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1 | INTRODUCTION

In the 1980s, Bland and Altman started to publish papers dealing with the comparison of clinical measurement methods.!
Their paper published in Lancet in 1986 popularized their new concept of agreement intervals (Als) (also known as limits
of agreement).? This paper is, 30 years later, the third most cited paper in statistics.> Method comparison studies are con-
ducted in many fields from engineering, cutting-edge medicine, diagnostic tools, computing, robotic surgery, chemistry,
but also in machine learning or artificial intelligence (with continuous outcome), and many other. Bland and Altman
pinpointed through their papers the misuse of some erroneous statistical methods in this context of method compari-
son studies, that is, the Pearson correlation coefficient. They succeeded to convince researchers, clinicians, editors and
journals to stop (or at least refrain from) the use of inappropriate statistics to assess the agreement of clinical measure-
ment methods.* The agreement interval then started to be widely applied, which launched a new research topic as many
papers were published after that by many other authors including statisticians and clinicians (see the papers by John
Ludbrook, surgeon, physiologist, and lastly biostatistician publishing papers related to method comparison studies).>®
The interval was, initially, an approximate solution to be used by medical researchers but, later, there was a need to
improve it.2 Bland and Altman then proposed calculating a confidence interval around each bound of the approximate
agreement interval. They proposed, first, an approximate solution which can be calculated quickly by hand.? Later, they
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proposed a better solution using a more suitable standard deviation.” An exact confidence interval around each bound
of the approximate agreement interval has been recently proposed,'® or an approximate solution based on a resam-
pling technique.! This means that there is a need to improve the approximation of the agreement interval. However,
while an exact interval can be directly calculated, this is not well known by practitioners, especially clinicians and
researchers in medicine. This exact solution actually comes from the concept of tolerance interval (TT) in the statistical
literature.

The tolerance intervals are not new, they were published in several papers in the 1940s, including by the famous statis-
tician Wald,'214 and papers from other authors over the following decades.!>!7 A good overview and summary is given by
Chew.!® These tolerance intervals are popular in industrial statistics.'® For instance, they can be calculated easily with the
statistical software JMP (more commonly used in industry),?’ SAS,?! or Minitab,?? while they can neither be calculated
with the software MedCalc,?* nor NCSS that focuses on agreement intervals.?#?> The reason that the tolerance intervals
are not widely used in method comparison studies is to be questioned. In terms of terminology, tolerance means, in this
context, that some difference between the methods is tolerated (the measurements are still comparable in practice). Fur-
thermore, the tolerance interval is exact and therefore more appropriate than the agreement interval, as the next sections
will show. Although many authors try to improve the approximation of the agreement interval or to calculate its confi-
dence intervals,'?62° Ludbrook already pointed out the complexity of the agreement interval with its confidence intervals
while the tolerance interval is the appropriate solution.> Consequently, the tolerance interval should be recommended
and promoted in this context of method comparison studies (also called bridging studies in pharmaceutical company). In
more general viewpoint, tolerance intervals should be taught at school and part of the curriculum of statistical courses at
universities as explained by Gitlow and Awad.*° Meeker et al3! also mention in their book that “Prediction intervals, in
general, are no considered in most statistical texts except in the context of regression analysis.” This lack in the education
of statisticians and engineers is probably the consequence of the nonuse of prediction and tolerance intervals in practice
when they should be used.

The next section provides a nontechnical review and comparison of agreement and tolerance intervals. The new R
package BivRegBLS*? will be used to illustrate the tolerance intervals and to compare erythrocyte measurements, aro-
matics concentration, or measures of fraction of unbound compounds. Full R code is given and it will be explained how
to assess the coverage probabilities of the different statistical intervals by simulations.

2 | TOLERANCE VS AGREEMENT INTERVALS

This section compares the agreement and tolerance intervals for unreplicated designs, where a given medical param-
eter (ie, blood samples, systolic or diastolic blood pressure, heart rate, oxygen saturation, etc) is measured for each
patient (n patients) one time by both devices. The mathematical details for other designs can be found in the
literature. 3335

Two clinical measurement methods are considered interchangeable if their (individual) differences are not clinically
significant. The spread of the differences can be assessed by an interval within which 95% of the differences between
the two clinical measurement methods are expected to lie. Note that this definition corresponds actually to a tolerance
or prediction interval. The agreement interval by Bland and Altman was actually an attempt for a prediction interval, as
explained in the next sections.

