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Abstract

Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining
characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC) self-renewal
by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function
discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined
biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological
reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we
show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the
training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data:
,2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a
consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-
renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional
linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players
involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by
stem cell researchers (at http://StemSight.org) to explore hypotheses about gene function in the context of self-renewal and
to prioritize genes of interest for experimental validation.
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Introduction

Stem cells, uniquely characterized by their ability to self-renew

and differentiate, are a promising tool for biomedical research and

cell-based therapy. These special cells play pivotal roles in many

stages of normal organism development as well as tissue

homeostasis and repair [1]. The properties of ‘‘stemness’’ have

also been observed in unnaturally stem-like cells, including

artificially induced pluripotent stem (iPS) cells, immortalized cell

lines, and cancers [2–4]. A comprehensive, systems-level view of

pluripotent cell self-renewal processes will not only advance our

knowledge of stem cell biology, but also facilitate the development

of safer biomedical applications.

During development, gene expression profiles change continu-

ously as stem cells rapidly proliferate, differentiate, and commu-

nicate with each other. Terminally differentiated cells have more

stable gene expression profiles that reflect their distinct roles within

tissues and organs; the molecular composition of these mature cells

differs dramatically depending on cellular function [5]. To manage

complexity and minimize confounding factors, most mammalian

laboratory experiments are limited to a specific cell type, tissue, or

system of interest [6]. However, most bioinformatics and systems

biology approaches have not yet addressed cell- and tissue-specific

concerns.

Computational Methods for Predicting Protein Function
Using High-throughput Data

Machine learning techniques based on high-throughput data

integration have been used to predict protein function in mammals

with mixed results [7,8]. Naı̈ve Bayesian networks (Bayes nets),

one form of supervised machine learning, have proven successful

for gene function discovery as they provide a statistically principled

method to model relationships among proteins based on a solid

foundation of biological knowledge [7,9–13]. Given a training set

of prior knowledge (also known as a gold standard) comprised of

protein pairs known to be functionally related (positive training

examples) and pairs believed to be unrelated (negative training
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examples) combined with independent, whole-genome high-

throughput datasets (observed evidential data), Bayes nets identify

significant patterns in the evidence, assess data reliability, and then

predict novel protein relationships based on reliable data [14,15].

This method is straightforward and facilitates precise control over

gold standard and evidential data composition for testing.

Using Bayes net methodologies originally developed for yeast

[14,15], several studies have predicted mammalian protein

function by treating mammals as homogenous, single-celled

organisms [16–24]. These studies were species-specific and focused

on integrating diverse high-throughput data from multiple cell

types and tissues. They leveraged functional annotations provided

by public resources, such as the Gene Ontology (GO) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [25,26], to

automatically generate training sets. Results of these pioneering

efforts showed that protein function can be predicted accurately

using a generalized methodology [17,18,20,27]. However, due to

the current state of public annotation resources, these methods are

not appropriate for predicting cell-type-specific protein function in

mammalian systems. This is because, historically, if a protein

performs a function in any cellular or in vitro context, it was

annotated to that function. For example, the Mouse Genome

Informatics (MGI) database referenced 68 GO term annotations

for Stat3, a protein expressed in more than 174 mouse tissues (as of

September 2012) [28]. (Appendix S1 lists symbols, names, and

synonyms for all genes mentioned and includes references for

abbreviations used in this article.) In mESCs, Stat3 is a regulator of

self-renewal through the LIF-induced JAK/STAT signaling

pathway; in hepatocytes, it is involved in many physiological

processes, from liver regeneration to apoptosis to metabolism [28–

30]. Stat3 has also been associated with abnormal temperature

homeostasis, eating behavior, sexual reproduction, and other

phenotypes [28]. The function of Stat3 is likely to be highly

dependent on cofactors, signaling pathways, and other cellular

states. Thus, machine learning methods can be misled if the tissue-

specific role of mammalian proteins is not defined in the training

set and circumscribed in the evidential data.

Here, we demonstrate the utility of predicting cell-type-specific

protein function for mESCs and discuss the computational

challenges of this task. Specifically, we show that Bayesian network

integration methodologies (Figure 1) are most useful when applied

to a focused biological question, such as a single cell type and

biological processes known to be active in that cell.

mESCs are an attractive model system for testing cell-type-

specific machine learning techniques because they are relatively

homogenous, they have been extensively studied, and diverse

high-throughput data collected from mESCs are publicly avail-

able. Despite these advantages, stem cell systems are highly

complex and pose unique analytical challenges. Cultures often

contain heterogenous cell types, from undifferentiated self-

renewing ESCs to early developmental endoderm-like cells [31].

Given this inherent complexity, machine learning methods cannot

be used to produce molecular models with mechanistic details

based on high-throughput data. However, they can provide an

‘‘impressionistic’’ view of molecular interactions and hypothesize

novel protein associations for experimental validation [17,18].

Previous mESC-specific computational studies relied on limited

amounts of high-throughput input data, all of which was

considered equally reliable. For example, the Integrated Stem

Cell Molecular Interaction Database (iScMiD), combined data

from 12 different studies (mostly ChIP-Chip) to create a consensus

network of ,50 K edges [32,33]. Others have constructed

networks to investigate aspects of self-renewal by analyzing a

subset of growth conditions, perturbations, and data types [34,35].

In contrast, we use statistical machine-learning techniques to

integrate a much larger, more diverse mESC data compendium

(representing work from 60 studies and 6 experimental techniques)

and identify novel functional relationships among proteins. By

focusing on a single stem-cell system, at a specific developmental

stage, within the context of well-defined biological processes, we

produce consensus predictive networks with greater biological

relevance than those made using generalized, context-independent

methods.

Results

We used a naı̈ve Bayesian network methodology (Figure 2) to

create a cell-type-specific predictive biological network of protein-

coding genes in the context of self-renewal and closely related

processes (e.g. pluripotency and cell fate determination) in mESCs.

For our training set, we manually curated a positive reference of

2056 pair-wise gene relationships (with a prior of 1) among 354

genes associated with mESC self-renewal or annotated to signaling

pathways involved in early embryonic development (Table S1),

based on information extracted from 98 recent journal articles

(Table S2). We automatically generated a negative reference of

20,560 protein gene pairs (with a prior of 0) not documented to be

associated mESC self-renewal. We joined these references together

to produce a mESC self-renewal gold standard with a class

distribution of 1:10 (positive:negative) that was used to train the

Bayes net. For evidential data, we assembled a compendium of

high-throughput mESC data, representing 60 independent

research studies, including all mouse data used in prior mESC-

focused computational efforts (Table 1; Table S3). This mESC

data compendium consisted of ,2.2 million data points, collected

under 992 conditions, using 6 different high-throughput experi-

mental techniques, and encompassing more than 6 billion gene-

pair measurements. We used the trained Bayes net to make

posterior predictions of functional relationships among 21,291

protein-coding mouse genes based on patterns observed in the

integrated evidential data.

mESC-Specific Network Predicts Novel Self-renewal
Proteins

The resulting undirected, predictive mESC network of ,226

million gene pairs had 582,789 high-confidence edges with a

posterior inference score of 0.9 or higher involving 8980 genes that

were predicted to be strongly associated with self-renewal and cell

fate in the context of mESCs. We identified 56 potential hub genes

with a scaled degree of 0.55 or higher, 59% of which were novel

players not included the positive gold standard. Computational

evaluations showed the network achieved 90 percent precision at

10 percent recall, and had an Area Under the Receiver Operator

Characteristic (ROC) curve (AUC) of 0.75 (m= 0.7402,

SD = 0.01317), which is significantly better than random (p-

value = 2.685E–10) and is competitive with prior mammalian

Bayes net efforts (Figure 3A) [17,19]. Standard machine learning

metrics and cross validation revealed some evidence of overfitting

(i.e. tailoring a solution so tightly to the training data that the Bayes

net does not learn to generalize the trend and recognize new

examples) (Figure 3B). Regularization and bootstrap aggregation

minimized overfitting at the cost of reducing the AUC to 0.72

(Figure 3C, Figure S1A) [7,10,19,36,37]. Top ranked, high

confidence edges in this network were supported by a diversity

of high-throughput data, but predominantly by Protein-DNA

binding data similarity profiles (Table 1, Figure S3).

