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Abstract

Long-term exposure to low polycyclic aromatic hydrocarbon (PAH) concentration may ave

detrimental effects, including changing platelet indices. Effects of chronic exposure to low

PAH concentrations have been evaluated in cross-sectional, but not in longitudinal studies,

to date. We aimed to assess the effects of long-term exposure to the low-concentration

PAHs on alterations in platelet indices in the Chinese population. During 2014–2017, we

enrolled 222 participants who had lived in a village in northern China, 1–2 km downwind

from a coal plant, for more than 25 years, but who were not employed by the plant or related

businesses. During three follow-ups, annually in June, demographic information and urine

and blood samples were collected. Eight PAHs were tested: namely 2-hydroxynaphthalene,

1-hydroxynaphthalene, 2-hydroxyfluorene, 9-hydroxyfluorene (9-OHFlu), 2-hydroxyphe-

nanthrene (2-OHPh), 1-hydroxyphenanthrene (1-OHPh), 1-hydroxypyrene (1-OHP), and 3-

hydroxybenzo [a] pyrene. Five platelet indices were measured: platelet count (PLT), platelet

distribution width (PDW), mean platelet volume (MPV), platelet crit, and the platelet-large

cell ratio. Generalized mixed and generalized linear mixed models were used to estimate

correlations between eight urinary PAH metabolites and platelet indices. Model 1 assessed

whether these correlations varied over time. Models 2 and 3 adjusted for additional personal

information and personal habits. We found the following significant correlations: 2-OHPh

(Model1 β1 = 18.06, Model2 β2 = 18.54, Model β3 = 18.54), 1-OHPh (β1 = 16.43, β2 = 17.42,

β3 = 17.42), 1-OHP(β1 = 13.93, β2 = 14.03, β3 = 14.03) with PLT, as well as 9-OHFlu with

PDW and MPV (odds ratio or Model3 ORPDW[95%CI] = 1.64[1.3–2.06], ORMPV[95%CI] =

1.33[1.19–1.48]). Long-term exposure to low concentrations of PAHs, indicated by2-OHPh,

1-OHPh, 1-OHP, and 9-OHFlu, as urinary biomarkers, affects PLT, PDW, and MPV. 9-

OHFlu increased both PDW and MPV after elimination of the effects of other PAH exposure

modes.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic pollutants with at least two fused

aromatic rings of varying origin. Outdoors are generated by the incomplete combustion of

coal, petroleum, wood, tobacco, and organic macromolecular compounds [1]. Indoors, PAHs

are typically derived from smoking and carbon-baked foods [2]. The acute effects of PAHs on

human health depend on the concentration, duration, and route of exposure. Multiple studies

have focused on occupational and high-concentration exposures, which affect the nasal tissues,

red blood cells, platelets, white blood cells, uterus, hair follicles, brain, spleen, placenta, liver,

lungs, and kidneys [3]. Chronic effects include immunotoxicity, cytotoxicity, immune dys-

function, dyslipidemia [4], asthma [5], fetal dysplasia [6], and cardiovascular disease [7]. For

example, high-dose exposure to vehicular combustion products has been reported to increase

platelet counts [8] and exert other effects on platelet activity [9]. In rabbits, high-dose exposure

to PAHs affects the synthesis of thromboxane B2 [10].

Long-term exposure to low concentrations of PAHs may cause low-grade inflammation

[11] due to alterations in the platelet index [12]. The effects of chronic exposure to low concen-

trations of PAHs have also been estimated from cross-sectional research for both adults and

children [13]; however, these correlations have not been proven in longitudinal analysis,

which has the advantage of allowing estimation of the effect of long-term exposure.

Risk assessment of environmental pollution relies on dose–response relationships [3], and

biomarkers have been suggested to be reliable epidemiological tools. The breakdown products

of PAHs are excreted chiefly in urine [1, 6, 7, 14].

Thus, we assessed the effects of long-term exposure to low-concentration PAHs and alterations

in platelet indices in the Chinese population. Longitudinal datasets were collected to study the

effects of long-term exposure to low concentrations of PAHs on platelet indices among adults

who were not occupationally exposed. We then estimated the correlations among eight represen-

tative urinary PAH metabolites (UPAHMs) and five platelet indices, under the effect of covariates,

aiming to assess low-concentration exposure to PAHs and alterations in platelet indices in the

Chinese population based on a longitudinal dataset using UPAHM as biomarkers of exposure.