2.1 | Agreement intervals

If D is the average of the differences and S the standard deviation of the differences, then the solution initially proposed
by Bland and Altman is the 95% agreement interval (AI) where 95% of the differences are expected to lie:°

95% AL: D + zo975S =D + 1.96S. €))

The quantity zg 975 refers to the 97.5% percentile of the standardized normal distribution and is equal to 1.96. This
interval is approximate and is too narrow when the sample size is low as it does not take into account the sampling
errors. Several authors propose to calculate a confidence interval around each bound of the AL.%252° This approach aims
to tackle the simplicity and the lack of accuracy of the agreement interval. The formula proposed by Bland and Altman is
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given as:
2

— Z
95% CI for 95% AI: D =+ 209755) + to975.n-15 l + ﬂ (2)
’ n 2n-1)

The quantity ty975,, -1 refers to the 97.5% percentile of the Student’s t-distribution (with n — 1 degrees of freedom).

The agreement interval can then be replaced by an interval from
the lower bound of the lower agreement limit to the upper bound
of the upper limit. This interval can be interpreted as the worst
I case or worst scenario (the largest interval),”® even though there
L is no rationale to interpret it quantitatively. Calculating a confi-
dence interval for each bound of the Al is even more complicated
r asitresults in six values: the Al and a confidence interval on each
[ of its bounds.

I DON'T KNOW HOW To PROPAGATE.
ERROR CORRECTLY, 50 I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.

Errors Bars comic by Randall (2019)3¢

Normal or t-distribution?

An analogy can be made between using the normal distribution or the Student’s t-distribution to calculate a confi-
dence interval for a mean when the true variance is unknown. The latter results in an exact CI, while applying the normal
distribution will result in an approximate CI that is also too narrow. Calculating a CI around each bound of the approxi-
mate CI for the mean would complicate the analysis, makes it awkward and confusing, and is useless as the exact CI with
the t-distribution is available. Just as the Student’s t-distribution is applied to calculate a CI for the mean, the TI should
be applied to assess whether the differences between two clinical measurement methods are tolerable.

2.2 | Prediction and tolerance interval

The prediction interval (PI) or equivalently beta-expectation tolerance interval (#TI) provides an appropriate and exact
solution that results in a single interval and it is therefore easier to calculate and to interpret. The 95% PI (or #TI) can be

calculated as follows:%34
95% TI: B + t0_975,n_1S 1+ l (3)
\ n

This interval is exact whatever the sample size and is not much more complicated to calculate than the AI (1) or (2).

The prediction interval here presented is equivalent to the beta-expectation Tolerance interval (also called “tolerance
interval type I,” see Table 1).>'83* Their definition and interpretation are, however, different. A prediction interval is an
interval where a future measurement (eg, a future difference between two medical devices) is expected to lie with a given
confidence level. A beta-expectation tolerance interval is an interval where a given proportion of the population should
lie, on average (eg, 95% of the differences). These two definitions lead to the same mathematical formula (3).

TABLE 1 Names and abbreviations of the agreement and

Name Abbreviation )
tolerance intervals

Agreement interval Al

Prediction interval PI

Beta expectation tolerance interval ST or TI type 1

Beta gamma content tolerance interval Py TL, TI type 11, or TI
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2.3 | Confidence in tolerance interval

The 95% beta-expectation tolerance interval is one in which exactly 95% of the (individual) differences will lie, on aver-
age. This means that in practice it may be too narrow (in nearly 50% cases) or too large (in nearly 50% cases). It will
contain exactly 95% of the differences on average when applied many times (infinite times). To improve this approach, a
confidence level may be added to the tolerance interval. We can, for instance, calculate a 95% tolerance interval with an
80% confidence level. Such intervals contain at least 95% of the (individual) differences in 80% of cases. This confidence
level provides an additional “guarantee” (a “margin of safety” or “assurance of safety”). These intervals are named “toler-
ance intervals of type II” or “beta-gamma content tolerance intervals” (fyTI, see Table 1) and are given by the following
formula:3*

n-—1
2

95% TI with 80% confidence: D + Zzyo75S \/ 1+ 1 \/ . 4)
n ){100%—80%,71—1

The quantity ;(220% et refers to the 20% percentile of the Chi square distribution (with n — 1 degrees of freedom). The
normal distribution is related to the predictive level and the Chi square distribution is related to the confidence level.
Note that the higher the confidence level, the larger the interval (the higher the assurance of safety).