To assess biological content and functional relevance of our

mESC network, we used functional genomics tools [28,38] to

Mouse Embryonic Stem Cell Self-Renewal Network
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evaluate GO term enrichment, validate that gene pairs known to

significantly influence mESC self-renewal were strongly connected

in the probabilistic network, and identify novel genes with strong

functional linkages supported by evidential data. We used standard

methods for weighted network analysis to investigate network

topology, identify major hubs, and search for novel interactors.

Figure 1. Naı̈ve Bayesian Networks for Genomic Data Integration. A Bayesian network is a machine learning tool for organizing and
encoding statistical dependence relationships among pieces of knowledge. A naı̈ve Bayesian network is a simplified version of a Bayesian network in
which all child nodes are dependent on the parent and independent of each other. This type of graphical device may be used to combine different
types of evidential data and prior knowledge to generate probabilistic models of biological functional relationship networks. In our naı̈ve Bayes net
structure, the functional relationship between the pair of proteins i and j (FRij) is a hidden conditional variable (indicating the unknown or hidden
probability that these two gene products are functionally associated), on which all dataset evidence variables are dependent, and represents the
discretized, observed similarity score in dataset k for proteins i and j. The edge weight (eij) represents the probability that the proteins ij are
functionally related given the evidence observed in different high-throughput datasets. Strong evidence of a functional relationship between protein
pairs, measured by edge weight, indicates the proteins behave in a similar way given observed patterns in the high-throughput data. The specific
nature of that relationship can be deduced by evaluating the type of datasets that contribute to that edge weight, followed experimental validation.
doi:10.1371/journal.pone.0056810.g001

Table 1. Summary of Integrated mESC Genomic Data.

Data Type
Datasets
(Platforms) Conditions Gene Pairs

% Supporting
Top Edges* Mean Redundancy

Gene Expression 58 (19) 807 4,843,618,683 45% | 41% 0.061028

Protein-DNA Interactions 16 (10) 183 914,929,016 55% | 58% 0.022003

Physical Interactions 1 (1) 1 207 0% | 0% 0.000004

Phylogenetic Profiles 1 (1) 1 123,284,253 0% | 0% 0.147362

Whole-Genome RNAi Screens 1(1) 2 131,795,730 0% | 0% 0.171811

*Top Ranked Edges | Top 0.01% of Edges.
Notes: A total of 77 high-throughput datasets were collected from various public sources to create a compendium of mESC-specific data that included 992 conditions
(e.g. columns in a microarray matrix) and ,2.2 million data points (Table S3). These data were standardized and integrated into ,6 billion gene/protein pairs, and used
as evidential data to generate a predictive mESC-specific network focused on mESC self-renewal and cell fate. Datasets were weighted based on the amount of shared
mutual information contained in each as compared to all evidential datasets used by the Bayes net. A low mean redundancy indicates the dataset is highly unique. As
observed in other similar Bayesian network data integration efforts (including integration of human data), genetic and physical interaction data were the most reliable,
but also the least common [11]. We strove to assemble a diverse and comprehensive set of mESC data that would provide the most coverage and be highly informative.
Protein-DNA Interaction data included chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-Chip) and ChIP followed by high-throughput
RNA sequencing (ChIP-Seq). Top ranked edges were the 639 edges with a rank order of 1 and an inferred edge weight $0.9999 (Figure 3A, Table S11); the top 0.01% of
the network consists of the 22,664 edges with an inferred edge weight $0.9966 (Figure 3B, dataset contributions to top 0.01% edges available at StemSight.org/
stemdata.html).
doi:10.1371/journal.pone.0056810.t001
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Figure 2. Cell-Type-Specific Data Integration and Machine-Learning Methodology. Our approach is designed to generate reliable and
relevant predictive biological networks using high-throughput data limited to a specific cell type and a training gold standard focused on biological
processes active in that cell type. This process can be distilled into four basic steps: 1. Collect and standardize cell-type specific data from studies
using diverse high-throughput experimental techniques, including microarray gene expression, chromatin immunoprecipitation (ChIP) on chip (ChIP-
Chip), ChIP followed by high-throughput-sequencing (ChIP-Seq), affinity purification followed by mass spectrometry (AP-MS), whole-genome small
interfering RNA (siRNA) screens, and phylogenetic sequence similarity. For this case study, we focused on mouse embryonic stem cell (mESC) data. 2.
Curate a process-specific gold standard training set to provide a baseline for assessing data reliability and significance for related biological processes
known to be active in the cell type of interest. Our gold standard training set consists of experimentally validated pair-wise associations between
genes and proteins known to be involved in mESC self-renewal, pluripotency, and cell fate determination. 3. Iteratively test and validate networks. A.
Use a naı̈ve Bayesian network classifier to perform inference and predict novel gene and protein relationships. Our network predicts pairwise
functional associations that influence mESC self-renewal and early developmental processes. B. Validate the accuracy of predicted functional
relationships using standard machine learning performance metrics, cross validation, and bootstrapping, followed by evaluation of biological
content. Our protocol for assessing networks ensures our results are highly reliable and relevant to mESC self-renewal. 4. Provide community access
to analyses and tools. Through StemSight.org, we provide access to network analyses and visualization tools to enable users to further explore
networks centered on their genes of interest.
doi:10.1371/journal.pone.0056810.g002

Figure 3. Network Performance Evaluations. A. Computational assessment of network performance using standard machine learning metrics
showed that precision at 10% recall was 90%, and 60% at 25% recall, before and after regularization and out of bag averaging to correct for
overfitting to noise. The area under the Receiver Operating Characteristic (ROC) curve (AUC) for the mESC network was 0.7479; after regularization
and out of bag averaging, the AUC was 0.7165. B. We conducted 4-fold network cross validations by removing 25% of edges in the gold standard (4-
fold Gold Standard). ROC curves showed a small amount of overfitting, most apparent in cross validations for which we removed 25% of genes
(rather than edges) from the network training set (Figure S1). C. We conducted 20 bootstrap runs, using 70–30 split (training to test) of the gold
standard answer file, and performed out-of-bag averaging to produce a single network. The relatively flat trend of AUC over out-of-bag-averaging
runs confirms the minimal amount of overfitting and produced a single network with high confidence inference scores.
doi:10.1371/journal.pone.0056810.g003
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Our results confirm the roles of genes and proteins known to be

involved in early developmental transcriptional regulation and

stem cell maintenance, including Pou5f1 (also known as Oct4), Sox2,

Nanog, Klf4, Suz12, Phc1, and Trim28, all of which were major hubs

in our mESC-specific network. Functional annotation analysis

showed the most strongly connected genes in the mESC network

were highly enriched for stem-cell-related biological processes,

including development, maintenance, and differentiation, as well

as transcriptional regulation (Table S4).

To identify the tightly connected ‘‘core’’ of our gold standard

training set, we evaluated the distribution of predicted posterior

edge values and identified a edge cutoff of 0.25 (Figure S2A). We

then calculated a functional correlation score to the 356 genes

involved in positive gold standard edges to identify top self-renewal

gene hubs. We consider any training set gene with at least one

strong connection ($0.25) to another member of the training set as

a more reliable member of the gold standard: a ‘‘golden’’ gold

standard gene. We used a ‘‘guilt by association’’ metric to measure

the strength of functional linkage between a given gene and genes

in our ‘‘golden’’ gene set. We refer to this measure as the Self-

Renewal Correlation score (SRC; details in Materials and Methods),

which we use to evaluate the likelihood of novel gene association

with self-renewal programs and to reassess the role of genes

included the gold standard (Figure S2C). For example, many genes

one would expect to have high SRCs are key self-renewal players

such as Pou5f1 (SRC: 1.0000), Sox2 (SRC: 0.9505), and Gdf3 (SRC:

0.9419), while others exhibited low SRCs, such as Pdc (SRC:

0.0104) and Smad9 (SRC: 0.0451), and are thus less likely to be

involved in self-renewal and closely related early developmental

processes.