Materials and methods

Study population

We enrolled 418 participants from northern China [15] between 2014 and 2017. All participants had

resided in a village located 1–2 km downwind from a coal plant for more than 25 years, but were not

employed by the plant or related businesses. As the residences were close to each other in the village,

participant exposure to automobile exhaust was not considered. During three annual waves of fol-

low-up of the 2014, 2015, 2016, and 2017 groups, in June (non-heating season) each year, demo-

graphic information was collected via questionnaires through in-person interviews conducted by

rigorously trained interviewers. Urine and blood samples were collected on the same morning at

each of the three follow-up time-points. Complete records were available for 222 subjects (Fig 1).

Participants were grouped by their year of enrolment: 59 participants in 2014, as the first

group, 71 in 2015, as the second group, 53 in 2016, as the third group, and 39 in 2017, as the

fourth group. All subjects provided informed consent for participation and for storage and use

of their blood and urine samples.

Measurement of urinary metabolites

Morning urine samples were collected from each participant in clean polypropylene tubes in

June during the three consecutive annual follow-ups. All urine samples were stored at −20˚C
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until used. The limits of detection of PAHs ranged from 0.1 to 0.9 μg/L and default values were

replaced by 50% of the limit of detection. We tested samples for eight PAHs: 2-hydroxy-

naphthalene (2-OHNa), 1-hydroxynaphthalene (1-OHNa), 2-hydroxyfluorene (2-OHFlu),

9-hydroxyfluorene (9-OHFlu), 2-hydroxyphenanthrene (2-OHPh), 1-hydroxyphenanthrene

(1-OHPh), 1-hydroxypyrene (1-OHP), and 3-hydroxybenzo[a]pyrene (3-OHBaP). The testing

process has been previously described [16]. Briefly, urine samples were hydrolyzed with β-glu-

curonidase/sulfatase (Roche, Basel, Switzerland) and purified using C18 cartridges (surface

area: 525 m2/g per cartridge; average particle size: 52.1 μm, Supelco, Inc., Bellefonte, PA,

USA). Next, a 400-μL extract was produced by condensation with a dry N2 purge. High-per-

formance liquid chromatography (Waters-2695, Waters Ltd., Milford, MA, USA) with a fluo-

rescence detector. The linearity (expressed as the R-value), mean relative standard deviation,

and mean recovery rate of the samples were 0.999%–1.0000%, 0.70%–8.36%, and 81.83%–

123.75%, respectively. To avoid fluctuation of substances in the urine with the amount of urine

excreted, the UPAHMs were calibrated using urinary creatinine.

Fig 1. The include and exclude processes of the participants.

https://doi.org/10.1371/journal.pone.0276944.g001
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Measurement of platelet indices

Fasting blood samples (15 mL) were collected from each participant using standard methods

[17] and were analyzed for leukocytes, erythrocytes, thrombocytes, and immunoglobulin indi-

ces using a Hemaray 86 automatic hematological analyzer (Rayto Co., Shen Zhen, China). Five

platelet indices were measured: platelet count (PLT), platelet distribution width (PDW), mean

platelet volume (MPV), platelet crit, and platelet-large cell ratio (P-LCR).

The measurement of urinary metabolites and platelet indices was also applied in a previous

study [18].

Covariates

Age, sex, weight, and height were used as covariates. Body mass index (BMI) was calculated as

weight divided by height. The participants were grouped by age (� 60 and> 60 years). Habit-

ual smokers were defined as those who smoked at least one cigarette per day for at least 6

months [19]. Second-hand smoke exposure was defined as the presence of an adult who

smoked more than one pack per week. Alcohol consumption was defined as a history of alco-

hol consumption for more than 1 year. Considering that high-frequency intake of barbecued

foods increases PAH exposure [20] and that barbecue was not the primary cooking method in

this village, the 11 participants who reported barbecued foods were excluded from the analysis.