This By TI (or TI type II) cannot be obtained explicitly without the use of iterations. The formula presented in this
article, (4), is an approximate formula derived from the first-order Taylor approximation on the exact formula given by
the following equations:*’

D + kS, (5)

/ 2 Xz /’(2
2 1 2
n / P n—-1 > 1,0.95,z _EnZ dz 08, (6)
¥/ 0 I n—1 k2

is the 95% percentile of the Chi square distribution with one degrees of freedom and a noncentrality

where k is the solution of:

where ;(12 0.95.2
parameter equal to z2. Comparing (4) with (3), one can notice that the Student distribution is replaced by a normal dis-
tribution and the standard deviation by the upper bound of its confidence interval.>” This leads to an explicit formula
easy to calculate with excellent predictive and confidence levels as shown in the next section, with similar results in

practice 10,16,31,34

2.3.1 | Prediction, tolerance, and quantiles? One or two-sided?

The statistical intervals presented in this article are two-sided. The formulas for confidence and prediction intervals are
usually identical for one- or two-sided versions except that the “~” or “+” sign has to be chosen accordingly for lower or
upper one-sided version and the risk associated with the confidence level has to be divided by 2 for the two-sided version
(left and right tails). The mathematical formulae for the one-sided or the two-sided fyTI are, however, not the same. The
exact one-sided TI requires a noncentral t distribution (not shown in this article).

A one-sided beta-gamma content tolerance interval is, actually, equivalent to calculating a confidence interval for
a given quantile, that is, the upper one-sided 80% CI for the quantile 0.95 is identical to the upper one-sided 95% TI
(type II) with 80% confidence level.3! On the other hand, the two-sided fyTI are not equivalent to calculating confi-
dence intervals on two quantiles (ie, 80% Cls on quantiles 0.025 and 0.975).%7 If one calculates the lower and the upper
one-sided By TI, both at 97.5% with 80% confidence levels, then the interval obtained from these two bounds would be an
approximate two-sided 95% TI with 80% confidence levels.3! The exact two-sided TI (6) or its direct approximation (4) are
better.

Note that the distinction between enumerative and analytic studies was introduced by Deming,*® and further dis-
cussed by Meeker et al.3! The comparison of two manufacturing processes, the comparison of drugs, or the comparison
of machines are examples given where we want to draw inferences or make predictions about the future (which is the
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goal of the prediction or tolerance interval type II). These example are common in engineering or medical fields.3! In our
context, clinicians have to make decisions about the performance of the new analytical method to be used in the future
based on data obtained in the past.

2.3.2 | Bayesian statistics and resampling methods

Under the Bayesian framework, prediction intervals can be directly calculated from the posterior distribution, while tol-
erance intervals (type IT) can be obtained after some extracalculation (an iterative search). Bayesian tolerance intervals in
the univariate normal distribution are discussed by Krishnamoorthy and Mathew?37(s¢ction11.2) ‘ynder the noninformative
prior and under the conjugate prior. This Bayesian methodology can be extended and applied to method comparison stud-
ies as the differences between two analytical methods provide a univariate distribution, assumed to be normal. Prediction
intervals can also be obtained by bootstrap techniques. The data are resampled, the mean and the standard deviations are
calculated from the pseudo-sample, then the pivotal root (derived from (3)) is calculated at each bootstrap simulation.
The quantile of the t-distribution in (3) can, then, be replaced by the quantiles from this bootstrap pivotal root distribu-
tion to obtain a bootstrap-t prediction interval. The coverage probabilities of this resampling method are slightly lower
than the nominal level for small sample sizes.

2.4 | Coverage probabilities of the agreement and tolerance intervals

In order to compare the effective prediction (and confidence) levels of the agreement and tolerance intervals, 10® samples
were simulated for different sample sizes (number of patients) from n=5 to n=100 (and from n=10" to n=10*) with
an unreplicated design and under equivalence (one measure per patient and per measurement method; the measure-
ments are equal before adding a random Gaussian measurement error to both measurements). The standard deviation
of the measurement errors are set to 1 for both devices (X and Y), the prediction level to 95% and the confidence lev-
els for the By TI (TI type II) are set to 80%, 90%, and 95%. For each simulated set of data, the mean and the standard
deviation of the differences are estimated, and the different intervals are calculated. The effective prediction levels are
then calculated based on a normal distribution with mean 0 and standard deviation equal /1 + 1 = 1.414. After the
10° simulations, the average of the effective prediction levels is calculated for each interval and displayed in Figure 1
(left). The confidence levels of the fyTIs are also assessed and displayed in Figure 1 (right). R code is given in the
Appendix.

