represented normal structure, and ROI was selected

manually from the images for each sample. (c) Steps for image reconstruction from ultrasound RF signals. (d) Reconstruction B-mode

ultrasound image of liver tissue at 60˚C during water-bath experiment which represented coagulated structure, and ROI was selected

manually from the images for each sample.

https://doi.org/10.1371/journal.pone.0266446.g002
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which has 512 sample points. B-mode images reconstructed from ultrasound echo envelope

and the envelope of each scan line calculated by the following formula:

bðiÞ ¼ maxðechoði � 1Þ � 4þ jÞ; 0 � j � 4; 0 � j � 512 ð1Þ

Where b(i) denotes the envelope, and echo(i) represents the RF echo. To obtain finer image

data, the experimental depth was set as half of the detection depth, the sampling depth of the

ultrasound device was 19.2 cm and the depth of the experimental setup was about 10 cm. The

first 2,048 points of the 4,096 points used to obtain more image texture information for

analysis.

(2) Conduct log compression and threshold detection. The depth of ultrasound RF data is

16-bit, the dynamic range of the envelope signal is therefore too large to be displayed. Loga-

rithmic compression can reduce the dynamic range of the envelope signal and retain the

original signal information to a certain extent. The 16-bit data was thus log-compressed to

8-bit data for display. After logarithmic compression, as the envelope value has to be limited

to the range from 0–255, threshold detection adopted for display, and threshold detection

calculated by using the following formula:

bðiÞ ¼
bðiÞ bðiÞ � Thresh

1 bðiÞ < Thresh

(

ð2Þ

where b(i) denotes the envelope, Thresh stands for the selected threshold, and the logarithmic

compressed values were mapped to the range of 0–255 according Formula 3 where b(max)
refers to the maximum amplitude of the data set.

bðiÞ ¼ Minf½bðiÞ=bðmaxÞ��256; 255g ð3Þ

As the dynamic range of the data was too large, some low-amplitude points were in black

after display, which stand for the speckle noise.

(3) Conduct median filter. In the process of ultrasound image reconstruction, due to the great

difference of acoustic impedance at the tissue boundary, the envelope shape showed obvi-

ous peaks, and its amplitude was generally larger. Some low-amplitude peaks usually form

speckle noise on B-mode ultrasound images. Although the removal of low-threshold signals

can suppress some speckle noise, it is possible to filter out the useful information. Because

these noises caused by some low-amplitude points and most of them were not from porcine

liver tissue, filtering out these noises had minor effect on the results. To make the ultra-

sound image clearer, the median filter used to reduce the noises and retain original RF

information. The reconstructed B-mode images of normal and coagulated structure shown

in Fig 2C and 2D respectively.

2.4. Extraction of image texture features

Texture is one of the important characteristics used in identifying and characterizing objects

or regions of interest in an image. The commonly-used texture analysis approaches are based

on the probability distribution of gray levels and the texture pattern properties. The features

measured from the first-order and second-order statistics. In this paper, temperature distribu-

tion of the samples was uniform due to utilization of the water bath system, and ROIs selected

randomly from the images for each sample as long as the ROI is within the tissue. The size and
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depth of ROIs have no impact on the experimental results due to the usage of linear array

imaging probe. ROIs selected manually. The result would suffer subjective interpretation and

possibly human errors. Regions of 16×16 pixels selected as ROIs on each reconstructed B-

mode image, as shown in Fig 2C and 2D, respectively. In this study, 3 gray level histogram

(GLH) based features, 16 texture parameters of gray level co-occurrence matrix (GLCM) at 4

directions, and 12 texture parameters of gray level-gradient co-occurrence matrix (GGCM)

were used for the analysis of temperature correlation.

2.4.1. Textural features based on the GLH. The GLH method applied to extracts the first

order statistical texture features describing the probability of occurrence of grey scale in an

image, and reflecting the periodicity and density of image texture structures. The three param-

eters that were analyzed include: the mean of the grey scale (MGS), variance (VAR) and

entropy (ENT); MGS describes the average grey level of a region so that it can provide a rough

idea of intensity; VAR is commonly known as ‘second moment’, which measures grey-level

contrast, and is useful for the description of relative smoothness. While ENT describes the ran-

domness of an image, which calculated by using the following formula:

ENT ¼
X

i

PiLog2Pi ð4Þ

Where Pi refers to the probability that the difference between two adjacent pixels is equal to

i, and Log2 is the base 2 logarithm.

2.4.2. Texture features based on the GLCM. GLCM extracts the second order statistics

from an image, which is widely used for texture classification [14]. Haralick [15] defined

GLCM as a matrix of frequencies at which two pixels, separated by a certain vector, occur in

the image. The distribution in the matrix depends on the relationship of angular (θ) and the

distance (d) between pixels. The variation of the vector used allows the capturing of different

texture characteristics. Once the GLCM created, various features computed from it, which

classified into four groups, i.e., visual texture characteristics, statistics, and information theory

and information measures of correlation [16]. Table 1 lists the four commonly used features.

