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Background
Biomedical image segmentation is typically the first critical step for biomedical image 
analysis [1]. Based on the accurate segmentation, multiple biological or medical analyses 
[2] can be performed subsequently, including cell counting [3], quantitative measure-
ment of anatomical structure [4], cell phenotype analysis [5], subcellular localization [6], 
etc., providing valuable diagnostic information for doctors and researchers [7]. Although 
conventional image processing techniques are still employed for this time and labor-
consuming task, they often cannot achieve the optimized performance due to different 
reasons, such as the limited capability of dealing with diverse images [8], lack of comput-
ing source, and so on.

With the rapid developments of DL based techniques, multiple researchers begin to 
investigate the potential applications to employ DL in biomedical image segmentation. 
One of the most popular applications is the U-Net [9]. Since the U-Net architecture was 
proposed in 2015, more and more researchers choose it as the backbone for their models 
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because of its excellent performances. Now, U-Net is widely applied in the field of bio-
medical image segmentation and derives many variants. Such as MultiResUNet [10], 
Attention U-Net [11], UNet++ [12], and so on. All these variants based on U-Net solve 
some problems that are produced by U-Net in its applications.

The U-Net is an encoder-decoder architecture [13] consisting of a contracting path 
and an expansive path. The former is down-sampling which increases the receptive field 
[14] to gain more features. The latter recovers the feature extracted in the former and 
concatenates the corresponding feature map in the contracting path. The concatena-
tion called skip connection [15] is an important part of U-Net because it combines the 
information in the architecture. But the way of getting context information in the U-Net 
is not capable of extracting more fine information to achieve better performance. To 
address the above problems, we chose a new convolution called pyramidal convolution 
[16] to get more information and to improve the performance of our model.

The pyramidal convolution (PyConv) can process the input at multiple filter scales. It 
is illustrated in Fig. 1, contains a pyramid with n levels of different types of kernels. The 
goal of PyConv is to process the input at different kernel scales without increasing the 
computational cost or the model complexity (in terms of parameters). At each level of 
the PyConv, the kernel contains a different spatial size, increasing kernel size from the 
bottom of the pyramid to the top. Simultaneously with increasing the spatial size, the 
depth of the kernel is decreased from level 1 to level n. It involves different types of filters 
with varying sizes and depth so that it can capture different levels of details in the scene. 
Meanwhile, PyConv is also efficient and it does not increase the computational cost and 
parameters compared to standard convolution. Moreover, it is very flexible and extensi-
ble, providing a large space of potential network architectures for different applications.

In this paper, we develop a novel architecture called PyConvU-Net, an enhanced 
version of U-Net, demonstrating the implementation of PyConv in a standard U-Net 
architecture and applying it to biomedical images segmentation. We also compare the 
PyConvU-Net with many other models in different datasets, achieving a good perfor-
mance while it has fewer number of parameters that can save computing power.

Fig. 1  The structure of pyramidal convolution
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U-Net consists of a contracting path to capture context and a symmetric expanding 
path that enables precise localization. The contracting path follows the typical architec-
ture of a convolutional network. It consists of the repeated application of two 3 × 3 con-
volutions (unpadded convolutions), each followed by a rectified linear unit (ReLU) [17] 
and a 2 × 2 max pooling operation with stride 2 for down-sampling. Every step in the 
expansive path consists of an up-sampling of the feature map followed by a 2 × 2 con-
volution (“up-convolution”) that halves the number of feature channels, a concatenation 
with the correspondingly cropped feature map from the contracting path, and two 3 × 3 
convolutions, each followed by a ReLU. The cropping is necessary due to the loss of bor-
der pixels in every convolution. At the final layer, a 1 × 1 convolution is used to map each 
64-component feature vector to the desired number of classes. In total the network has 
23 convolutional layers.