Figure 1 (left) illustrates the effective prediction levels of the 95% Al, 95% BTIL, and 95% PByTI with 80%, 90%, or
95% confidence level, according to the sample size (number of patients). The effective prediction level of the Al is
always lower than the nominal level and it collapses for small sample sizes. The effective prediction level of gTI is
exactly equal to the nominal level whatever the sample size (the values are given in the Appendix). The effective
predictive level of fyTI is higher than the nominal level as the “assurance of safety” enlarges the interval. Figure 1
(right) illustrates that the effective confidence levels of the fyTIs are equal to the targeted confidence level, what-
ever the sample size. Figure 1 (bottom) shows the convergence of the different intervals from small to big sample
size. The Al converges to the PI (fTI) for, approximately, n =103, while the fyTI converges to the PI, approximately,
for n=10%

3 | APPLICATIONS USING BIVREGBLS R PACKAGE

The tolerance intervals can be calculated with the free statistical software R (downloadable from the website of
R-CRAN).* Tolerance* is a very good R package to calculate tolerance intervals under a wide variety of distributions
or models. BlandAltmanLeh* is an R package to calculate the agreement intervals, also blandr*? to calculate their
confidence intervals but this is not recommended as explained through this article.

The R package BivRegBLS*? is specifically designed to calculate tolerance intervals in method comparison studies and
to estimate errors-in-variables regressions with many different statistical intervals. An updated version has been recently
published on CRAN.*® Additional details and R command lines are given in the next sections to calculate tolerance
intervals in an (M,D) plot.
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3.1 | MD.horiz.lines and MD.plot R functions

The function MD.horiz.lines can be used to calculate the tolerance intervals in method comparison studies in an (M,D)
plot (arithmetic means on x-axis and difference on y-axis). The function has five arguments:

> library(BivRegBLS)
> args(MD.horiz.lines)

function (data = NULL, xcol = 1, ycol = 2, pred.level = 0.95,
TI.conf.level = 0.8)
NULL

First, the data set to be used. Second (third), the column name with the x (y) measures (the numeric position of the
column can also be used). Fourth, the prediction level to be used for the tolerance intervals (default value is 0.95). Fifth,
the confidence level to be used for the fy content tolerance interval. The results can be visualized in an (M,D) plot by
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using the function MD.plot where additional arguments (eg, axis limits, axis titles, main title) can be used as an ellipsis
is implemented:

> args(MD.plot)

function (results = NULL, xname = "X", yname = "Y", antilog = NULL,
accept.int = 0, accept.int.perc = FALSE, accept.int.threshold = NULL,
include.int = TRUE, graph.int = c("CB", "PI"), graph.horiz.int = c("bTI",
"bgTI"), col.CBLS = 1, col.CI 2, col.CB = 3, col.PI = 4,
col.GI = 5, col.bTI = 3, col.bgTI = 4, 1ty.CBLS = 1, 1ty.CI = 1,
1ty.CB = 1, 1ty.PI =1, 1ty.GI = 1, 1ty.bTI = 1, 1lty.bglI =1,
L)

NULL

The results must be from the CBLS function (not shown in this article) or the MD.horiz.lines, xname and yname can
be used as a character string to name, respectively, the X and Y devices.

The antilog argument can be used to back-transform the results if a log scale is used (see next section). The acceptance
interval can be defined using the argument accept.int: a numeric vector (length equal to 1 or 2) for the value of A to visually
check that |Y — X| < A. Two values of A can be used in case the acceptance interval changes for low or high values by
using the argument accept.int.threshold (see example in next section). The acceptance interval can be used in percentage
by setting the argument accept.int.perc as TRUE.

By default, the two tolerance intervals are displayed on the (M,D) plot, but the user can specify which one to
plot with the argument graph.horiz.int (“bTI” for the beta-expectation TI and/or “bgTI” for the beta-gamma content
TI). The line type and color of the tolerance intervals can be changed using the arguments col.bTI, col.bgTI, lty.bTI,
lty.bgTI.

3.2 | Differences vs means—Absolute differences
A data set kindly provided by Sanofi is used to illustrate and compare the different intervals. Hematology measurements

are performed on 20 dogs with two devices: A120 and TH1. The erythrocyte measurements (in 10°/uL) are given as
follows:

> A120 = ¢(6.020, 7.050, 6.745, 6.990, 7.715, 7.890, 7.095, 7.240, 5.740, 5.580,
+ 6.570, 6.775, 7.285, 6.985, 7.625, 6.985, 8.180, 7.815, 7.715, 6.610)
> TH1 = c(6.045, 7.080, 6.815, 7.045, 7.705, 7.860, 7.110, 7.310, 5.725, 5.515,

+ 6.515, 6.710, 7.330, 6.970, 7.605, 6.970, 8.260, 7.875, 7.730, 6.670)

> dat = data.frame(A120, TH1)

The average of the differences, D = A120 — TH1, can then be calculated as D = —0.012, and the standard deviation as
S =0.047. The 95% Al can then be calculated as follows:

D + 1.965S = —0.012 + 1.96-0.047 = [—0.103,0.080].