Before calculating features, each GLCM matrix normalized through dividing each element by

the total number of elements. Therefore, each element (r,c) was the joint probability occur-

rence of pixel pairs which have a defined spatial relationship with grey level values r and c in

the image [17].

Table 1. Textural features calculated from the normalized co-occurrence matrix.

Feature Formula

Contrast XL� 1

i¼0

XL� 1

j¼0

ði � jÞ2Pði; jÞ

Correlation XL� 1

i¼0

XL� 1

j¼0

ði� mxÞðj� myÞPði;jÞ

sxsy

Energy XL� 1

i¼0

XL� 1

j¼0

P2ði; jÞ

Homogeneity XL� 1

i¼0

XL� 1

j¼0

Pði;jÞ
1þði� jÞ2

Where μx, μy, @x and @y are the means and standard deviations of Px and Py respectively, with Px is the sum of each

row and Py is the sum of each column in the co-occurrence matrix.

https://doi.org/10.1371/journal.pone.0266446.t001
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The normalized probability density p@(i,j) of the co-occurrence matrices can be defined as:

p
@
ði; jÞ ¼

#fjðx; yÞ; ðxþ d; y þ dÞj 2 Sjfðx; yÞ ¼ i; fðxþ d; y þ dÞ ¼ jg
#S

ð5Þ

where x,y = 0,1,. . . ..N-1 refer to the coordinates of the pixel, i,j = 0,1,. . . .L-1 represent the

grey levels, S stands for the set of pixel pairs which have certain relationship in the image, #S

denotes the number of elements in S, p@(i,j) is the probability density of the first pixel to have

intensity value i and the second j, which is separated by distance d = (dx, dy), and dx and dy

refer to the infinitely small changes in x and y directions respectively [17].

Seen from Eq 5, a GLCM is a matrix where the number of rows or columns is equal to that

of grey levels L in the image. In this study, the B-mode ultrasonic images were 8-bit grey level

images (256 grey levels), so L was set to 16 for texture differentiation, and d was set to 1 for a

better texture analysis. It hypothesized that a single GLCM is not enough to describe the tex-

tural features. For example, a single horizontal offset might not be sensitive to texture with a

vertical orientation. Therefore, GLCMs were created along four directions (α = 0˚, 45˚, 90˚,

135˚) of the ROI in this experiment. After that, each GLCM normalized and four parameters

(Contrast, Correlation, Energy and Homogeneity) were calculated.

2.4.3. Texture features based on the GGCM. The GGCM is the combination of the gray

level histogram and the edge gradient histogram, which reflects the correlation between gray

levels and gradients. Based on normalized GGCM, a series of quadratic statistical features can

be calculated, and the feature parameters based on the GGCM were selected, including small

gradient preponderance, large gradient preponderance, gray level nonuniformity, gradient

nonuniformity, energy, mean gradient, gradient mean square deviation, correlation, gradient

entropy, hybrid entropy, and inverse difference moment [18].

3. Results

In this study, the original ultrasound RF signals from 20˚C to 60˚C at the increment of 1˚C

collected to diminish device-dependent variances. 18 in vitro porcine liver samples were

applied, and the texture features of the reconstruction B-mode images under various tempera-

tures were extracted and analyzed for each sample. Besides ROIs selected at each experiment

and 31 image texture parameters obtained at this temperature, for example, at 20˚C. For each

case of experiment, the temperature dependence of each parameter calculated separately based

on individual differences. Correlation coefficient, generated by the Pearson product-moment

correlation used to measure the linear relationship between each parameter and temperature.

Statistical correlation coefficients were expressed as Average-Value ± Std for 18 experiments,

and Std represents the standard deviation of statistical correlation coefficients. All the coeffi-

cient values in the table are significant (p< 0.05), besides, the slopes of Average-Value are

around one, which considered as a good fit.

3.1. Correlations between GLH based texture features and temperature

The mean gray scale, standard deviation, and gray level entropy of tissue ultrasound B-mode

images at different temperature extracted. The correlation coefficients between the parameters

Table 2. Correlation coefficients (Average-Value ± Std) between the mean gray scale, standard deviation, and

gray level entropy of tissue ultrasound B-mode images with different temperature.

Texture parameters Mean gray scale Standard deviation Gray level entropy

Correlation coefficients 0.9186±0.0469 -0.7924±0.1357 0.8266±0.0811

https://doi.org/10.1371/journal.pone.0266446.t002
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and temperature shown in Table 2. The correlation coefficient between the mean gray scale

and temperature for 18 cases of experiments is 0.9186±0.0469, which is the largest among the

three GLH-based texture features. Fig 3A shows Average-Value ± Std of the mean gray scale

changes with temperature. The mean gray scale increases with temperature going up, indicat-

ing that the echo intensity rises when temperature increases.