Statistical analyses

First, we used univariate statistical analysis to evaluate demographic characteristics and UPAHM

levels, and their changes between sampling points. We used the Shapiro–Wilk test to assess nor-

mality, and analysis of variance, least significant difference, chi-squared test, Wilcoxon’s rank-

sum test, and the Kruskal–Wallis H test to identify differences between the groups. Next, we used

Spearman’s correlation analysis and K-means cluster methods to determine whether demographic

information correlated with mean changes in the UPAHM. To identify changes in thrombocyte

indices and UPAHM over time, we used multivariate analysis of variance for repeated measure-

ments [21] and traditional analysis of variance for variables that met and did not meet sphericity

assumptions, respectively. We then used general mixed models [22] to evaluate the correlations

between the UPAHM levels and thrombocyte indices. After excluding indices without statistical

significance, we constructed generalized linear mixed models [23] to determine whether the cor-

relations had a linear distribution. To estimate the effect of PAHs on the thrombocyte indices, we

constructed three adjusted models. Model 1 was a time model with “group” and “ID” as the covar-

iates. Model 2 was adjusted for “group,” “ID,” “age,” “sex,” and “body mass index.” Model 3

included all the variables adjusted for in Model 2, in addition to smoking status, exposure to sec-

ondhand smoke, and alcohol consumption. We also estimated the Akaike Information Criterion

(AIC) [24] and Bayesian Information Criterion (BIC) [25] to assess the models. The AIC trans-

forms the penalized likelihood into a negative log-likelihood plus a penalty term in Eq 1, where k

stands for the number of free parameters. The BIC exerts a higher penalty than the AIC for model

overfitting (Eq 2). As long as the true model is a candidate model, the model with the minimum

BIC exhibits the best performance. If the true model is not a candidate model, the minimum AIC

exhibits the best performance [26]. The roadmap of the model-setting process is shown in Fig 2.

AIC ¼ � 2logLðŷÞ þ 2k ð1Þ

BIC ¼ � 2logLðŷÞ þ lnðkÞ ð2Þ
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All data were double-entered into EpiData 3.0, with a consistency of 99.9%, and all the

models were fitted using SAS 9.4 (SAS Institute, Cary, NC, USA). The first section of the Sup-

plementary Materials provides more details on the model fitting.

Ethical approval

This research was supported by the China Institute for Radiation Protection under license.

Informed consent was obtained from all participants and/or their legal guardians. Research

involving human participants was performed in accordance with the tenets of the Declaration

of Helsinki. The license and ethical approval have been uploaded as related files.

Scientific application of the methods

As there is currently no gold standard for the estimation of UPAHM extraction, we extracted

them following the patent named “The established method to analyze eight OH-PAHs in urine

simultaneously” (202010201466.3), the details of which were uploaded as the relevant docu-

ment into the submission system. When R > 0.999, the patent is still under application. The

blood indices followed standard methods [17].

Results

Characteristics of study participants

Participants’ ages ranged from 55 to 65 years, and the age range did not vary by year of recruit-

ment into the study. More than half of the participants were females. More than half of the par-

ticipants (56%) were overweight, with no specific difference between the groups. Changes in

Fig 2. The statistical analysis process in the correlation discovery.

https://doi.org/10.1371/journal.pone.0276944.g002
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urinary metabolite levels between sampling time-points did not differ by the year of recruit-

ment (Table 1).

Demographic information and urinary metabolite levels

Spearman correlation coefficients for the relationship between urinary PAH metabolite levels

and platelet indices differed from the null hypothesis (P < 0.05) but were smaller than 0.1. The

highest coefficient was 0.15, calculated for the relationship between the levels of 2-OHFlu and

platelet distribution width. Second-hand smoke exposure and age were clustered with three

UPAHMs (1-hydroxynaphthalene, 9-OHFlu, and 33-hydroxybenzo[a]pyrene; S1 Fig).

Although their correlations lacked statistical significance, we included age and second hand

smoke exposure as covariates for further model fitting.

Variations in urinary metabolite levels over time

We analysed variations over time in UPAHM levels and platelet indices. To eliminate the effect

of recruitment year, we first grouped participant data by year of recruitment into the study. All

participants were healthy, and we did not find any changes in platelet indices between conse-

cutive years. The UPAHM levels were log-transformed before testing; therefore, some of the

means were negative. The levels of five UPAHMs measured over three years varied among the

Table 1. Basic information of 222 participants.

