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Abstract 

Background:  With the availability of next-generation sequencing technologies, genomic prediction based on 
whole-genome sequencing (WGS) data is now feasible in animal breeding schemes and was expected to lead to 
higher predictive ability, since such data may contain all genomic variants including causal mutations. Our objective 
was to compare prediction ability with high-density (HD) array data and WGS data in a commercial brown layer line 
with genomic best linear unbiased prediction (GBLUP) models using various approaches to weight single nucleotide 
polymorphisms (SNPs).

Methods:  A total of 892 chickens from a commercial brown layer line were genotyped with 336 K segregating 
SNPs (array data) that included 157 K genic SNPs (i.e. SNPs in or around a gene). For these individuals, genome-wide 
sequence information was imputed based on data from re-sequencing runs of 25 individuals, leading to 5.2 million 
(M) imputed SNPs (WGS data), including 2.6 M genic SNPs. De-regressed proofs (DRP) for eggshell strength, feed 
intake and laying rate were used as quasi-phenotypic data in genomic prediction analyses. Four weighting factors for 
building a trait-specific genomic relationship matrix were investigated: identical weights, −(log10P) from genome-
wide association study results, squares of SNP effects from random regression BLUP, and variable selection based 
weights (known as BLUP|GA). Predictive ability was measured as the correlation between DRP and direct genomic 
breeding values in five replications of a fivefold cross-validation.

Results:  Averaged over the three traits, the highest predictive ability (0.366 ± 0.075) was obtained when only 
genic SNPs from WGS data were used. Predictive abilities with genic SNPs and all SNPs from HD array data were 
0.361 ± 0.072 and 0.353 ± 0.074, respectively. Prediction with −(log10P) or squares of SNP effects as weighting factors 
for building a genomic relationship matrix or BLUP|GA did not increase accuracy, compared to that with identical 
weights, regardless of the SNP set used.

Conclusions:  Our results show that little or no benefit was gained when using all imputed WGS data to perform 
genomic prediction compared to using HD array data regardless of the weighting factors tested. However, using only 
genic SNPs from WGS data had a positive effect on prediction ability.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic prediction (GP) uses genomic information to 
obtain estimated breeding values, which are subsequently 

used to select candidate individuals [1]. GP has been widely 
implemented in livestock [2–4] and plant [5] breeding 
schemes. The availability of next-generation sequencing 
technologies has made it possible to apply GP with whole-
genome sequencing (WGS) data. GP with WGS is expected 
to lead to higher predictive ability, since WGS data include 
a large number of genomic variants including most of the 
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causal mutations. Thus, prediction depends much less on 
linkage disequilibrium (LD) between single nucleotide pol-
ymorphisms (SNPs) and causal mutations. Furthermore, 
Georges [6] claimed that WGS data can measure segrega-
tion of SNPs properly, which is not the case of commercial 
chips, particularly for rare SNPs. Based on a simulation 
study, Pérez-Enciso et  al. [7] stated that using WGS data 
did not increase prediction accuracy compared to high-
density (HD) array data. In a first study using sequenced 
inbred lines of Drosophila melanogaster, prediction based 
on WGS data using ~2.5 million (M) SNPs did not increase 
accuracy compared to an approach using only ~5% of 
the segregating SNPs [8]. In cattle data, Hayes et  al. [9] 
found that accuracy of GP was improved by only 2% with 
WGS data compared to the 800 K array data when using 
BayesRC and imputed 1000 Bull genomes data. In addition, 
Van Binsbergen et al. [10] reported that GP with imputed 
WGS data did not lead to a higher prediction accuracy, 
compared to the HD array data from more than 5000 Hol-
stein–Friesian bulls. Brøndum et  al. [11] showed that the 
reliability of GP could be improved by adding several sig-
nificant quantitative trait loci (QTL), which were detected 
by genome-wide association studies (GWAS) of WGS data, 
to the regular 54 K bovine array data, especially for produc-
tion traits. Thus, GP with WGS data could be attractive, 
although so far the expectations for higher accuracies have 
not been realized with real data on cattle.

In chicken, most previous studies regarding GP were 
based on commercial array data. For instance, Morota 
et  al. [12] reported that GP accuracy was higher when 
using all available SNPs than when using only validated 
SNPs from a partial genome (e.g. coding regions), based 
on the 600 K SNP array data of 1351 commercial broiler 
chicken. Abdollahi-Arpanahi et  al. [13] studied 1331 
chicken which were genotyped with a 600  K Affymetrix 
platform and phenotyped for body weight; they reported 
that predictive ability increased by adding the top 20 SNPs 
with the largest effects that were detected in the GWAS as 
fixed effects in the genomic best linear unbiased prediction 
(GBLUP) model. So far, studies to evaluate the predictive 
ability with WGS data in chicken are rare. Heidaritabar 
et  al. [14] studied imputed WGS data from 1244 white 
layer chickens, which were imputed from 60 K SNPs up to 
sequence level with 22 sequenced individuals as reference 
samples. They reported a small increase (~1%) in predic-
tive ability for the trait ‘number of eggs’ by using WGS 
data compared to 60 K SNPs when using a GBLUP model, 
while there was no difference when using a BayesC model.