3.2. Correlations between GLCM parameters and temperature

The angular second moment, contrast, entropy and correlation in the ROIs of tissue ultra-

sound B-mode images at four directions (0˚, 45˚, 90˚, 135˚) and under different temperature

were calculated. The correlation coefficients between the parameters and temperature shown

Fig 3. Changes of the B-mode ultrasound image texture features with temperature. (a) Average Value±Std of the mean gray scale

changes with temperature among the three GLH based texture features. (b) Average Value±Std of homogeneity in the direction of 45˚

changes with temperature among the sixteen GLCM based texture features. (c) Average Value±Std of correlation changes with

temperature among the twelve GGCM based texture features. (d) Average Value±Std of hybrid entropy changes with temperature

among the twelve GGCM based texture features.

https://doi.org/10.1371/journal.pone.0266446.g003
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in Table 3. The correlation coefficient between homogeneity in the direction of 45˚ and tem-

perature for 18 cases of experiments is 0.9167 ± 0.053, which is the largest among the sixteen

GLCM based texture features. As shown in Fig 3B, Average-Value±Std of homogeneity in the

direction of 45˚ changes with temperature. There is a negative correlation between the contrast

and temperature, which indicates that the contrast decreases with the increase of temperature.

Both the correlation and the energy have small correlations with temperature, that is, the

homogeneity has a good correlation with temperature. The homogeneity increases with tem-

perature. As the tissue becomes more and more coagulated, the B-mode image becomes more

homogeneous, which is consistent with experimental observation.

3.3. Correlations between GGCM parameters and temperature

The correlation coefficients between the GGCM parameters and temperature shown in

Table 4 of which the three largest ones for 18 cases of experiments include the correlation, the

hybrid entropy, and the inverse difference moment. They are 0.883±0.039, 0.931±0.054, and

-0.879±0.091, respectively, which are the largest among the twelve GGCM-based texture fea-

tures. Fig 3C and 3D show Average-Value±Std of correlation and hybrid entropy changes with

temperature respectively, both of them increase with temperature.

Correlation coefficients of five large texture feature parameters with temperature and the

mean P-value shown in Table 5. For all of these parameters, the mean and variance of this

parameter at each temperature calculated for 18 experimental results. The means used to fit

curves and the linear regression with temperature conducted by plotting the means and corre-

lation curves of these parameters. The statistical results mainly presented in the form of

pictures.

4. Discussion

Computerized algorithms for US imaging permit the detection of tissure interfaces or bound-

aries between anatomical structures and can provide temporal and spatial analysis for identify-

ing the patterns and characteristics indicative of conceptual definitions of pathologies

(elementary lesions). The US device performed the pre-processing of raw sound-wave signals

captured to manipulate the image prior to displaying it. Techniques include the time-gain

Table 3. Correlation coefficients (Average-Value ± Std) between gray level co-occurrence matrix (the angular second moment, contrast, entropy and correlation) at

4 directions (0˚, 45˚, 90˚, 135˚) of tissue ultrasound B-mode images with different temperature.

Angle Contrast Correlation Energy Homogeneity

0˚ -0.7949±0.109 -0.2574±0.213 0.6459±0.233 0.8377±0.089

45˚ -0.6499±0.152 0.4867±0.231 0.7698±0.101 0.9167±0.053

90˚ -0.5894±0.127 0.6867±0.138 0.7587±0.163 0.8514±0.103

135˚ -0.7642±0.193 0.5851±0.158 0.6987±0.212 0.8397±0.075

https://doi.org/10.1371/journal.pone.0266446.t003

Table 4. Correlation coefficients (Average-Value ± Std) between 12 texture parameters of gray level-gradient co-occurrence matrix of tissue ultrasound B-mode

images with different temperature.

Parameters Small gradient Large gradient Gray level nonuniformity Gradient nonuniformity

Coefficients 0.034±0.023 0.152±0.223 -0.841±0.095 -0.312±0.161

Parameters Gradient mean square deviation Correlation Gradient entropy Hybrid entropy

Coefficients -0.624±0.2031 0.883±0.039 0.339±0.179 0.931±0.054

Parameters Energy Mean gradient Inertia Inverse difference

Coefficients -0.797±0.112 0.171±0.105 0.610±0.203 -0.879±0.091

https://doi.org/10.1371/journal.pone.0266446.t004
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compensation of the US beam as a function of depth, edge enhancement applying filtering

techniques, fill-in interpolation, and magnification technique to improve spatial detail. Some

new methods developed to get organization physical information or diagnose disease through

raw sound-wave signals [19, 20]. Development of most ultrasound equipment is for better

imaging not for temperature estimation, this paper avoids the loss of information caused by

some imaging algorithms through RF data imaging, and the results obtained are more general.