Group First Second Third Fourth Statistic P-value

No. of participants 59 71 53 39

Age(years) 61.50 (57.25, 65.00) 61.00 (55.00, 64.00) 63.00 (60.00, 66.00) 62.00 (57.25, 65.00) 4.595† 0.204

Gender (Male/Female) 23/37 24/47 13/39 12/27 2.374� 0.498

Height (cm) 162.00 (155.00, 167.00) 164.00 (158,00, 168.75) 160.00 (156.00, 166.00) 160.00 (158.00, 168.00) 1.915† 0.590

Weight (kg) 65.00 (58.50, 71.75) 65.00 (57.13, 70.00) 62.00 (56.00, 68.00) 65.00 (58.05, 74.50) 1.643† 0.650

BMI(kg/m2) 24.86±2.85 24.35±3.50 24.13±4.11 25.70±4.39 3.036§ 0.386

Δ122-OHNa(ng/g�cr-1) 0.63 (0.26, 1.16) 0.66 (0.24, 1.09) 0.58 (0.25, 1.13) 0.48 (0.24, 1.08) 1.013† 0.798

Δ232-OHNa(ng/g�cr-1) 0.66 (0.27, 1.16) 0.55 (0.20, 1.08) 0.45 (0.25, 0.95) 0.60 (0.14, 1.09) 1.757† 0.624

Δ121-OHNa(ng/g�cr-1) 0.80 (0.19, 1.69) 0.70 (0.30, 1.48) 0.54 (0.26, 1.71) 1.11 (0.41, 1.81) 1.140† 0.767

Δ231-OHNa(ng/g�cr-1) 0.55 (0.23, 1.53) 0.67 (0.25, 1.67) 1.10 (0.35, 1.89) 1.31 (0.33, 1.98) 3.508† 0.320

Δ122-OHFlu(ng/g�cr-1) 0.45 (0.16, 0.96) 0.45 (0.20, 0.94) 0.27 (0.03, 0.70) 0.31 (0.08, 0.62) 6.025† 0.110

Δ232-OHFlu(ng/g�cr-1) 0.43 (0.18, 0.92) 0.35 (0.11, 0.76) 0.41 (0.07, 0.78) 0.22 (0.04, 0.83) 2.382† 0.497

Δ129-OHFlu(ng/g�cr-1) 0.55 (0.01, 1.31) 0.72 (0.14, 1.36) 0.43 (0.00, 0.99) 0.58 (0.00, 1.20) 3.560† 0.313

Δ239-OHFlu(ng/g�cr-1) 0.65 (0.15, 1.38) 0.62 (0.15, 1.29) 0.67 (0.00, 1.28) 0.77 (0.01, 1.20) 0.706† 0.872

Δ122-OHPh(ng/g�cr-1) 0.55 (0.27, 1.13) 0.56 (0.22, 0.83) 0.53 (0.28, 0.97) 0.39 (0.17, 0.85) 3.074† 0.380

Δ232-OHPh(ng/g�cr-1) 0.53 (0.22, 0.95) 0.62 (0.31, 1.00) 0.50 (0.13, 0.87) 0.63 (0.21, 1.10) 1.011† 0.799

Δ121-OHPh(ng/g�cr-1) 0.43 (0.19, 0.99) 0.57 (0.23, 0.82) 0.44 (0.13, 0.92) 0.48 (0.15, 0.89) 0.592† 0.898

Δ231-OHPh(ng/g�cr-1) 0.56 (0.15, 0.82) 0.40 (0.17, 0.93) 0.52 (0.16, 0.94) 0.48 (0.14, 0.95) 0.826† 0.843

Δ121-OHP(ng/g�cr-1) 0.44 (0.08, 1.06) 0.47 (0.16, 0.87) 0.39 (0.10, 0.86) 0.20 (0.09, 0.46) 4.009† 0.261

Δ231-OHP(ng/g�cr-1) 0.40 (0.14, 0.87) 0.50 (0.14, 1.03) 0.25 (0.11, 0.63) 0.33 (0.14, 0.64) 3.888† 0.274

Δ123-OHBaP(ng/g�cr-1) 0.75 (0.00, 1.35) 0.68 (0.00, 1.27) 0.61 (0.08, 1.18) 0.72 (0.02, 1.48) 1.112† 0.774