In addition to the known gold standard genes, we found

many novel genes exhibited high correlation to self-renewal

proteins based on network connectivity and SRC (Table 2).

These genes included: Gbx2, Jarid2, Tcea3, Tdgf1, Msh6, Slc3a2,

Ifitm1, Tdh, Reep3, Jam2, Rpp25, Trh, Msx2, Zfp428, Tfcp2l1,

Etv5. This list is enriched for genes known to play a role in cell

fate determination and other early developmental processes as

well as genes involved in transcriptional regulation and DNA

binding. For example, Jarid2 (SRC: 0.9235) is a regulatory

subunit of Polycomb Repressive Complex 2 (PRC2), which is

involved in repression of genes important for development and

cell fate specification [39]. Gbx2 (SRC: 0.9367), a transcription

factor linked to stem cell pluripotency and differentiation in

developing embryos, is a direct target gene of WNT signaling

known to be involved in neural crest induction as well as

specification and formation of the neuroectoderm [40,41].

However, none of these genes were included in our training

set, demonstrating the ability of the Bayes net to predict

potentially meaningful novel players in this biological context.

L-threonine dehydrogenase (Tdh; SRC: 0.9058) is one of the less

well-studied genes in our list of high-confidence novel gene

candidates for experimental validation that was strongly predicted

to be involved in self-renewal, pluripotency and cell fate, and

tightly linked to many of our ‘‘golden’’ gold standard genes,

including Pou5f1, Sox2, Nanog, Nr0b1, and Rif1, (Figure 4A, Figure

S5). Tdh catabolizes threonine into glycine and acetyl-CoA, which

is used by the TCA cycle to generate ATP. While there were no

GO annotations for this gene based on experimental data at the

time we developed our training set, nor articles about the role of

Tdh in mESCs at the time we created our gold standard, recently

published articles confirmed that mESCs are dependent on

threonine catabolism to support accelerated cell cycle kinetics

[42,43]. To learn more about the underlying datasets that support

functional linkages between Tdh and key self-renewal genes, such

as Pou5f1, we evaluated Bayes net statistics for edge weight and top

supporting datasets (Figure 4B,C). These statistics showed that the

functional relationship between Tdh and Pou5f1 was supported by

ChIP-Chip binding data from five different studies investigating

the regulatory circuitry of mESCs and microarray data from a

study analyzing mESC differentiation. Tdh connections to other

golden gold standard genes were largely supported by the same

type of ChIP-Chip data (Figure S5). By drilling down to the most

reliable datasets, as determined by our machine learning

evaluations, we were able to quickly identify Tdh as a potential

target of the core regulatory circuitry of mESC self-renewal and

pluripotency [3,44] to manage cell-cycle controls during the rapid

growth phase of early embryonic development.

We used the SRC metric to select our top 10 candidate genes

for experimental validation: Tcea3 (SRC: 0.9234), Msh6 (SRC:

Table 2. Candidate Genes for Experimental Validation.

Novel Gene SRC (Scaled) Novel Gene K (Scaled)

Gbx2 0.9367 Gbx2 0.6259

Jarid2 0.9235 Tcea3 0.6399

Tcea3 0.9234 Msh6 0.6292

Tdgf1 0.9013 Zfp296 0.6067

Msh6 0.9080 Socs2 0. 5583

Slc3a2 0.9085 Slc3a2 0.6124

Ifitm1 0.9092 Tdh 0.6087

Tdh 0.9056 Rpp25 0.5973

Reep3 0.8971 Tdgf1 0.5184

Jam2 0.8945 Etv5 0.5844

Rpp25 0.9047 Zfp428 0.5927

Trh 0.8877 Rhob 0.5820

Msx2 0.8932 Reep3 0.5844

Akap12 0.8865 Akap12 0.5771

Cited2 0.8946 Ifitm1 0.5816

Etv5 0.8855 Jam2 0.5798

Crmp1 0.8754 Mcl1 0.5731

Mcl1 0.8843 Nolc1 0.5729

Rhob 0.8964 Abcc4 0.5739

Gjb3 0.8907 Dnmt3l 0.5693

Zfp428 0.8858 Plcg2 0.5671

Mkrn1 0.8752 Cited2 0.5735

Zfp296 0.8590 Upp1 0.5571

Anp32a 0.8651 Jarid2 0.5657

Upp1 0.8589 Anp32a 0.5722

Dbf4 0.8777 Dbf4 0.5708

H2afx 0.8526 Trh 0.5689

Zswim1 0.8713 Lpp 0.5507

Slc7a7 0.8503 Ina 0.5499

Slc7a3 0.8675 Tcfcp2l1 0. 4887

Notes: We ranked genes not included in our mESC gold standard by network
topology measures: self-renewal correlation (SRC) and scaled network degree
(K). We used network degree to identify hubs and topologically important gene
nodes, and SRC scores to discover genes functionally related to mESC self-
renewal. Our highest confidence potentially novel self-renewal genes (in bold)
ranked high in both gene lists and were not yet annotated to biological
processes associated with self-renewal or cell fate determination.
doi:10.1371/journal.pone.0056810.t002

Mouse Embryonic Stem Cell Self-Renewal Network

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e56810



0.9080), Reep3 (SRC: 0.8971), Jam2 (SRC: 0.8945), Crmp1

(SRC: 0.8754), H2afx (SRC:0.8526), Nolc1 (SRC: 0.8476), Klf9

(SRC: 0.8616), Creb3 (SRC: 0.8447), and Myst2 (SRC: 0.8432).

This list of novel genes predicted to be associated with mESC self-

renewal includes several transcription factors and chromatin

modifiers; all have high SRCs, but no GO annotations related

to early embryonic development processes.

Appropriate Evidential Data is Critical for Useful Network
Predictions

To further assess the impact of cell-type-specific evidential

data on Bayes net predictions, we prepared three additional

input data feature sets by varying the amount, diversity, and

appropriateness of evidential mouse data. We generated test

networks for each of these feature sets, using the same mESC

self-renewal training set and evaluation metrics as for our

mESC-specific network.

Figure 4. Data Visualization for Mining mESC Self-Renewal Gene Predictions. A. Views of Tdh-centric networks created using our
StemSight Scout visualization tool, available at StemSight.org. Adjusting Scout network views to display only edges with inference scores of 0.5 and
0.9997 show that the novel gene Tdh is tightly connected to many well-known self-renewal genes in our training gold standard, including Pou5f1,
Sox2, Nanog, Nr0B1, and Phc1. B. Supporting edge info for the Tdh – Pou5f1 edge. Supporting edge information shows that this edge is supported by
several protein-DNA interaction (PDI) assays as well as gene expression datasets from a study investigating mESC cell differentiation in different mESC
cell lines. For supporting edge detail between Tdh and other gold standard genes, see Figure S5 or explore the Tdh interactome online at
StemSight.org/scout. C. SPELL for StemSight Search Results. From a supporting edge information window, you can drill down to the individual gene
expression levels in microarray datasets. This view shows how expression data reveals rank-ordered correlations observed between Tdh and gold
standard genes Gbf3, Fbxo15, Nr0b1, Phc1, Pou5f1, and Sox2.
doi:10.1371/journal.pone.0056810.g004
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To evaluate network performance using a relatively small

amount of inappropriate data (not specific to mESCs), we trained

a Bayes net using a minimalist library of 16 datasets, representing

,300 experimental conditions (Table S5). This feature set,

composed primarily of non-cell-type-specific data downloaded

from molecular interaction databases, was similar to evidential

data compendiums used for prior functional relationship network

projects using mouse data [17,18] and a mouse gene function

prediction competition [20]. Networks generated using this

minimalist input data and our self-renewal training set produced

the lowest AUC (0.5931) and exhibited the least evidence of

overfitting. There was insufficient data to perform regularization,

which is best applied to very large-scale data integration [19]. The

resulting network contained no notable network hubs and had

only 543 edges (involving 446 genes) with an inferred probability

of a functional relationship greater than 0.9. Of these edges, only

one involved canonical embryonic stem cell self-renewal factors

(Pou5f1– Nanog; weight = 0.9754). The remaining edges were a

random assortment of loose connections between genes annotated

to disparate functions. These functionally vague results confirmed

that limited evidential data, while potentially useful for more

general gene function studies [17,18], are inappropriate for

exploring a context-specific cellular process, such as mESC self-

renewal.