The AI should be interpreted with caution, as it is approximate and too narrow. One could say that less of 95% of the
differences lie approximately between —0.103 (106 /uL) and 0.080 (10°/pL). By using formula (2), one could calculate the
95% ClIs around each bound as:

2
_ Z
D * 209755) * t0‘975,195‘/%+ % = {—0.103[—0.141, —0.065]; 0.080[0.042, 0.117]}.
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FIGURE 2 Mean-difference (Bland-Altman) plot with tolerance intervals [Colour figure can be viewed at wileyonlinelibrary.com]

The interval in the worst case is therefore [—0.141, 0.117] (10%/uL). This interval cannot be interpreted correctly. The 95%
PI or 95% PTI can be calculated as follows:

D + tos%.195Y1+1/n=-0.012 = 2.093-0.0474/1 + 1/20 = [—0.112,0.088].

This interval can be directly interpreted as: a future difference between the two devices (A120 and TH1) is expected to
lie between —0.112 and 0.088 (with 95% confidence) (prediction interval interpretation), or exactly 95% of the future
differences will lie between —0.112 (10°/puL) and 0.088 (10°/uL), on average (BTI interpretation).

If needed, a confidence level can be added to the beta-expectation tolerance interval by calculating the fy content TI.
For instance, the 95% TI with 80% confidence level is given by:

D + 1.965V1+1/n, [15= L _ 0012 + 1.96-0.047\/1+ 1/204/ 1317916 = [—0.122,0.098].

X20%.19

The interpretation is: at least 95% of the future differences will lie between —0.122 (10°/uL) and 0.098
(10°/pL) in 80% of cases (and in 20% of the cases, less than 95% of the future differences will lie in this
interval).

Note that a fy TI (type IT) with 95% predictive level and 95% confidence level may provide a too large interval in practice
but the confidence level has to be determined a priori according to the study objectives. The main advantage of the fyTI
over the ATI is that it controls the risk of falling outside the interval. We are confident in what we get (we “control”),
which is not the case for #TI. Note that a 95% TI is similar (but not exactly equal) to a 95% fyTI with 50% confidence
level.3*

The tolerance intervals are illustrated in Figure 2A where the mean-difference (Bland-Altman) plot is produced (the
differences are plotted on the y-axis against the averages on the x-axis). We can notice that the fyTI is larger than the
PTI as a confidence level is added (the safety margin). If we assume that differences up to 0.1 (10°%/uL) are not clinically
important, it means that we accept or tolerate differences up to 0.1 (10%/pL). The acceptance interval is then defined
as [—0.1,0.1] (10%/pL). In this case, whatever the chosen interval, there is insufficient evidence to conclude equivalence
(both TIs are larger). One can conclude that the A120 and TH1 are not “equivalent” and therefore not interchangeable
(when measuring the erythrocyte concentration).
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The function MD.horiz.lines can be used to calculate the tolerance intervals as follows:

> res.TI = MD.horiz.lines(data = dat, xcol = "TH1", ycol = "A120")
> res.TI$Intervals.horiz.lines[,1:3]

Mean differences Lower Upper
AT -0.01175 -0.1030335 0.07953352
b TI -0.01175 -0.1116380 0.08813796
bg TI -0.01175 -0.1218414 0.09834140

The results can be visualized in an (M,D) plot, see Figure 2A by using the function MD.plot as follows:

> MD.plot(res.TI, accept.int = 0.1, xlab="", ylab="")
> title(xlab=expression(paste(" (4120 + TH1)/2")))
> title(ylab=expression(paste("(A120 - TH1)")))

Note that the normality is assumed to calculate the statistical intervals in this paper. The P-value of the Shapiro-Wilk
test for normality on the differences A120 — TH1 is 0.2.

3.3 | Differences vs means—Relative acceptance interval

In Ferrer et al,** the monoaromatics, diaromatics, and triaromatics concentrations of 35 diesel samples are measured by
HPLC and GC-MS (the results are presented in weight percentage). The full data set is included in BivRegBLS.