Δ233-OHBaP(ng/g�cr-1) 0.69 (0.00, 1.53) 0.69 (0.00, 1.18) 0.50 (0.00, 1.03) 0.76 (0.31, 1.40) 3.457† 0.326

Note, α = 0.05, † following the statistic values stand for the data in the four groups were not all satisfied the normality, and the differences among the groups were

analyzed by the Kruskal-Wallis H tests with median, first, and third quantiles for statistic description. §following the statistic values stand for the data in the four groups

satisfied the normality, and the ANOVA analyzed the differences among the groups with mean and standard deviation for statistic description. � stands for the Chi-

square test were applied for the analysis with frequency.

https://doi.org/10.1371/journal.pone.0276944.t001
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participant groups recruited in 2014 and those recruited in 2015. The levels of 2-OHNa and

1-OHPh varied over time in groups recruited in the first and second groups. The levels of

2-OHPh varied in the first group, and those of 2-OHFlu and 1-OHP varied in the second

group. S5 Table shows the variation in platelet indices and UPAHMs.

Urinary metabolite levels and platelet indices

To assess the effect of PAH exposure on platelet indices, we fitted general mixed models to the

data to estimate fixed effects. Eight correlations were statistically significant: correlations of

1-OHNa, 2-OHFlu, 2-OHPh, 1-OHPh, and 1-OHP with PLT, and correlations of 9-OHFlu

with PDW, MPV, and P-LCR (Table 2). S1 Table lists the random effects of the general mixed

models.

Dose-response associations in exposure and platelet

We fitted three general linear mixed models (GLMMs) using eight correlations for the dose–

response analysis using various covariates. We used GLMM with a continuous data as well as

with UAPHM levels categorized into four groups, and estimated how these exposures would

affect platelet indices. We found a linear relationship of the categorized levels of 1-OHNa,

2-OHPh, 1-OHPh, 1-OHP, with PLT, whereas the continuous data of 2-OHFlu, 2-OHPh,

1-OHPh, and 1-OHP were significantly correlated (Table 3). We identified UPAHMs showing

significance as biomarkers in both analyses of continuous and level category analyses:

2-OHPh, 1-OHPh, and 1-OHP satisfied this requirement. According to the AIC and BIC,

Model 3, which contained the most covariates, performed the best. S2 Table lists the odds

ratios and 95% confidence intervals (CI) for the covariates.

Urinary 9-OHFlu levels were correlated with PDW, MPV, and P-LCR in both continuous

forms and as level categories. Analyzing continuous data revealed that 9-OHFlu (coefficients

for Model 1: β1[P value] = 0.48 [< 0.001], Model 2 β2[P value] = 0.49 [< 0.001], Model 3 β3[P

value] = 0.49 [< 0.001]) correlated with PDW and with MPV (β1[P value] = 0.28 [< 0.001],

β2[P value] = 0.28 [< 0.001], β3[P value] = 0.28 [< 0.001]), and with P-LCR (β1[P value] = 0.58

[0.458], β2[P value] = 0.57 [0.463], β3[P value] = 0.57 [0.463]) in all three models, all of which

had an increasing effect on platelet indices.

GLMM showed that secondhand smoke significantly impacted the association of 9-OHFlu

with platelet indices. Subgroup analysis by exposure to secondhand smoke (yes/no) was

Table 2. The fixed effect among platelet indices and UPAHM based on GMMs.

UPAHM PLT/F1(%) PDW(fL) MPV(fL) PCT(%) P-LCR(%)

2-OHNa(ng/g�cr-1) 0.34 (0.5627) 3.03 (0.0826) 3.07 (0.0806) 2.36 (0.1253) 0.21 (0.6497)

1-OHNa(ng/g�cr-1) 5.22 (0.0228)� 0.23 (0.6332) 0.13 (0.7201) 0.44 (0.5060) 0.10 (0.7527)

9-OHFlu(ng/g�cr-1) 3.75 (0.0534) 6.01 (0.0146)� 6.26 (0.0127)� 0.01 (0.9270) 4.37 (0.0372)�

2-OHFlu(ng/g�cr-1) 5.45 (0.0200)� 0.21 (0.6469) 0.42 (0.5165) 0.53 (0.4652) 1.20 (0.2744)

2-OHPh(ng/g�cr-1) 4.71 (0.0306)� 0.16 (0.6922) 0.22 (0.6399) 1.74 (0.1884) 2.10 (0.1480)

1-OHPh(ng/g�cr-1) 5.45 (0.0200)� 0.31 (0.5761) 0.41 (0.5227) 0.77 (0.3806) 0.62 (0.4314)

1-OHP(ng/g�cr-1) 6.17 (0.0134)� 0.30 (0.5862) 0.16 (0.6854) 0.67 (0.4133) 2.65 (0.1040)

3-OHBaP(ng/g�cr-1) 0.01 (0.9050) 1.57 (0.2112) 0.77 (0.3811) 2.03 (0.1549) 0.61 (0.4339)

Note, we have settled the GMMs. Each model took each UPAHM as a fixed effect, while rectified six random effects, including UPAHM with the group and following-

up time, UPAHM with following-up time, UPAHM with group, group with following-up time, group, and following-up time. The F values and P values of each

UPAHM’s fixed effect have been displayed in Table above, as α = 0.05

� stands for the fixed effect of UPAHM with the platelet indices have statistical significance.

https://doi.org/10.1371/journal.pone.0276944.t002
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Table 3. Dose-reposed effect of PAH exposure on PLT.

Level of UPAHM Model 1 Model 2 Model 3

1-OHNa(ng/g�cr-1)

Con(β[P value]) 6.65[0.052] 6.54[0.057] 6.54[0.057]

1 0.95(0.916–0.986)� 0.951(0.916–0.987)� 0.95(0.916–0.986)�

2 0.945(0.9–0.993)� 0.946(0.9–0.993)� 0.943(0.897–0.991)�

3 0.962(0.924–1.001) 0.962(0.924–1.002) 0.961(0.923–1.001)

4 1 1 1

AIC -286.9 -268.9 -251

BIC -266.5 -248.5 -230.6

2-OHFlu(ng/g�cr-1)

Con(β[P value]) 22.37[<0.001�] 22.8[<0.001�] 22.8[<0.001�]

1 0.966(0.928–1.005) 0.966(0.928–1.006) 0.967(0.928–1.007)

2 0.961(0.923–1) 0.961(0.922–1) 0.961(0.923–1.001)

3 1.008(0.969–1.049) 1.007(0.967–1.049) 1.007(0.967–1.049)

4 1 1 1

AIC -286.2 -268.2 -249.6

BIC -265.8 -247.8 -229.2

2-OHPh(ng/g�cr-1)

Con(β[P value]) 18.06[<0.001�] 18.54[<0.001�] 18.54[<0.001�]

1 0.941(0.904–0.979)� 0.941(0.904–0.98)� 0.941(0.904–0.98)�

2 0.939(0.904–0.976)� 0.939(0.904–0.977)� 0.94(0.904–0.977)�

3 0.951(0.912–0.991)� 0.95(0.911–0.99)� 0.949(0.91–0.99)�

4 1 1 1

AIC -290.1 -272.2 -253.8

BIC -269.7 -251.8 -233.4

1-OHPh(ng/g�cr-1)

Con(β[P value]) 16.43[<0.001�] 17.42[<0.001�] 17.42[<0.001�]

1 0.958(0.92–0.997)� 0.958(0.92–0.997)� 0.957(0.919–0.996)�

2 0.958(0.924–0.993)� 0.958(0.924–0.994)� 0.958(0.924–0.994)�

3 0.992(0.944–1.042) 0.991(0.943–1.041) 0.99(0.942–1.04)

4 1 1 1

AIC -285.4 -267.5 -249.2

BIC -265 -247.1 -228.8

1-OHP(ng/g�cr-1)

Con(β[P value]) 13.93[0.001�] 14.03[0.001�] 14.03[0.001�]

1 0.948(0.902–0.996)� 0.949(0.903–0.997)� 0.949(0.903–0.997)�

2 0.99(0.942–1.04) 0.992(0.944–1.043) 0.992(0.944–1.043)

3 0.988(0.942–1.035) 0.989(0.944–1.037) 0.99(0.944–1.038)