As a negative control, we assembled a feature set composed of a

large amount of inappropriate data: 656 datasets from a broad

range of mouse tissues and cell types, excluding mESCs (Table S6).

This feature set was composed largely of microarray data and

spanned ,13,500 experimental conditions. To further explore the

impact of using a combination of any type of mouse data, we

created a feature ‘‘superset’’ based on a sprawling compendium of

all available high-throughput mouse data, including data from our

negative control, minimalist set, and mESC-specific datasets: a

total of 810 datasets representing ,14,500 conditions (Table S7).

Both the negative control and superset networks achieved higher

AUCs than the mESC network (0.88 and 0.86, respectively), but

they also exhibited more dramatic evidence of overfitting

(Figure 5A). This was not unexpected as the number of features

in these test sets far exceeded the number of genes in the training

set. Subsequently, the Bayes net was able to find patterns in the

noise of the input data that most likely did not reflect real biology,

often manifested as over-inflated results. Overfitting in networks

generated using the superset of input data was even more apparent

when trained on randomly generated, negative control gold

standards. These test networks all achieved AUCs in the mid-to-

high 0.80 s; however, overfitting was largely mitigated by

regularization and bootstrap aggregation, which reduced test

AUCs back to the expected random levels (,0.5) (Figure 5B).

To evaluate the impact of data compendium size as well as

composition, we conducted a series of data compendium tests

using the type of gene expression and molecular interaction data

included as evidence in all three test networks (Figure S4). AUCs

for networks generated using incrementally increasing numbers of

randomly selected mESC gene expression data sets plateaued at

,0.65 as the size of the compendium reached ,45 datasets

(,600–700 conditions). Test networks generated using the same

mESC gold standard and different compendiums composed of 60

non-cell type specific mouse datasets achieved slightly higher

AUCs than a mESC test network based on 58 mESC specific gene

expression datasets, and showed evidence of roughly the same

amount of overfitting. However, biologically, these networks were

all quite different. Only the mESC gene expression test network

had high-confidence edges with a posterior edge weight of 1

involving genes highly enriched for biological processes associated

with stem cell self-renewal and embryonic development. Even so,

this mESC gene-expression-based network was not as biologically

relevant or reliable as networks generated using more diverse

mESC evidential data (Figure S4, Table S8).

Computational Performance Metrics do not Necessarily
Measure Biological Relevance

When evaluated using traditional machine learning metrics, the

negative control and superset network computationally performed

better than the mESC-only network. Even after regularization and

bootstrap aggregation, both of these test networks achieved AUCs

of ,0.80, as compared to 0.72 for our mESC-specific network.

However, they were very different networks, capturing very

different flavors of biological information (Table S9). Top network

hubs in the negative control network were enriched for biological

processes associated with FGFR signaling, MAPK signaling,

regulation of cell proliferation, gene expression, and transcription.

In contrast, the superset network (which included negative control

data as well as mESC-specific data) was enriched for many of the

same documented self-renewal functional associations found in the

mESC-only network, but the signal was ‘‘blurred’’ in comparison.

For example, out of a total of 21,291 protein-coding genes, Pou5f1,

Nanog, Sox2, and Suz12 emerged as the most highly connected

network hubs in the superset network, after which there was a

steep drop-off in degree (Table 3). These four genes were also the

top hubs in our mESC network, but they were even more tightly

connected, with a higher mean degree. In fact, while much of the

gold standard was similarly supported by both the mESC-specific

and superset data collections, (Figure 5C; Pearson’s correlation

r = 0.6592, r2 = 0.4345), there was a broad range of functional

disparity between the two networks. Not surprisingly, this

difference in functional linkage was even more evident when

comparing the negative control to mESC posterior gold standard

edges. (Figure 5C; Pearson’s correlation r = 0.2311, r2 = 0.0534).

In general, high-confidence gold standard genes in the negative

control and superset networks were involved in signaling pathways

known to be active in both adult and embryonic tissues (Table

S10). The points of agreement between networks indicate that

either 1) some genes are so strongly connected in the context of

mESC self-renewal that additional non-mESC-specific datasets in

the superset did not obscure the signal or 2) these genes are

strongly connected in multiple cellular and process contexts. Thus,

the additional inappropriate datasets used as evidence in the test

networks tended to include information not specifically related to

stem cell self-renewal in mESCs, resulting in less focused, less

biologically meaningful networks, despite seemingly improved

computational performance metrics.

Network Visualization Reveals Novel Functional
Relationships

To make our predictive mESC network readily available to the

stem cell research community, we created an interactive, online

visualization resource at StemSight.org. A flat file of the predictive

mESC network, containing all edges with an inferred probability

of functional relationship $ 0.2 (18,097,736 edges) is available for

download at this site. For those uncomfortable working with large

graph files, this network may be explored online using StemSight

Scout (StemSight.org/scout). The Scout dynamic visualization

interface, implemented using ThinkMap visualization technology,

highlights potentially novel self-renewal genes by coloring nodes

based on their SRC score and illustrates the weight of predicted

interactions by coloring edges based on the inferred posterior

probabilities. Documented self-renewal genes and edges, those
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Figure 5. Importance of Feature Selection in Bayesian Network Machine Learning. A. Networks trained using the same mESC gold
standard but different feature sets had markedly different evidence of overfitting. We generated networks using three different feature sets: a
minimalist library of 16 datasets composed largely of non-cell-type-specific data from molecular interaction databases, our mESC-specific
compendium composed of 164 datasets restricted to mouse mESC data and a small amount of data not specific to any cell type, a superset
compendium composed of all mESC training data plus an additional 646 non-tissue specific mouse microarrays, and a negative control compendium
containing all datasets except those with mESC data. Using machine learning metrics, we found that the network trained on a small amount of non-
tissue-specific data achieved the lowest ROC curve AUCs and had the least amount of overfitting. The mESC-specific network achieved a higher AUC,
and showed evidence of minimal overfitting. The superset and negative control networks had the highest AUCs, but also showed extreme overfitting
with a difference of greater than 0.1 between training and test set AUCs. Bootstrapping followed by out of bag averaging largely correct for
overfitting in the mESC-specific, superset, and negative control networks. However network content varied dramatically. B. Overfitting in Networks
with Randomly Generated Gold Standards. Networks trained on randomly generated gold standards performed better than random according to
standard machine learning metrics, but 4-fold cross validation revealed these networks had evidence of overfitting that could be corrected for using
regularization and bagging techniques. C. Evaluating Network Differences using Positive Gold Standard Posteriors. A scatterplot of superset versus
mESC-only network positive gold standard posterior edge (those with a prior of 1) illustrates that while there is relatively high correlation (Pearson
correlation r = 0.6592), there is also a broad range of disparity between the two networks. A scatterplot of negative control versus mESC shows that
there is less correlation between the two networks (Pearson correlation r = 0.2311), and reveals the subset of the training gold standard supported by
non-mESC data.
doi:10.1371/journal.pone.0056810.g005
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included in our gold standard training set or other curated sets, are

also color-coded, making it easy to visually segregate novel from

known. If a displayed edge is in the positive gold standard training

set, links are provided to the original articles documenting the

relationship. With Scout, users can search for and download

information about interactomes centered around a gene of

interest, view predicted subnetworks for sets of self-renewal genes

identified by previous computational studies, and ‘‘drill down’’

into the data underlying predictions (Figure S4, Table S11).