The exploration of U-Net architecture has been a part of biomedical image segmenta-
tion research since its initial discovery. Many researchers propose a lot of variants of 
U-Net and continuously improve the performance of the structure. For example, Mul-
tiResUNet [10] combines the MutiRes module and U-Net, where MutiRes is an exten-
sion of residual connection [18]. In this module, three 3 × 3 convolution results are 
spliced together as a combined feature map, which is then added to the input feature 
after 1 × 1 convolution. Besides the MultiRes module, MultiResUNet has a significant 
part that is ResPath, the function of which is doing some additional convolution opera-
tions before the feature of the encoder are spliced with the corresponding features in 
the decoder. Another excellent network is Attention U-Net [11] that brings the attention 
mechanism into U-Net. Before stitching the feature at each resolution of the encoder 
and the corresponding feature in the decoder, an attention module that generates a 
gating signal to control the importance of the feature at a different spatial location is 
used to readjust the output characteristic of the encoder. The attention module com-
bines ReLU and Sigmoid through 1 × 1x1 convolution to generate a weight map α that 
can be corrected by multiplying the features in the encoder. UNet++ [12] also is a good 
architecture, starts with an encoder sub-network or backbone followed by a decoder 
sub-network. What distinguishes UNet++ from U-Net is the re-designed skip pathway 
that connects the two sub-networks and the use of deep supervision.

Besides the networks based on U-Net, there are also many segmentation networks for 
biomedical images. We choose a network called FCN [19] to compare with ours. FCN 
also is a good network for semantic segmentation. The reason why the network called 
FCN is because it converts the fully connected layers in traditional CNN [20] into con-
volutional layers. It is a fully convolutional network without a fully connected layer and 
can adapt to any size input. Besides, it makes use of a deconvolutional layer to increase 
the data size to achieve a better fine output result. What’s more, it utilizes the skip con-
nection to integrate the information in the different depth layers due to ensuring robust-
ness and accuracy.

Results
As shown in Table  1, we demonstrate the application of the PyConvU-Net to three 
different segmentation tasks. The first task is the segmentation of the lung in the 
CT images [21]. The dataset called kaggleLung which is provided by the Finding and 
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Measuring Lungs in CT Data in Kaggle is a collection of 512 × 512 CT images, manu-
ally segmented lungs, and measurements in 2/3D, containing 267 2D images. We just 
choose the 2D images and split the dataset into two parts, of which the training set 
accounts for 80%, and the test set accounts for 20%. Each image comes with a cor-
responding fully annotated ground truth segmentation map for the lung (white) and 
other parts (black). The second dataset is similar to the first, except that the organ is 
replaced with the liver. Meanwhile, the liver dataset has 400 512 × 512 images more 
than kaggleLung. The above two datasets have the same challenges that images have 
an unclear edge and organs from different people have some slight differences. These 
challenges will affect the edge extract and location of organs we want to segment. 
The last dataset is ISBICell [22] is provided by the EM segmentation challenge that 
was started at ISBI 2012 and is still open for new contributions. The training data is 
a set of 30 512 × 512 images from serial section transmission electron microscopy of 
the Drosophila first instar larva ventral nerve cord (VNC) [23]. ISBICell has more 
detailed information (complex cell boundaries), which will test the model’s ability to 
handle details. Considering that these datasets have fewer samples, we have adopted 
some simple data augmentation methods to expand the datasets. These methods 
include horizontal flip, vertical flip, 90° rotation, and 180° rotation.

For comparison, we use FCN [19], the original U-Net, and a series of variants based 
on U-Net including UNet++, Resnet34_UNet, and Attention U-Net. First, the train-
ing losses of models are shown in Fig. 2. From Fig. 2, it is clear that the training losses 

Table 1  The image segmentation datasets used in our experiments

Dataset Images Input size Modality

kaggleLung 267 512 × 512 CT

liver 400 512 × 512 CT

ISBICell 30 512 × 512 Microscopy

Fig. 2  Training losses of different models
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of all models remain stable after the first 5 epochs training, only the loss of UNet++ 
is higher than other models after stable.

As shown in Table 2, we choose two metrics, MIoU [24] and Dice [25] respectively, to 
evaluate our model in the three segmentation tasks.

MIoU is to calculate the ratio of the intersection and union of the true value set and 
predicted value set, the formula is as follows.

where TP
FN+FP+TP can be equivalent to the following formula.

where k is the number of categories, i represents the true value, j represents the pre-
dicted value and pij represents predicting i as j . pii is the number of true values.

Dice coefficient is a function that measures the similarity of two sets and is one of the 
commonly used evaluation indicators in semantic segmentation. The Dice coefficient is 
defined as the intersection of two times divided by the sum of pixels, which is similar to 
IoU, and its calculation formula is as follows.

It is equivalent to the following formula.

Our proposed method achieves the best performance in liver dataset and is much 
higher than in the second place. On the kaggleLung dataset, our proposed method does 
not get the first place but has a better performance than other models but U-Net. In 
the last segmentation task, PyConvU-Net performs similarly to other methods, without 
much prominence where it gets the champion evaluated by Dice and gets the second 
place evaluated by MIoU. In the experiments, we also measured the parameter size and 
computational complexity of different models respectively, listed in Table 3.