4 1 1 1

AIC -285.4 -267.8 -249.4

BIC -265 -247.3 -228.9

Notes, by adding different covariants, three general linear models were settled for the dose-respond effect of the PAH

exposure and the PLT. The "Con" stands for the continuous form of each UPAHM that has been included in the

GLMM with the coefficient and p-value(β[P value]), while the rest "1", "2", "3", "4" were the results of the categorized

UPAHM. For the three GLMM, the group and time were adjusted in Model 1, while Model 2 added extra three

demographics information based on Model 1, including age, gender, and BMI. Besides, Model 3 added more habitual

variables based on Model 2, including smoke, drink, and passive smoke. The Odd ratio (OR) and their 95%

confidence intervals were listed in the above Table.

� stands for the UPAHM level were different from the reference level with statistical significance and α = 0.05. AIC

and BIC for each model were listed after the levels.

https://doi.org/10.1371/journal.pone.0276944.t003
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conducted using Model 1 to determine whether the correlations observed between 9-OHFlu

levels and platelet indices were true, or had been confounded by exposure to secondhand

smoke (Fig 2). For PDW, participants without exposure to secondhand smoke exhibited a

dose–response trend in the entire cohort, in which the first tested exposure level differed from

the highest exposure effect (odds ratio without exposure to secondhand smoke [ORwithout]:

0.955; 95%CI:0.913–0.999). For MPV, participants without exposure to second-hand smoke

exhibited a dose–response trend at the second and third levels, in which the second exposure

level (ORwithout = 0.958; 95%CI [0.924–0.994]) and the second exposure level (ORwithout =

1.049; 95%CI[1.013–1.086]) differed from the highest exposure level. For the platelet-large cell

ratio, the subgroups showed no significant difference (Fig 3). S3 Table lists the details of the

analysis and the general linear mixed models.

Discussion

We used a longitudinal dataset to investigate the effects of exposure to low concentrations of

PAHs on platelet indices, using UPAHMs as biomarkers of exposure. Five metabolites were

associated with PLT: 2-OHFlu, 1-OHNa, 2-OHPh, 1-OHPh, and 1-OHP, of which all except

2-OHFlu exhibited dose–response relationships with linear correlations. Additionally, urinary

levels of 9-OHFlu were linearly correlated with PDW, MPV, and P-LCR, while exposure to

secondhand smoke was also a significant factor in the GLMM. An additional subgroup analy-

sis showed that secondhand smoke exposure might bias the correlations between 9-OHFlu lev-

els and platelet indices: 9-OHFlu had an increasing effect on PDW at the first level and MPV

increased significantly with 9-OHFlu.

Platelets contribute to hemostasis and coagulation, and have been proposed as blood bio-

markers in studies of inflammation and immune responses. The MPV and PDW have been

Fig 3. The effect of the second-hand smoke to the correlations observed between 9-OHFlu levels and platelet indices. Whether the correlations were

true or confounded by exposure to second-hand smoke. “Matesmoke = 1” stands for without the effect of the second-hand smoke, while the

“Matesmoke = 2” stands for the subgroup with the effect of the second-hand smoke.

https://doi.org/10.1371/journal.pone.0276944.g003
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associated with coronary artery diseases, as they may reflect the size and activity of platelets in

thrombosis and inflammation. The induction of thromboxane A2 aggregates platelets to sites

of inflammation. Changes in the MPV have been associated with hypertrophic cardiomyopa-

thy, pulmonary hypertension, restenosis following coronary angioplasty, acute myocardial

infarction, Wiskott–Aldrich syndrome, and giant platelet disorders. PDW has been suggested

to be an essential clinical factor for pulmonary arterial hypertension and dementia. Identifying

changes in these platelet indices and understanding their pathogenesis are therefore clinically

relevant.

Inhalation, dust, and dietary ingestion are three pathways of human exposure to PAH.