3.3.1 | Univariate tolerance intervals

For illustration, 95% ATI and 95% pyTI with 90% confidence are calculated on the diaromatics concentrations, and an
acceptance interval of 10% is used. The higher the measure, the higher the acceptance interval. For example, 1 unit differ-
ence is tolerated for average measures of 10, and 2 units of differences is tolerated for average measures of 20. The results
can be visualized in Figure 2B. A future difference between the HPLC and GC-MS is expected to lie between —1.74 and
1.79 (with 95% confidence), or equivalently 95% of the differences are expected to lie between these two values (on aver-
age). In 90% of cases, at least 95% of the differences will lie between —2.01 and 2.05. The P-value of the Shapiro test is .79.

> data(Aromatics)
> head (Aromatics)

Sample Type HPLCmono GCMSmono HPLCdi GCMSdi HPLCtri GCMStri
1 LD Guando LD 18.21 18.24 16.88 16.92 2.90 2.74
2 LGO Guando LGO 15.41 16.62 15.94 16.27 7.21 7.42
3 LD Chichimene LD 19.28 19.00 12.62 11.93 0.47 0.37
4 HD Chichimene HD 17.15 16.96 21.43 20.04 4.47 4.97
5 LGO Chichimene LGO 13.54 13.74 19.61 19.98 12.07 12.49
6 LD R. Hermoso LD 16.10 15.98 15.10 16.66 0.76 1.16
> res = MD.horiz.lines(data = Aromatics, xcol = 5, ycol = 6,
+ pred.level = 0.95, TI.conf.level = 0.9)

v

res$Intervals.horiz.lines[,1:3]

Mean differences Lower Upper
AT 0.02228571 -1.657254 1.701825
b TI 0.02228571 -1.743896 1.788467
bg TI 0.02228571 -2.007143 2.051714

> MD.plot(res, accept.int = 10, accept.int.perc = TRUE, xname = "HPLC", yname = "GCMS")
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3.3.2 | Multivariate tolerance intervals

If a 95% pyTI with 90% confidence level is calculated for each of the three concentration parameters (monoaromatics,
diaromatics, and triaromatics), then the confidence level is to be interpreted for each interval separately. If needed, the
confidence level can be adjusted (like in an ANOVA) so that, the first TI (for monoaromatics concentrations) and the
second TI (for diaromatics concentrations) and the third TI (for triaromatics concentrations) will contain, each, at least
95% of their respective differences between HPLC and GC-MS in 90% of cases. Sidak adjustment is a straightforward
approach. In this case, each TI will be calculated with 0.913 =96.55% confidence level, such that, overall, the confidence
level will be 90%. A better approach is, maybe, the use of multivariate tolerance intervals,3” but the main disadvantage
is the difficulty to communicate the results to nonstatisticians as multivariate tolerance regions are, usually, given by an
ellipse, or an ellipsoid in this example. See also the paper by Fuchs and Kenett!? for multivariate tolerance regions and
its connection to the F-test.

3.4 | Ratios vs geometric means—Log normal

The data published by Kalvass et al* is used to illustrate the tolerance intervals under log normal distributed data. The
fraction unbound of highly bound compounds is measured on 11 compounds with a flux dialysis technique and then com-
pared with the values given in the literature for each of these compounds. A logarithmic transformation is applied and the
tolerance intervals are calculated, see Figure 3A. The acceptance interval cannot be properly defined on log scales. The
results are then back-transformed using the function antilog.pred with a base 10. To plot the back-transformed statistical
intervals, the user can use directly the function MD.plot with the argument antilog. With the back-transformation, the
plotis automatically created with geometric means on the x-axis and ratios on the y-axis, see Figure 3B. It is here assumed
that differences of 20% are not meaningful. The acceptance interval starts then at (1-0.2=0.8) and ends at
1/(1-0.2)=1.25.
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FIGURE 3 Comparison between the flux dialysis and reported values on fraction unbound of 11 compounds [Colour figure can be
viewed at wileyonlinelibrary.com|
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B
]

c(0.14, 0.11, 0.035, 0.024, 0.0094, 0.0028, 0.0021,
0.0011, 0.000089, 0.000057, 0.000012)

c(0.13, 0.22, 0.016, 0.025, 0.01, 0.0042, 0.0021,
0.001, 0.000073, 0.00014, 0.000013)

dat = data.frame(x = x, y = y)

dat$logx = logl0(x)

dat$logy = logl0(y)

res = MD.horiz.lines(data = dat, xcol = "logx", ycol = "logy")

res$Intervals.horiz.lines[,1:3]

y

V V.V VvV + VvV + V

Mean differences Lower Upper
AT 0.04064953 -0.3432807 0.4245798
b TI 0.04064953 -0.4152202 0.4965193
bg TI 0.04064953 -0.4694850 0.5507841