Visualization of underlying gene expression levels is provided

through a mESC-specific instance of the Serial Patterns of

Expression Level Locator (SPELL) system [45], which reveals

gene expression correlations from the mESC microarray datasets

used to train the classifier (Table S3).

Through the resources available at StemSight.org, we facilitate

analyses for which a greater understanding of the underlying data

can be informative, and effectively extend the shelf-life, accessi-

bility, and usefulness of existing high-throughput stem cell data in

the literature. Furthermore, by focusing user attention on the most

reliable datasets for their area of biology, as determined by our

machine learning evaluations, we provide a framework for gene

function discovery in the context of mESC self-renewal.

Discussion

Statistical Analysis of Input Data Enhances Relevance of
Biological Networks

The supervised machine learning approach we used minimizes

bias by statistically evaluating data relevance, including which

experimental designs are most appropriate and which conditions

are most informative. Bayes nets assigned a statistical level of

confidence for each input dataset; regularization filtered redun-

dant mutual information shared among datasets. Our method

enabled us to report both the strength of the relationship between

gene pairs (edge weight) and statistics that describe which

evidential data contributed to each edge (Figure 6A, B). Using

this information, we could ‘‘cross validate’’ predictions made in

other studies, such as functional linkages between transcription

factors that have been computationally validated as essential for

mESC pluripotency [33,34] (Figure 7A). For example, our results

predict a strong functional linkage between Suz12– Sox2 (edge

weight: 0.9998), but a weak connection between Suz12– Myc (edge

weight: 0.0007). Closer inspection of these edges reveals that

although more than half of the top supporting datasets are the

same for each edge, the contribution strength of evidence often

differs significantly (Figure 6C) because our approach includes

degrees of co-expression, binding affinity, etc., that are not

considered when using a binary network construction approach.

In this way, our weighted network provides a view that is closer to

biological reality as few genes function in a binary fashion in any

system context.

Tailoring Prior Knowledge to a Single Cell-type Clarifies
Results

For our mESC gold standard, we intentionally included

interactions that influence closely related developmental processes,

especially when cell fate hinges on stoichiometry or epigenetic

regulation of a common set of genes. For example, normal

expression levels of the Pou5f1 transcription factor support self-

renewal, while aberrant over expression (as little as two-fold

increase) can induce premature differentiation into primitive

endoderm and mesoderm cells, and loss of Pou5f1 induces

differentiation to trophectoderm cells [46,47]. For developmental

signaling pathways, we included direct and indirect connections

between all pathway participants, unless cell-type-specific players

were indicated in the literature. For example, for the WNT

signaling pathway, we included all 16 Wnt ligands, all 9 Frizzled

receptors and all 3 Dishevelled signal transducers in our mESC

gold standard. For JAK/STAT signaling, the literature was more

explicit with respect to ligand-receptor pairs; subsequently, our

gold standard includes only references to the IL6 class of cytokines

and cytokine receptors that are important for mESC biology (LIF,

LIFR, and IL6ST) [48,49].

Despite our extensive manual curation efforts, the examples in

our training set are of variable quality and reliability. Some

interactions, such as Pou5f1– Nanog were referenced and observed

multiple times, while others such as Yy1– Cbx2, were included as

training examples based on less well established experimental

evidence. Subsequently, some of our training edges may ultimately

prove unreliable. This is especially true for examples derived from

signaling pathways (such as WNT), where we included all possible

ligand-receptor pairs in the absence of other information. Based

on our results, only a subset of these possible interactions appears

to be important for mESC biology.

Our SRC measure may prove a useful tool for assessing which

gene family members are more likely to be active in a signaling

pathway within the context of a specific cell type or developmental

stage. To demonstrate this application, we extracted gold standard

edges involved in the WNT signaling pathway (adapted from

KEGG), and ranked possible Wnt, Frizzled, and Dishevelled

participants by SRC (Figure 7A). Our mESC WNT pathway

highlights which components are strongly supported by mESC

data and may help identify interactors required to activate

canonical and non-canonical WNT signaling cascades that

Table 3. Comparison mESC-Specific and Test Network Connectivity.

Mean Degree mESC-Specific Mmu Superset Negative Control Minimalist

$ 0.30 0.056% 0.018% 0.005% 0%

0.20–0.30 2.404% 0.032% 0.655% 0%

0.10–0.20 22.12% 3.35% 18.12% 0%

0.00–0.10 75.42% 96.60% 81.22% 100%

Notes: The percentage of strongly connected gene hubs (those with a mean degree greater than 0.2 out of a total of 21,291 protein coding genes) is markedly higher in
the mESC-specific network as compared to the superset or negative control networks. Degree is a measure that reflects the number of genes within the network that
are predicted to be functionally linked to a given gene. In these networks, which were trained using a gold standard focused on mESC self-renewal, a higher mean
degree indicated that the given gene is more likely to interact with multiple other genes, and tended to be enriched for mESC-specific self-renewal processes. Highly
connected genes in the negative control network were predominantly annotated to biological processes related to self-renewal functions that are active in all cell types,
such as transcriptional regulation, cell proliferation, as well as developmental processes associated with multiple cell types, such as embryonic morphogenesis.
doi:10.1371/journal.pone.0056810.t003
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influence mESC self-renewal, pluripotency, and cell fate [50–52].

For example, we observed high SRCs for Wnt11, Wnt5a, Wnt4,

and Fzd5, which have been shown to work together in a context-

dependent manner to activate canonical WNT signaling [53]. In

addition, our network captures relationships among WNT family

members known to work in concert to mediate signaling activity.

Wnt5a has been shown to compete with Wnt3a for Fzd2 receptor

binding sites [50], and this Wnt5a – Wnt3a – Fzd2 triad is strongly

supported by our posterior weights.

Comparison of our mESC-specific-network to the negative

control and superset networks further illustrates how predicted

functional linkages may be used differentially to identify specific

ligand-receptor pairs active in mESCs signaling pathways. While

our mESC-specific network predicts only a few specific edges

between pathway participants (Figure 7A), in our negative control

and superset networks, all 16 Wnt ligands are almost equally

correlated with known self-renewal genes, and all but 3 Wnts

(Wnt2, Wnt16, and Wnt10b) were strongly linked with most

Frizzled receptors (with the exception of Fzd5) (Figure 7B, Table

S10). These subnetwork views show that in the superset and

negative control networks there was evidence of general WNT

signaling activity linking most WNT ligands and receptors in some

cellular context. Because all WNT ligand-receptor pairs were

documented in our training set, the superset and negative control

networks were better able to capture all of WNT signaling in

Figure 6. Advantages of Statistically Principled Approach. A. The iScMiD Core20 subnetwork of transcription factors used as bait in the 12
studies included in the iScMiD integrated mESC database [34,35], recreated as an undirected graph using edges available from the iScMiD website. In
the iScMiD network, all edges have equal weight and all high-throughput data is considered equally reliable, hence the authors note there may be
many false positives. B. The fully connected clique of mESC network posteriors for the iScMiD Core20 transcription factors predicts connections not
shown in iScMiD and reveals potential false positives as not all connections are equally supported by the evidential data. For comparison, we checked
underlying data for two edges, highlighted in yellow, one of which is not supported in the iScMiD subnetwork (Suz12– Sox2), and one which is only
weakly supported in our mESC-only network (Suz12– Myc). C. Contrasting detailed information about underlying data supporting the strong
functional linkage between Suz12– Sox2 (Edge Weight: 0.9998) versus the weak linkage between Suz12– Myc (Edge Weight: 0.0007) shows that top
supporting datasets vary from edge to edge and that the strength of dataset contribution to edge weight may differ significantly. (Highlighted rows
are datasets that support both edges.).
doi:10.1371/journal.pone.0056810.g006
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mouse, whereas our mESC network results are more specific to

mESC self-renewal.