Intake through diet and inhalation exceeds that via dust ingestion [27], with higher concentra-

tions found in water than in dust [28]. Epidemiological and animal experiments have shown

that PAH exposure can induce inflammatory responses and alter platelet indices. PAH mono-

hydroxy intermediates are generated via redox-active cycling with cytochrome P450 enzymes

and quinone oxidoreductase. They can affect cells and tissues and react with DNA and pro-

teins to trigger the generation of reactive oxygen species and expression of pro-inflammatory

genes. By 24 or 48 h after exposure to PAHs, increases in the pro-inflammatory cytokines

interleukins-1β, -8, -10, and -12 have been reported in THP-1 macrophage-like cells, and posi-

tive associations between UPAHM levels and markers of inflammation have been noted in

humans [29, 30]. In this study, we measured the levels of eight UPAHMs as biomarkers of

exposure to avoid the uncertainty associated with single biomarkers.

The effects of PAHs generated during residential and professional cooking on platelet

counts have been recorded. Our findings suggest that PAH exposure (in particular PAHs that

metabolize to 9-OHFlu) affects the MPV, PDW, and P-LCR.

The participants in our study resided in the immediate coal plant area, where they were

continuously exposed to higher levels of PAHs than citizens whose vulnerabilities originated

from various other daily PAH exposure methods. The number of female participants was

larger than that of male participants, which may have resulted from the inclusion and exclu-

sion criteria. For more than 25 years, all participants had resided in a village located 1–2 km

downwind, from a coal plant, but were not employed by the plant or related businesses. There-

fore, a large number of men were excluded from the study because men were more likely to be

employed by the coal plant or related businesses. Additionally, in the GLMM models, sex was

added as a covariate and did not show a significant effect in these models. However, among

children, males [31] had more DNA damage than females when exposed to waste incinerators.

Regarding dietary consumption of contaminated vegetables, females had a higher exposure

rate than males [32]. Exposure to second-hand smoke modified some of the associations,

which may be because half of the participants were female and were more likely to be exposed

to secondhand smoke. Cigarette smoke exposure (second-hand smoke) causes significantly

elevated DNA damage among children [33, 34]. Although DNA damage has not been well-

studied in adults, the effects of smoke on urinary levels of 1-OHNa, 2-OHNa, and 2-OHFlu

have been reported by Cao et al. [2]. We plan to collect information from a larger cohort to val-

idate the correlations with exposure to second-hand smoke.

Our findings were derived from longitudinal data analyzed using repeated measures. Gen-

eralized mixed models and generalized linear mixed models were fitted to adjust for partici-

pant covariates. These models have been used in previous studies. Yuan et al. [35] evaluated

three models to assess the relationship between UPAHM levels and platelet indices. Similarly,

we used three adjusted models with time as an additional covariate and assessed them using

AIC and BIC. Armstrong and Gibbs also used AIC to evaluate the model fit, and Etemadi et al.

constructed models that contained general information, genetic information, and environ-

mental variables, with AICs ranging from 100.07 to 160.68. For our models, the AIC was
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always negative, ranging from −340.6 to −1775.5. BIC is defined chiefly as signifying an accu-

rate model, and is seldom applied in this context. However, we used BIC because our data

were longitudinal [36] and included general linear mixed models [37]. This model selection

process has been tested in studies of PAH bioaccessibility to plants [38].

To the best of our knowledge, no previous study had used human biomarkers of PAH expo-

sure with a longitudinal dataset and repeated measures. However, some limitations should be

noted. First, there were 418 participants enrolled in our study, of whom 222 participants were

finally included and followed-up for 3 years. However, this may occur in various ways due to

exposure to PAHs. The remaining 222 participants satisfied the limited PAH exposure criteria

and completed the 3 years’ follow up. We plan to prolong the follow-up period, to include

more participants in further research. Second, the PAH exposure of each participant was diffi-

cult to estimate precisely. Our estimation could only provide a trend for each correlation,

although we excluded the residents who had lived in the village for less than 25 years, and who

had barbecue habits, and included smoking, second-hand smoke exposure, and alcohol use as

covariates in Model 3. We would further improve our inclusion and exclusion criteria by

increasing the number of participants. Finally, genetic information may also affect platelet

indices. We will collect this information and add it as covariates in GLMMs in a future study.

Conclusions

Long-term exposure to low concentrations of PAHs with a higher level of 2-OHPh, 1-OHPh,

1-OHP, has performed an increasing effect on the PLT. The 9-OHFlu has a rising impact on

both PDW and MPV, by eliminating the influence of other ways of PAH exposures.
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