MD.plot(res, xname = "log X", yname = "log Y")

# For didactic purposes, add the agreement interval:

abline(h = res$Intervals.horiz.lines["AI", "Lower"], col = 2)

abline(h = res$Intervals.horiz.lines["AI", "Upper"], col = 2)
legend("bottomleft", "957 AI", 1ty = 1, col = 2, text.col = 2, bty = "n")
# Back-transform the results:

res.back = antilog.pred(res, base = 10)
res.back$Intervals.horiz.lines[,1:3]

V V.V V VvV Vv Vv Vv

Mean differences Lower Upper
AT 1.098119 0.4536483 2.658152
b TI 1.098119 0.3843968 3.137035
bg TI 1.098119 0.3392462 3.554546

> MD.plot(res, antilog = 10, accept.int = 20)

> # For didactic purposes, add the agreement interval:

> abline(h = res.back$Intervals.horiz.lines["AI", "Lower"], col = 2)

> abline(h = res.back$Intervals.horiz.lines["AI", "Upper"], col = 2)

> legend("bottomleft", "95J, AI", 1ty = 1, col = 2, text.col = 2, bty = "n")

The flux dialysis is expected to differ from 0.38- to 3.1-fold from the values reported by the literature (with 95% con-
fidence) (prediction interval interpretation), or exactly 95% of the future measurements will differ from 0.38- to 3.1-fold,
on average (fTI interpretation). If needed, a confidence level can be added by calculating the gy TI (type II). The 95% TI
with 80% confidence level is given by [0.34,3.55]: at least 95% of the future flux dialysis measures will differ from 0.34-
to 3.55-fold from the reported values in 80% of cases. Note that the agreement interval is given in the output of the func-
tion MD.horiz.lines for “didactic” reasons but cannot be plotted automatically by the MD.plot function. In Figure 3A,B,
we have added the agreement interval to illustrate that the narrowness of the agreement interval is highlighted when the
interval is exponentiated to back-transform the results from a log scales to the original scales. The P-value of the Shapiro
test, on log scale, is .43.

3.5 | Tolerance intervals with repeated measures
When repeated measures are available, the function MD.horiz.lines can still be used and the results plotted with the

function MD.plot. The repeated measures should be in an unstacked format (different columns) and the argument xcol
and ycol should define these columns (eg, xcol = 1:3, or xcol = c(“R1,” “R2,” “R3”)).
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3.6 | Estimate aregression line

The tolerance intervals presented in this article are bounded by two straight (horizontal) lines in the mean-difference
(Bland-Altman) plot and are therefore valid if no pattern is observed (or if at least, the differences can still be assumed to be
Gaussian). Otherwise, a regression line should be estimated by the correlated bivariate least square (CBLS) regression or
equivalently by the bivariate least square (BLS) regression in the (X,Y) plot.3*% The functions BLS and CBLS are included
in BivRegBLS.

3.7 | Validation of BivRegBLS

The first release of BivRegBLS on CRAN (version 1.0.0) contains 18 functions including five graphical functions, with
more than 160 arguments in total. More than 200 warning and error messages are implemented to help the user. The
full package has been validated with more than 550 user acceptance tests (UAT) and more than 160 user technical
tests (UTT).

4 | RECOMMENDATIONS AND CONCLUSION

4.1 | Are the tolerance intervals more complicated to calculate than the agreement
intervals?

The tolerance intervals can be calculated with a single formula and they are not much more complicated than the
agreement interval. Moreover, trying to improve the approximation of the agreement interval leads to more complicated
formulas than directly calculating the exact beta-expectation tolerance interval.

4.2 | Are the tolerance intervals more complicated to interpret than the agreement
intervals?

The beta-expectation tolerance interval is easier to interpret as it contains exactly the desired predictive level (on aver-
age). The beta-gamma content tolerance interval is also easy to interpret as it encompasses a given proportion of the data
with a given confidence level. The agreement interval is approximate and therefore, it should be interpreted with cau-
tion (especially for small sample sizes). Calculating a confidence interval for each bound of the agreement interval is
awkward and brings even more confusion to its interpretation. While Hamilton and Stamey recommend calculating the
Als with its confidence intervals in their paper entitled “Using Bland-Altman to assess agreement between two medi-
cal devices-don’t forget the confidence intervals!,”?® we have shown in this article that tolerance intervals are better and
should be encouraged.