Our results support the importance of cell-type-specific data

integration and manually curated gold standards for Bayes net

machine learning techniques, and illustrate how networks can be

used to create biological-process focused predictive networks. With

a better understanding of the tradeoffs involved with gold standard

composition, particularly in terms of traditional machine learning

metrics [10,54], one can develop different, yet complementary

training sets to explore different facets of biological relationships in

the context of a given cell type. This approach may prove

particularly useful for predicting functional linkages among

families of genes involved in signaling pathways active in many

cells and during multiple developmental stages, and for which

experimentally validated knowledge of the role of specific pathway

participants is sparse.

Cellular Context Matters in Predictive Biological Networks
Our mESC network is clearly enriched for self-renewal and

early developmental processes, and the top, most highly connected

hubs (Pou5f1, Nanog, Sox2, and Suz12) are genes experimentally

validated to influence mESC self-renewal. In contrast, other efforts

utilizing more generalized GO-based gold standards for gene

function prediction capture a completely different connectivity

picture, where the major hubs are Brca1, Trp53, and Rb1, and the

core self-renewal transcriptional regulator Pou5f1 is connected only

to Nanog [18]. This is not to say that general co-annotation training

sets are not informative, but rather to emphasize that in complex

biological systems, context matters. These approaches have

demonstrated value for gene function prediction, but they may

not be the best choice for exploring more specific functional

associations within a defined cellular context.

The disparity between computational performance and network

relevance observed in our test networks is most likely because of

the composition of our gold standard training set, which included

not only direct edges experimentally validated to be involved in

mESC self-renewal, but also more generic direct and indirect

edges associated with signaling pathways (such as WNT) active in

many tissue types, not just mESCs (Figure 7B). These more

general relationships were strongly supported by the non-mESC

data included as evidence in our negative control and superset test

networks, and subsequently credited as correct results in our

computational performance evaluations. Conversely, the absence

of evidential support for these generic edges in the mESC network

(Figure 7A) resulted in a lower computational performance score,

even though the mESC-specific network provided a more reliable

depiction of gene functional relationships within the context

mESC biology. The differences among our mESC-specific and test

networks demonstrate the tradeoff in using computational

performance evaluations that are blind to cell-type-specificity

and the challenge of gold standard development for context-

specific network prediction, especially when the goal is to not only

recapitulate what is known, but also to discover novel biology at

the cellular level.

Conclusions
We have shown that naı̈ve Bayesian networks trained using a

biological-process-specific gold standard and cell-type-specific

evidential data can provide useful, testable insights into novel

biology. Our results underscore that traditional machine

learning performance metrics alone are not sufficient for

evaluation of the predictive accuracy of complex biological

networks, particularly when the goal is discovery of novel gene/

protein interactions within a defined cellular context. High

AUCs may reflect how well a network recapitulates what is

known, but they are not the best measure of unknown biology,

which doesn’t always play by predictable rules [9,55,56].

Reassessments of functional relationship network predictions

have observed that study biases, annotation biases, data

correlation structures, and high levels of noise can easily

mislead machine learning approaches and, consequently, impair

biological interpretation of results [55,57,58]. In this work, we

address many of these potential pitfalls. By manually curating

our training sets, we avoid annotation biases in resources, such

as GO and KEGG. By restricting evidential data to our cell

type of interest, we reduce the impact of multi-functional genes.

We perform extensive network regularization to manage data

correlations and biases, and do not rely solely on traditional

machine learning performance metrics to assess network quality.

In this way, we are able to generate predictive biological

networks that more closely reflect biological reality than other,

more generalized approaches can achieve.

It is vital to assess the biological relevance of predictive networks

in terms of the cellular context of interest. Just as no one type of

experiment can elucidate all facets of biological pathways and

mechanisms, no one network, regardless of its computational

performance, will excel at making predictions about gene function

in all contexts. As such, biologists should be both wary of and

savvy about which computational tools and databases best support

their research efforts, and preferably, use a consensus approach

involving multiple computational resources. Predictive networks,

such as ours, can aid in preliminary analyses by providing a

comprehensive view of information otherwise lost in vast

repositories of high-throughput data, but they should not be the

only reference tool or method used.

In this study, we suggest alternative analytical approaches that

can be used to assess novel biological predictions. We demonstrte

the importance of investing in manual curation, not just in terms of

gold standard creation, but also for evaluating, restricting, and

normalizing datasets for integration. We also highlight the limits of

gold standard curation in cases where our knowledge is

incomplete, and suggest strategies to identify unsupported training

edges, such as those in the WNT signaling pathway, and to tease

out novel interactions for potential inclusion in future training sets

(as determined by SRC scores). We are currently experimentally

validating top candidate genes identified through our computa-

tional and functional analyses.

Moving forward, it will be important to extend our cell-type-

specific approach to additional cellular contexts. Given the

Figure 7. Comparing Subnetworks of WNT Signaling Pathway Participants. A. WNT Signaling Pathway Subnetwork. A model of the WNT
Signaling pathway adapted from the curated KEGG pathway for M. musculus (Mmu) includes SRCs for Wnt, Frizzled, and Dishevelled pathway
participants, illustrating that not all family members are equally supported by evidential data. Curated pathways, which are cell-type agnostic, cannot
capture these differences in connectivity. A corresponding network of mESC posterior edges involved in this view of WNT Signaling (created in
Cytoscape) demonstrates the variance in edge weights and SRCs in the signaling cascade. B. The same WNT Signaling subnetwork produced using
Mmu superset and negative control posterior edge weights and SRCs captures a different picture of connectivity as compared to the mESC network.
Far more WNT signaling activity between different WNT family member ligands and Frizzled receptors is evident in the test subnetworks. This may
reflect WNT signaling activity observed in data from both mESCs and other cellular contexts in the Mmu superset of features. The influence of WNT
signaling in other cellular contexts is even stronger in the negative control subnetwork.
doi:10.1371/journal.pone.0056810.g007
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complexity of self-renewal processes and the importance of cellular

context, a natural extension of this work would be to evaluate,

compare, and contrast the underlying molecular foundations of

self-renewal in the context of different stem cell types. As high-

throughput techniques and additional resources become increas-

ingly more sophisticated and affordable, computational methods

will, in turn, become even more biologically informative. Single

molecule sequencing, high-throughput proteomics, flow-cytome-

try-sorted stem cell populations, single cell data collections, the

Knockout Mouse Project [59], and the Cell Ontology [60] will all

contribute to the increasing quality, breadth, and depth of

consistent, developmental stage specific mammalian data. With

these evolving high-throughput data, machine-learning methods

such as ours will be able to produce more mechanistic predictive

models that trace molecular interactions during early development

and throughout a stem cell lineage.

Materials and Methods

Collection and Preparation of Training and Evidential
Stem Cell Knowledge

Supervised Bayesian network machine learning requires a

consistently integrated collection of diverse high-throughput

evidential datasets, coupled with a reliable reference gold standard

(prior knowledge) for training and evaluation. To ensure high

quality, consistent, and comprehensive system input, we developed

a rigorous protocol for gathering and preprocessing input datasets,

and carefully documented our methods for developing tailored

gold standards.

Preparation of evidential high-throughput mouse

embryonic stem cell dataset compendium. We prepro-

cessed, normalized, and standardized a comprehensive set of

mESC input data from high-throughput experiments using

microarrays, ChIP-Chip, ChIP-Seq, affinity purification followed

by mass spectrometry (AP-MS), and whole genome small

interfering RNA (siRNA) screens, plus molecular interaction and

phylogenetic data not specific to any cell type. Collectively, this

data represents 992 conditions and 2,258,468 data points. A

complete list of data sources used is provided in Table S3. This

data was mapped to MGI Gene IDs, and preprocessed into ,6

billion pairwise values used as features for classification. Through

this process, each protein-coding gene pair (in each dataset) was

assigned a similarity score, based on Euclidean or Pearson

correlation distance measures between genes (see Equations 1

and 4). Pearson correlations were normalized using Fisher’s Z-

transform, shifted by the mean, and divided by the dataset

standard deviation to yield a collection of pairwise similarity scores

with an approximately normal distribution ,N(0,1). Values were

binned into discrete ranges for use as classification features in our

Bayes net integration (details as follow).