Recently, there are many research reports about noninvasive temperature estimation in hyper-

thermia by B-mode ultrasound image processing. For example, Zhang et al. [21] showed that

the small gradient preponderance, hybrid entropy and mean gray scale had a good linear cor-

relation with temperature. Alvarenga et al [22] studied the correlation between the entropy

and the correlation of the grey-level co-occurrence matrix within the temperature from 27–

44˚C. Yang et al [23] found that some of the texture parameters correlated with the tempera-

ture acquired from microwave ablation. Despite these benign results, the measure on B-mode

images is highly sensitive to medium movements (even small) that are common in in vivo

applications. In this paper, the temperature distribution of the samples was uniform due to the

utilization of water bath system, it is robust and for the regions considered in our study it can

maintain similar results.

The main US disadvantage lies in its considerable dependence on the sonographer’s experi-

ence and the quality of the US device. At present, ultrasound computer-aided diagnosis sys-

tems developed for multiple clinical applications. With an initial emphasis on cancer [24],

ultrasound computer-aided diagnosis systems have extended into the diagnosis areas of inter-

est [25] such as segmentation of anatomical structures and lesions [26, 27]. This work system-

atically examined 31 texture features to explore the most significant ones that could use for

noninvasive monitoring of both MH and TA. As the results of the experiment, 5 parameters

were demonstrated, including mean gray scale of GLH, entropy of GLCM, hybrid entropy,

inverse difference moment, and correlation of GGCM. A linear relation observed when the tis-

sue heated inside the water bath. These texture features analyzed for further detection of solidi-

fication zone by using classification methods such as support vector machine and neural

network [27, 28].

The temperature range may not be large enough to simulate the condition of tissue abla-

tion. When we use radiofrequency ablation to induce the coagulative necrosis, the temperature

in the tissue can reach almost 100˚C. The current experimental design is therefore not applica-

ble to simulate the process of tissue ablation. The range of temperature used in this experiment

includes both normal and coagulation of tissue (60˚C). Despite the strong correlations

between some parameters and temperature within the range from 20–54˚C, their variation

with temperature from 54–60˚C became smaller, as shown in Fig 3B and 3D, respectively, this

could be possibly due to the fact that the in vitro porcine liver tissue coagulated at 54˚C. The

coagulation caused the texture to change more slowly with temperature. Therefore, the param-

eters that have strong correlations with temperature can be used as the characteristic parame-

ters for tissue characterization of damaged region after hyperthermia, which might offer a

Table 5. Correlation coefficients of five large texture feature parameters of ultrasound images with temperature and their mean P-value.

Parameters Mean gray scale Homogeneity at 45˚ Correlation

Coefficients 0.9186±0.0469 0.9167±0.053 0.883±0.039

Mean P-value 0.00 0.00 0.02

Parameters Hybrid entropy Inverse difference

Coefficients 0.931±0.054 -0.879±0.091

Mean P-value 0.01 0.02

https://doi.org/10.1371/journal.pone.0266446.t005
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potential pragmatic prospect for the practice of evaluating postoperative effect of hyperthermia

[29, 30].

One of the limitations of this study is that water bath cannot be used as the heating source

in clinical treatment. In that case, the feasibility of the image parameters found in the current

experimental configurations has to be further investigate and validated in clinical treatment.

Another limitation is that the current ultrasonic signal processing and analysis was imple-

mented offline. Therefore, the online processing should be realize to achieve noninvasive real-

time monitoring of hyperthermia. The changes in some feature parameters have found to

reflect the changes in tissue temperature during the heating procedure in this paper. In future

works, a mathematical model based on this relationship can be established and amended by

considering the influencing factors in practice. Temperature could acquire by using the model

once the feature parameters calculated from the B-mode ultrasound image.

5. Conclusion

In summary, a novel strategy to analyze the correlations between B-mode image texture fea-

tures and tissue temperature in hyperthermia developed for noninvasive monitoring of MH or

TA. According to the experiments with porcine liver heated by water bath, the texture features

parameters (mean gray scale of GLH, homogeneity of GLCM, hybrid entropy, inverse differ-

ence moment, and correlation of GGCM) extracted from tissue RF signal results displayed

dramatic relationship to temperature. Especially, some of these parameters achieved higher

than 0.9 correlation coefficients when the tissue temperature changes from 20˚C to 60˚C.

Overall, the obtained experimental results provided solid foundation for the correlation analy-

sis of B-mode image texture features and tissue temperature, and therefore exhibited great

potentials for developing effective noninvasive monitoring during clinical hyperthermia

treatments.
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