Cell, Volume 183

Supplemental Information

Assembly Mechanism of Mucin

and von Willebrand Factor Polymers

Gabriel Javitt, Lev Khmelnitsky, Lis Albert, Lavi Shlomo Bigman, Nadav Elad, David Morgenstern, Tal Ilani, Yaakov Levy, Ron Diskin, and Deborah Fass

	MUC2 D1D2D3CysD1
	(EMDB-10517)
	(PDB 6TM2)
Data collection and processing	
Magnification	105,000x
Voltage (kV)	300
Electron exposure (e–/Å ²)	40.6
Defocus range (µm)	-1 to -2
Pixel size (Å)	0.85
Symmetry imposed	C2
Initial particle images (no.)	1,430,962
Final particle images (no.)	178,136
Map resolution (Å)	2.95
FSC threshold	0.143
Map resolution range (Å)	2.2 to 7.2
Refinement	
Initial model used (PDB code)	Ab initio, PDB IDs 6RBF and 6TM6
Model resolution (A)	2.7 (6RBF) and 1.6 (6TM6)
Map sharpening <i>B</i> factor (A^2)	Auto-estimated in Phenix
Model composition	
Non-hydrogen atoms	18,530
Protein residues	2,41
Waters	40
Ligands	30
<i>B</i> factors (A^2)	10.0
Protein	40.0
Waters	18.9
Ligands	75.4
R.m.s. deviations	
Bond lengths (A)	0.009
Bond angles (°)	1.38
Validation	
MolProbity score	1.71
Clashscore	3.27
Poor rotamers (%)	0
Ramachandran plot	
Favored (%)	88.4
Allowed (%)	11.2
Disallowed (%)	0.4

Table S1. Cryo-EM data collection, refinement and validation statistics, related toFigure 3

Muc2	Muc2	VWF	VWF	Muc2	Muc2	VWF	VWF	
Cys 1	Cys 2	Cys 1	Cys 2	Cys 1	Cys 2	Cys 1	Cys 2	
37	169	35	162	1037	1080	1046	1089	
59	206	57	200	1052	1075	1060	1084	
67	166	65	159	1062	1102	1071	1111	
218	255	210	255	1082	1090	1091	1099	
225	250	225	250	1092	1117	1101	1126	
237	275	237	275	1108	1137		1149	1169
257	263	257	263	1121	1163	1130	1173	
265	291	265	291	1145	1187	1157	1196	
295	329	295	329	1167	1181	1177	1190	
308	321	308	321					
312	351	312	348					
331	345	331	342	extra	VWF disulfides:	304	325	
353	375	350	372			418	521	
370	387	367	384			661	683	
373	382	370	379			788	799	
391	528	388	524					
413	563	410	559					
435	443	432	440					
574	619	570	613					
588	614	584	608					
601	639	595	633					
621	627	615	621					
629	654	623	648					
661	698	652	687					
674	688	665	679					
678	718	669	707					
700	712	689	701					
720	742	709	731					
740	749	729	738					
759	800	767	808					
768	796	776	804					
784	820	792	827					
802	814	810	821					
822	844	829	851					
839	856	846	863					
842	851	849	858					
860	992	867	996					
882	1027	889	1031					
891	989	898	993					
909	916	914	921					

Table S2. Disulfide bonds in MUC2 and VWF, related to Figure 3 and Figure 5

Numbers are according to the precursor sequences in UniProt (MUC2: Q02817; VWF: P04275). Each row shows disulfides that are homologous between MUC2 and VWF. In bold is a pair of disulfides that share one conserved cysteine but a second divergent cysteine. Additional disulfides predicted in VWF due to close apposition of the corresponding residues in the homology model are listed as "extra VWF disulfides." The VWF disulfide assignment is consistent with previous reports of Cys767-Cys808, Cys776-Cys804, and Cys810-Cys821 (Marti et al., 1987) and the TIL⁷/E⁷ disulfides (Shiltagh et al., 2014).

	CysD1
	(PDB 6TM6)
Data collection	
Space group	P21212
Cell dimensions	
a, b, c (Å)	54.88, 57.86, 27.47
α, β, γ (°)	90, 90, 90
Resolution (Å)	15.23 - 1.63 (1.689 - 1.63)*
$R_{\rm sym}$ or $R_{\rm merge}$	0.0753 (0.344)
Ι / σΙ	37.8 (3.6)
Completeness (%)	94.9 (65.6)
Redundancy	22.9 (7.5)
Refinement	
Resolution (Å)	1.63
No. reflections	10,882 (737)
$R_{ m work}$ / $R_{ m free}$	0.174 / 0.211
No. atoms	860
Protein	747
Ligand/ion	2
Water	111
<i>B</i> -factors	25.7
Protein	24.6
Ligand/ion	21.4
Water	33.0
R.m.s deviations	
Bond lengths (Å)	0.006
Bond angles (°)	0.97

Table S3. Crystallographic data collection, phasing and refinement statistics, relatedto Figure 6

Asterisk indicates the highest-resolution shell, and data in parentheses correspond to this shell.