Microarray expression data. Raw mESC microarray

expression data files were downloaded from the Gene Expression

Omnibus (GEO) [61]. Microarray datasets available in Affymetrix

CEL format were normalized using the Robust Multichip Average

(RMA) function in Bioconductor R/affy package (version 2.5, R

version 2.10.1). Brainarray ENTREZG custom chip definition files

(CDFs), which reflect the most recent gene and probe sequences,

were used to map probes to genes (version 12.1.0) [19,62,63]. To

standardize microarray data downloaded from public databases,

we followed this protocol: 1) Impute missing values and remove

probes with few values (probes were required to be present in at

least 70% of conditions to be retained) using the KNN-impute

algorithm, 2) Map microarray Probe IDs to systematic MGI gene

IDs, 3) Average together consistent probe values using a maximum

likelihood approach, and 4) Perform numeric clean up and

consolidation (as previously described) [19,45,64–66]. The result-

ing standardized datasets were then converted to a PreCLustered

(PCL) format and distilled into a set of pairwise similarity scores

using Pearson correlation followed by Fisher’s z transformation to

measure the strength of the linear relationship between gene

expression values for all possible gene pairs in the study (Equations

1, 2).

r~
1

n{1

Xn

i~1

(xi{�xx)(yi{�yy)

sxsy
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z~
1

2
ln

1zr

1{r
ð2Þ

Where r is the Pearson correlation coefficient calculated from the

microarray profiles, and z is the.

Fisher Z-transformed correlation.

Chromatin immunoprecipitation (ChIP) followed by

microarray (ChIP-Chip) data. Raw high-throughput ChIP

data was obtained from online supplemental materials and from

contributing author websites. We organized data into a consistent

ChIP data matrix format, mapping bait and target gene IDs to

systematic MGI gene IDs. Data was processed into a pairwise

format in two ways: first, we generated separate data files for each

transcription factor used in the study (e.g. input pairs connecting

each transcription factor with its putative targets as inputs or

features); and second, we generated transcription-factor-binding

similarity profiles between all gene pairs (e.g. values determined by

the number of transcription factors shared by each gene pair).

These similarity profiles were created by calculating dot products

between vectors of individual transcription factor binding scores

for each gene pair in the study (Equation 3).

Da,b~
Xn

i~1

(aibi)~(a1b1)z(a2b2)z:::z(anbn) ð3Þ

Where Da,b is the dot product score for the pair of genes a and b, n

is the total number of transcription factors interrogated in the

study, and ai and bi are binding scores (often binary) for genes a

and b and the ith transcription factor.

ChIP followed by high-throughput sequencing (ChIP-seq)

data. Transcription factor binding site and gene association

scores [44], based on the genomic location of the binding site

closest to the transcription start site of expressed genes, were used

as raw data and processed in the same manner as ChIP-Chip data.

Whole genome small interfering RNA (siRNA) screen

data. Raw siRNA data from primary screens represented the

percent of differentiating cells upon exposure to siRNA knock-

down of mESC self-renewal genes. We organized these values into

a matrix format analogous to that used to preprocess microarray

and ChIP data. A Euclidean distance measure was used to distill

this data into pairwise similarity scores (Equation 4).

L2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(xi{yi)
2

s
ð4Þ

Where L2 is the Euclidean distance function calculated between

mESC differentiation status levels when genes x and y are knocked

down.
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Preparation of curated, tissue-specific, training gold

standard. We developed a comprehensive positive gold stan-

dard for mESC genes and gene products involved in self-renewal,

curated from a literature library of 98 recent articles related to

mESC self-renewal, pluripotency, and cell fate determination

(Table S1). This library was supplemented with mouse develop-

mental pathway information from KEGG [25]. A list of all

publications referenced in the mESC gold standard is available in

Table S2. From this mESC reference, we extracted a list of 2056

‘‘positive pairs’’ of gene or gene products experimentally validated

to be functionally related in the context of mESC fate. To generate

a negative gold standard, we developed a list of 21,291 protein-

coding genes (Table S12) derived from an MGI Sequence

Coordinates report (MGI_Coordinate.rpt for Build 37, download-

ed December 23, 2010) by selecting only MGI IDs that fit the

following criteria: Marker Type – Gene, mapped to specific NCBI

Gene Start and Stop coordinates, with an official symbol not

prefaced by GM (for predicted Gene Marker), and for which at

least one evidential dataset contained measurements. This gene list

was used to randomly generate a list of ‘‘negative pairs’’ (excluding

positive pairs) 10 times the size of the positive gene pair list. The

resulting gold standard answer file (Table S13), consisting of a total

of 22,616 gene pairs, was used as the prior knowledge to train the

Bayes net.

Construct Bayesian Network and Infer Posterior
Functional Relationship Scores

To perform naı̈ve Bayesian network machine learning tech-

niques, we computed the posterior probability of a functional

relationship between gold standard gene/protein pairs given all

evidential data [17,19,66,67]. We used the Sleipnir library of C++
tools for machine learning over genomic data [66] and the

Structural Modeling, Inference, and Learning Engine (SMILE)

C++ library, developed at the University of Pittsburgh [68].

Additional procedural details on using Sleipnir tools for data

integration and network inference are provided in the Supple-

mental Notes (File S1).

Bayesian network training and inference. Conditional

probability tables (CPTs) for each dataset were learned by

counting the observed values in each dataset’s discretized bins

for unrelated and related training gene pairs [10,19]. Once

learned, these CPTs were used to infer posterior functional

relationship scores between pairs of genes or gene products. The

posterior probability that two protein-coding genes participate in a

self-renewal related biological process, given existing data, was

calculated based on the prior probability of a functional

relationship between genes and the conditional probability of

observing evidential data given functional relationship status

(Equation 5) [10,67].

P(FRDE1,E2,:::En)~
1

Z
P(FR) P

n

i~1
P(Ei DFR) ð5Þ

Where FR is a hidden variable representing whether a gene pair is

functionally related, P(FR = 1) is the predicted probability that a

pair is functionally related, Ei represents the evidence score of the

gene pair for the ith dataset, and Z is a normalization factor.

Minimization of network overfitting. We performed four-

fold cross-validation (on both edges and gene in the gold standard)

and leave-one-gene out cross-validation (also called ‘‘jack knifing’’)

experiments to determine classifier performance and generality.

To divide the training set into folds, we used two schemes: the first,

randomly separating edges into sets, regardless of which genes

were involved in those edges; the second, randomly eliminating a

quarter of genes in the genome (more specifically the protein

coding gene list) by removing all edges in a training set fold that

contained those genes. For four-fold edge cross validation, we

partitioned the gold standard edges into four randomly generated

test sets, while preserving the 1:10 class distribution (positive:ne-

gative ratio). We trained classifiers on three folds of the gold

standard, using the withheld fold as a validation set, repeating this

process four times so that all gold standard training edges were

used for both training and validation, and each test fold was used

for validation once. We conducted four-fold gene cross validation

in a similar manner by partitioning the list of 21,291 protein-

coding mouse genes into four gene folds, then creating four test

sets, each including only edges involving genes within one fold,

while corresponding training sets included edges only between

genes in the remaining three folds. For leave-one-gene-out cross

validation, we removed one well-known self-renewal gene (Lif,

Nanog, Pouf51, or Sox2) and all edges involving that gene to

create a test set, while all remaining genes were used for training.

To minimize overfitting, we performed Bootstrap aggregation

(i.e. bagging) by 1) creating a series of 20 training and test gold

standard files, each consisting of a random 70–30% split of the

gold standard file, 2) performing bootstrap runs using these gold

standard files (the number of bootstrap runs was determined by the

point at which the network performance leveled off), and 3)

averaging the inference scores for each gene pair across all

bootstrapped networks for which the pair was not used as a

training example (i.e. ‘‘out of bag’’ averaging) [37].