4.3 | Tolerance intervals with BivRegBLS?

The functions MD.horiz.lines is straightforward to calculate the tolerance intervals with only three main arguments: the
data set, the X column, and the Y column, while additional arguments can be used to change the predictive or confidence
levels of the tolerance intervals. The function MD.plot allows to quickly visualize the results and the tolerance intervals.
A constant or relative acceptance interval can be added to the plot. Finally, the results can easily be back-transformed
when a logarithmic transformation is applied. The plot is then converted accordingly with geometric means and ratios
instead of the traditional mean-difference (Bland-Altman) plot.
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APPENDIX

The full R code to assess the coverage probabilities of the tolerance intervals (Figure 1, top) is given as follows:

>
>
>
>
>
>
>

simul <- 10°5 # Number of simulations

ns <- ¢(5,7,10,12,15,20,25,30,40,50,75,100) # Sample Sizes

confs <- ¢(0.80,0.90,0.95) # Confidence levels used for the TI
# The minimum and maximum measured value (without measurement error)

min.measure = 10
max.measure = 20

# The measurement error variances
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> # The measurement error variances
var.err.x = 1
var.err.y = 1
colTI = pasteO("TI",confs*100)
colTIconf = pasteO("TI",confs*100, "conf")
coltitre <- c("AI", "PI", colTI, colTIconf)
temp.res <- as.data.frame(matrix(nrow = simul, ncol = length(coltitre)))
Results <- as.data.frame(matrix(nrow=length(ns), ncol=length(coltitre)))
colnames (Results) <- coltitre
colnames (temp.res) <- coltitre
# The true standard deviation for a difference
sd.err.diff = sqrt(var.err.x + var.err.y)
for (nn in 1:length(ns))
{
n = ns[nn]
true.measure = runif(n, min.measure, max.measure)
#cat(n,"\n")
for (i in 1:simul)
{
x = true.measure + rnorm(n, 0, sqrt(var.err.x))
y = true.measure + rnorm(n, 0, sqrt(var.err.y))
d=y -x
mean.diff = mean(d)
sd.diff = sd(d)

AIl
AI2

mean.diff - qnorm(0.975) * sd.diff
mean.diff + qnorm(0.975) * sd.diff

k = sd.diff * sqrt(1+1/n)
bTI1 = mean.diff - qt(0.975,n-1)
bTI2 = mean.diff + qt(0.975,n-1)

*

k
k

+ + 4+ + + ++ +++++++++++++F 4+ VVVVVVVVVYVVY
*

bgTI1 = mean.diff - qnorm(0.975) * k * sqrt((n-1) / qchisq(l-confs,n-1))
bgTI2 = mean.diff + qnorm(0.975) * k * sqrt((n-1) / qchisq(l-confs,n-1))
+
+ temp.res$AI[i] = pnorm(AI2, 0, sd.err.diff) - pnorm(AIl, 0, sd.err.diff)
+ temp.res$PI[i] = pnorm(bTI2, 0, sd.err.diff) - pnorm(bTI1, 0, sd.err.diff)
+ temp.res[i,colTI] = pnorm(bgTI2, 0, sd.err.diff) - pnorm(bgTI1l, O, sd.err.diff)
+ temp.res[i,colTIconf] = temp.res[i,paste0("TI",confs*100)] >= 0.95
+ }
+ Results[nn,]=apply(temp.res,2,mean)
+ }

> Results$n <- ns
> print (round(Results,3), row.names = FALSE)
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AT PI TI80 TI90 TI95 TI80conf TI90conf TI95conf n
0.852 0.950 0.962 0.981 0.990 0.805 0.902 0.950 5
0.884 0.950 0.966 0.982 0.990 0.804 0.898 0.950 7
0.905 0.949 0.968 0.981 0.989 0.801 0.898 0.949 10
0.913 0.950 0.969 0.981 0.989 0.802 0.902 0.950 12
0.921 0.950 0.968 0.980 0.987 0.799 0.899 0.950 15
0.929 0.950 0.968 0.979 0.986 0.798 0.901 0.951 20
0.934 0.950 0.967 0.977 0.984 0.801 0.899 0.950 25
0.936 0.950 0.966 0.976 0.982 0.802 0.900 0.949 30
0.940 0.950 0.965 0.973 0.979 0.799 0.900 0.949 40
0.942 0.950 0.964 0.972 0.978 0.802 0.899 0.949 50
0.945 0.950 0.962 0.969 0.974 0.803 0.901 0.950 75
0.946 0.950 0.961 0.967 0.971 0.800 0.901 0.950 100
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