(1)MIoU =
1

k + 1

k
∑

i=0

TP

FN + FP + TP

(2)
TP

FN + FP + TP
=

pii
∑k

j=0 pij +
∑k

j=0 pji − pii

(3)Dice(X, Y) =
2|X ∩ Y |

|X | + |Y |

(4)Dice =
2TP

2TP + FP + FN

Table 2  MIoU and dice of different models in three datasets

Bold numbers indicate the best performance

kaggleLung liver ISBICell

MIoU Dice MIoU Dice MIoU Dice

U-Net 0.7279 0.7834 0.6207 0.7386 0.7742 0.8639

UNet++ 0.6078 0.6471 0.6504 0.7690 0.7878 0.8808

Resnet34_UNet 0.9494 0.9721 0.6623 0.7451 0.8398 0.9115

Attention U-Net 0.7723 0.8278 0.6989 0.8083 0.8269 0.8945

FCN8s 0.9545 0.9752 0.5139 0.6447 0.8345 0.9005

PyConvU-Net 0.9630 0.9339 0.7050 0.8227 0.8385 0.9117
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From Fig. 3, the MIoU and Dice of our proposed method, FCN8s and Resnet34_UNet 
are stable after 3 epochs while can keep a high level. Other methods perform very 
unstably.

Our method has the fewest parameters which means our network does not need too 
much computational power. From this, we can see that even if we lose some precision in 
some aspect, we can keep the network lightweight while not affecting the segmentation 
tasks finished by our proposed model.

We put the predictions of different methods in Fig. 4.
All experiments were carried out in the PyTorch framework [26] and trained using 

Nvidia-RTX 2080Ti GPUs. These networks are trained for a total of 50 epochs and a 
batch size of 5.

Table 3  Number of parameters and computational complexity of different networks

Bold numbers indicate the best performance

U-Net Unet++ Resnet34_UNet Attention U-Net FCN8s PyConvU-Net

Number of 
parameters/
MB

7.77 9.16 21.66 34.88 18.64 3.7

FLOPs/GMac 48.57 138.63 24.27 266.54 85.86 10.65

Fig. 3  The evaluation of different models. a MIoU of different methods, b dice of different methods

Fig. 4  Segmentation comparisons. From left to right, the columns represent the original image, mask, 
U-Net predictions, U-Net++ predictions, Resnet34_UNet predictions, FCN8s predictions, and PyConvU-Net 
predictions respectively. The red curve shows the actual area of the organ. The markers of the last row 
indicate the key area
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Discussion
Due to its excellent performance, U-Net is the most widely used backbone architecture 
for biomedical image segmentation in recent years. However, in our studies, we observe 
that U-Net will ignore detailed information when performing convolution operations 
[27]. We analyze this issue in detail and address it by proposing a lightweight and mul-
tiscale architecture PyConvU-Net which replaces the traditional convolution layer with 
the pyramidal convolution layer. This network which can extract multiple sequence fea-
ture information [28] not only achieves improvements in the biomedical image segmen-
tation tasks [29] but also reduces the number of parameters.

We evaluate the proposed method on three biomedical image segmentation tasks. We 
can see from Table 2 that the proposed method does not outperform other methods on 
all datasets. The PyConvU-Net achieves first place on the liver dataset and much higher 
than the second place. However, it does not perform as well as FCN8s on the kaggleLung 
dataset, it just gets second in MIoU and third in Dice. In response to this phenomenon, 
we carefully consider the reasons for this phenomenon. We think the reason is that the 
liver dataset has a clear edge between different organs, however, the boundaries in the 
kaggleLung dataset are fuzzy. So the proposed method has shortcomings in the segmen-
tation of images with blurred boundaries. This situation also happens in the ISBICell 
datasets. The cell images have many complex edges that are entangled with each other. 
To some extent, these boundaries are unclear, so PyConvU-Net does not have a very 
good performance on the ISBICell dataset. From the experimental results in Table  2, 
although the proposed model does not achieve the best performance on all tasks, it is 
still in a leading position. From the beginning, our goal is to minimize the number of 
model parameters and computational complexity without losing segmentation accuracy 
or losing the part of the accuracy. We list the number of parameters and the compu-
tational complexity of different models in Table  3. In terms of the number of param-
eters, U-Net has 7.77 MB parameters, our proposed model’s parameters are almost half 
U-Net’s. Meanwhile, in computational complexity, the metric is FLOPs. Our proposed 
model is far ahead in this regard.