Feature set selection. To assess the importance of input

data feature set selection, we compiled three additional libraries of

integrated high-throughput mouse data: 1) a minimal feature set

consisting of 16 datasets composed of non-tissue specific expression

data and information downloaded from online genomic data

resources similar to feature sets used for prior efforts (Table S5); 2)

a negative control set of 646 datasets excluding mESCS and not

specific to any tissue type (Table S6); and 3) a superset of features

(labeled Mmu – an organism code for Mus musculus) consisting of

all the data used to train our mESC-only network plus all data

from the minimalist and negative control compendiums (Table S7)

[17,18,20]. We performed a full set of performance evaluations,

cross-validation, bootstrapping, and out of bag averaging on

networks produced using each of these feature sets. We used these

alternative networks to compare and contrast network topology

and underlying biological meaning of inferred functional relation-

ship scores.

Regularization. Bayes nets impose a strict assumption of

independence between input data that is likely violated by many of

our input datasets. This limitation can be largely mitigated

through regularization of parameters to down weight the

contribution of datasets with redundant information (Figure S2).

Parameter regularization was performed using mutual information

between datasets to weight the strength of prior belief for each

dataset [19,36]. Because the same subset of information could be

shared many times among tissue- and context-specific datasets, this

regularization provided a quantitative estimate of the amount of

redundant information contained in each dataset as compared to

all other datasets in the compendium. We calculated a heuristic

sum of mutual information relative to the Shannon entropy of

each dataset [69](Equation 6), exponentially decreasing the weight

of a dataset as the amount of shared information increased and

incorporated these values into the formula for calculating posterior

probability (Equation 7) as previously described [10,67].
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Sk~1zH(Dk){1
X
i=k

I(Di; Dk) ð6Þ

P(FRi,j DE1,E2,:::En)~
1

Z
P
n

k~1

aP½Dk~dk(g1g2)�zaSk{1

azDDk DaSk{1
ð7Þ

Where Sk is a heuristic sum of shared information relative to the

dataset’s entropy used to weight the strength of prior belief in a

uniform distribution for the dataset, H refers to Shannon entropy,

and I(Di;Dk) refers to mutual information. Equation 7 is an

variation on Equation 5, such that P(FRij|E1, E2,…En) is the

predicted probability that there is a functional relationship

between genes i and j given evidence in datasets 1 through n, Z

is a normalization factor, a is a pseudocount regularization

parameter used to modulate the strength of regularization

required as implied by the strength of the prior (higher

pseudocount values weaken influence of redundant datasets), and

Dk is the number of bins used to discretize continuous data values

in dataset K. A low Sk indicated the information contained in the

dataset is highly unique, while a high score indicated the datasets

contained shared (redundant) information. The redundancy score

for each mESC dataset used to train the Bayesian classifier is listed

in Table S1. We conducted a series of performance tests,

evaluating effects of regularization on similarity score distributions

in each evidential dataset and classifier performance, and selected

an optimal pseudocount value of 70, which best fit our mESC

training set. To produce a similar distribution of posterior edge

values for the superset (Figure S2B) and negative control, we used

a pseudocount value of 10.

Computationally Test and Validate Results
We validated the accuracy of predicted functional relationships

computationally using standard machine learning metrics and

accepted protocols.

Evaluation metrics. To assess network predictive accuracy,

we used standard statistical performance measures for binary

(true/false) classification tests: Receiver Operating Characteristic

(ROC) Curves, Area Under the ROC Curve (AUC), Precision-

Recall Curves (PRC), and Area Under the PRC (AUPRC) [7,10].

A ROC curve is a two-dimensional graph of true positive rate

(TPR) versus false positive rate (FPR) (Equations 8, 9) that

illustrates the relative tradeoff between benefits (true positives,

TPs) and costs (false positives, FPs). Precision-recall (PR) curves

depict the tradeoff between precision, which is a measure of

exactness or quality (i.e. how many positive claims are correct),

and Recall, which is a measure of completeness or quantity (i.e.

how many positives were claimed of all possible positives)

(Equations 10, 11) [54].

TP Rate~
TP

P
ð8Þ

FP Rate~
FP

N
ð9Þ

Precision~
TP

TPzFP
ð10Þ

Recall~
TP

P
ð11Þ

To ensure that network inferences were robust and to assess any

evidence of overfitting, we performed four-fold gold standard and

genome cross validation, leave-out-one cross validation, and

bootstrapping (for details, see ‘‘Minimization of Network Over-

fitting’’).

Gold standard evaluation. To assess the importance of

training the Bayes net using a curated, cell-type-specific gold

standard, we generated a series of test gold standards consisting of

randomly generated negative pairs and positive genes pairs

automatically generated from lists of genes associated with GO

terms specific to self-renewal (stem cell maintenance -

GO:0019827) and independent of stem cell self-renewal (cellular

response to insulin stimulus - GO:0032869, regulation of cardiac

contraction - GO:0008016). In addition, we created three gold

standards of positive and negative gene pairs randomly generated

from our list of protein coding genes. We trained Bayes nets using

these alternative gold standards and the same feature set of mESC

data, and used the performance metrics described earlier to

evaluate results.

Network topology analysis. To analyze the network topol-

ogy and evaluate biological information contained within graph

files, we calculated degree (k), sum of degrees (ki), mean degree

(kmean), and scaled degree (Ki), for each gene in the training set

(Equations 12–15) [70].

ki~
X
j=1

Aij ð12Þ

k max ~ max (k) ð13Þ

kmean~
ki

n
ð14Þ

Ki~
ki

kmax

ð15Þ

Where the degree of the ith node of vector k (ki) equals the sum of

edge weights between node i and all other nodes in the training set,

and Adjacency matrix Aij quantifies the connection strength from

node i to node j; the mean degree (kmean) is the degree ki divided by

the total number of nodes n in the training set; and kmax is the

maximum degree across all n components of vector k.

Functional correlation scores. For functionally directed

analyses, we calculated a functional correlation score Si, for a gene

i as the average edge weight between gene i and all genes within a

functional set of genes G within a network represented by

adjacency matrix Aig (Equation 16).

Si~
1

G

X
g[G

Aig ð16Þ

For our results, we created two sets of these scores. The first

used the set of 354 genes in the positive gold standard to calculate

functional correlation scores to the positive gold standard. Based
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on these scores, we observed that only a subset of our gold

standard edges were strongly connected to the rest of the gold

standard genes in our results. Therefore, we used an quasi-active-

learning approach to refine our set to a highly correlated subset of

self-renewal genes, those with an gold standard functional

correlation score of 0.25 or higher (the top 52% of gold standard

genes ranked by functional correlation score). Using this subset of

189 strongly correlated genes, we calculated and scaled an

updated functional correlation score to this ‘‘golden’’ gold

standard set of known self-renewal genes. We refer to this measure

as the self-renewal correlation (SRC) score.

We used these values to identify major gene hubs within

networks, and segregate clusters of genes that shared similar

network properties.

Additional Resources

Database for Annotation, Visualization, and Integrated Discov-

ery (DAVID), http://david.abcc.ncifcrf.gov/.

Graph Algorithms Pipeline for Pathway Analysis (GrAPPA),

http://grappa.eecs.utk.edu/.

Mouse Genome Informatics, http://www.informatics.jax.org.

Sleipnir Library for Computational Functional Genomics,

http://huttenhower.sph.harvard.edu/sleipnir/index.html.

Structural Modeling, Inference, and Learning Engine (SMILE),

http://genie.sis.pitt.edu/.

Thinkmap Visualization Technology, http://thinkmap.com.

Weighted Correlation Network Analysis (WGCNA), http://

www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/

Rpackages/WGCNA/.

The following data files are available online at StemSight.org/

stemdata.html: mESC Network Graph File (,18.1 million edges,

edge weight $0.2), Datasets Supporting Top 0.01% of mESC

Network Edges (,226 thousand edges), Mmu Superset Network

Graph File (,7.8 million edges, edge weight $0.2), Negative

Control Network Graph File (,13.6 million edges, edge weight

$0.2), Minimalist Set Network Graph File (,4.3 million edges,

edge weight $0.2).
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