Hence, the next step of our future work has three parts. One is improving the abilities 
to segment the image with blurred boundaries and edge extract to solve the problem of 
that loss of object edge. The second is to carry on reducing the number of parameters 
and computational complexity to implement model deployment on mobile devices. The 
last one is that we hope to achieve good performances in both segmentation accuracy 
and model lightweight and obtain an accurate and efficient biomedical image segmenta-
tion model.

Conclusion
We propose a lightweight and multiscale network called PyConvU-Net which is con-
structed by pyramidal convolution based on U-Net. The purpose of pyramidal convolution 
is to utilize different size filters to specifically capture detailed information which is typi-
cally missed out in the traditional convolution. Through the exhaustive experiments and 
analysis, despite we use different kernel sizes, PyConvU-Net does not increase the num-
ber of parameters while maintaining good performance in different segmentation tasks. 
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For future work, it will be interesting to explore improve the performance of our proposed 
architecture in other segmentation datasets.

Methods
Figure 5 shows an overview of the suggested architecture. As seen, PyConvU-Net adopts a 
framework like U-Net’s Encoder-Decoder. What distinguishes PyconvU-Net from U-Net is 
the re-designed convolutional layers (shown in red arrow) that replace the traditional con-
volution with the pyramidal convolution. As is shown in the legend which is at the bottom 
of Fig. 5, all convolution blocks are followed by a batch normalization layer [30] and a ReLU 
activation function.

Traditional convolutional using the fixed kernel size has entered a bottleneck period. It 
cannot gain more detailed information to improve the performance of the network. There-
fore, we want to find another convolutional way that can extract as much as possible infor-
mation in the biomedical images while not increasing the cost of computation. Pyramidal 
convolution came into our view at that time. We replace all conventional convolution lay-
ers in the U-Net with the pyramidal convolution. Also, we change the padding way in the 
U-Net. U-Net uses the valid padding that can reduce the size of the feature map after con-
volution, which can drop some fine information. To solve the problem, we change the valid 
padding into the same padding to ensure that the feature map does not change size before 
and after convolution. Meanwhile, At the final layer in the original U-Net, a 1 × 1 convolu-
tion is used to map each 64-component feature vector to the desired number of classes. 
However, the final layer in our proposed model is the Sigmoid activation function. This is 
because our mask image is a binary image. Through the Sigmoid activation function, the 
output of the network is a binary image that can be convenient to compare the difference 
between the two.

The number of parameters and FLOPs required for the standard convolution can be cal-
culated by the following formulas:

(5)parameters = K 2
1 · FMi · FMo

Fig. 5  An overview of the proposed PyConvU-Net architecture
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where FMi represents the input feature map, FMo represents the output feature map and 
K1 is a spatial size of the kernel;

where W  and H represent the width and height of the output feature map respectively. 
However, in PyConv, for the input feature maps FMi , each level of the PyConv 
{1, 2, 3, · · · , n} applies different kernels with different spatial size for each level 
{

K 2
1 ,K

2
2 ,K

2
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(From Fig.  1, the kernel depth decreases as the kernel size increases). Afterwards, 
PyConv will output a different number of output feature maps 
{FMo1, FMo2, FMo3, · · · , FMon} . Therefore, the number of parameters and FLOPs for 
PyConv are as follows:

where FMo1 + FMo2 + FMo3 + · · · + FMon = FMo and K 2
z ·

FMi
(

K2
z

K2
1

) can be simplified as 

K 2
1 · FMi . With Eqs.  (7) and (8), regardless of the number of levels of PyConv and the 

increasing kernel size, the computational cost (in terms of FLOPs) and the number of 
parameters are the same as the standard convolution with a single kernel size.

According to the above analysis, the proposed model has two advantages. One is 
multiscale convolution. PyConvU-Net utilizes different kernel sizes to do convolution 
operations, which can gain more detailed information. The small size kernel focuses 
on details, capturing information about smaller objects, while the large size kernel pro-
vides more information about larger objects. The other is efficiency. Comparing with the 
U-Net, PyConvU-Net has a similar number of parameters and requirements in compu-
tational resources, as shown in Eqs. (7) and (8). Meanwhile, PyConvU-Net offers a high 
degree of parallelism due to the fact that the pyramid levels can be independently com-
puted in parallel.
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