Regardless of the genotyping source (i.e. WGS data or 
array data) used, GBLUP has been widely used in GP stud-
ies. Besides GBLUP in its classical form, in which each SNP 
is assumed to have the same contribution to the genetic 
variance, several weighting factors for SNPs or parts of the 

SNP set were proposed to account for the genetic architec-
ture [15–17]. De los Campos et al. [15] proposed a method 
using the −(log10P) from GWAS as a weighting factor for 
each SNP to build a genomic relationship matrix (G matrix). 
They observed that prediction accuracy for human height 
was improved compared to the original GBLUP, based on 
~6000 records that were drawn from a public human type-2 
diabetes case–control dataset with a 500 K SNP platform. 
Zhou et  al. [16] used LD phase consistency, or estimated 
SNP effects or both as weighting factors to build a weighted 
G matrix, and reported that GBLUP with those weighted G 
matrices did not lead to higher GP accuracy in a study based 
on 5215 Nordic Holstein bulls and 4361 Nordic Red bulls. 
Using a German Holstein dataset, Zhang et al. [17] reported 
that the performance of BLUP given genomic architecture 
(BLUP|GA), which puts an optimal weight on a subset of 
SNPs with the strongest effects from the training set was 
similar to that of GBLUP for somatic cell score (SCS), but 
that BLUP|GA outperformed GBLUP for fat percentage and 
milk yield. The advantages of BLUP|GA were larger when 
the datasets were relatively small.

The objective of this study was to compare results from 
genomic prediction analyses using both HD array data 
and WGS data that were performed with GBLUP models 
and a variety of weighting factors for specific SNPs in a 
purebred commercial brown layer chicken line.

Methods
Data
High‑density array data
We used 892 female and male chickens from six genera-
tions from a purebred commercial brown layer line (see 
Additional file  1: Table S1 for the number of individu-
als in each generation). These chickens were genotyped 
with the Affymetrix Axiom® Chicken Genotyping Array 
(denoted as the HD array), which initially included 580 K 
SNPs. Genotype data were pruned by removing SNPs 
located on the sex chromosomes and in unmapped link-
age groups, and SNPs with a minor allele frequency 
(MAF) lower than 0.5% or a genotyping call rate lower 
than 97%. Individuals with call rates lower than 95% were 
also discarded. After filtering, 336,224 SNPs that segre-
gated for 892 individuals remained for analyses.

Imputed whole‑genome sequence data
Data from re-sequencing that were obtained with the Illu-
mina HiSeq2000 technology with a target coverage of 8× 
were available for 25 brown layer chickens of the same 
population (of which 18 were also genotyped with the HD 
array) and for another 25 white layer chickens. Chickens 
used for whole-genome sequencing were chosen from the 
older generations and with a maximum relationship with 
the chickens that were to be imputed [18, 19]. Data from 
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re-sequencing runs (brown and white layer chickens) 
were aligned to Build 4 of the chicken reference genome 
(galGal4) with BWA (version 0.7.9a-r786) [20] using 
default parameters for paired-end alignment and SNP 
variants were called using GATK (version 3.1-1-g07a4bf8, 
UnifiedGenotyper) [21]. Called variants (only for the 25 
brown layers) were edited for depth of coverage (DP) and 
mapping quality (MQ) based on the following criteria: (1) 
for DP, outlier SNPs (at the top 0.5% of DP) were removed, 
then, mean and standard deviations of DP were calculated 
for the remaining SNPs and those that had a DP above 
and below 3 times the standard deviation from the mean 
were removed; and (2) for MQ, SNPs with a MQ lower 
than 30 (corresponding to a probability of 0.001 that their 
position on the genome was not correct) were removed. 
After filtering, within the set of 25 re-sequenced brown 
layers, 10,420,560 SNPs remained and were used as the 
reference dataset to impute HD array data up to sequence 
level. Imputation of all genotyped individuals was then 
performed using Minimac3 [22] which needs pre-phased 
data as input. The pre-phasing procedure was done with 
the BEAGLE 4 package [23]. Default numbers of iteration 
were used in pre-phasing and imputation. The imputa-
tion process did not use pedigree information. According 
to our previous study [24], phasing genotype data with 
BEAGLE 4 and further imputing with Minimac3 provided 
the highest imputation accuracy under different valida-
tion strategies. After imputation, post-imputation filter-
ing criteria were applied per SNP, namely, SNPs with a 
MAF lower than 0.5% or SNPs with an imputation accu-
racy lower than 0.8 were removed. The imputation accu-
racy used here was the Rsq measurement from Minimac3, 
which was the estimated value of the squared correlation 
between true and imputed genotypes. After this step, 
5,243,860 imputed SNPs were available for 892 individu-
als, which are hereafter denoted as WGS data.

In addition, SNPs, regardless of which dataset they 
were in, were classified into nine classes by gene-based 
annotation with the ANNOVAR software [25] by set-
ting default parameters and using galGal4 as refer-
ence genome [26]. Our set of genic SNPs (SNP_genic) 
included all SNPs from the eight categories exon, splic-
ing, ncRNA, UTR5′, UTR3′, intron, upstream, and 
downstream regions of the genome, whereas the ninth 
category included SNPs from intergenic regions. There 
were 2,593,054 SNPs characterized as genic SNPs from 
the WGS data (hereafter denoted as WGS_genic data) 
and 157,393 SNPs characterized as genic SNPs from the 
HD array data (hereafter denoted as HD_genic data).

Phenotypic observations
The quasi-phenotypic data were de-regressed proofs 
(DRP) for eggshell strength (ES), feed intake (FI), and 

arcsine transformed laying rate in the last third of the 
laying period (LR). The arcsine transformation of the lat-
ter trait was performed to achieve an approximate nor-
malization. To obtain de-regressed proofs, a single trait 
BLUP animal model was performed for each trait using 
raw phenotypic and pedigree data, respectively. Esti-
mated breeding values from these models were then 
de-regressed following Garrick et al. [27]. The de-regres-
sion process included removal of the parent average 
information.

Genomic prediction
Genomic prediction was performed using the following 
GBLUP model with different genomic relationship matri-
ces that are described below:

where y is the vector of DRP of individuals in the training 
set for a specific trait; μ is the overall mean; g is the vec-
tor of additive genetic values (i.e. genomic breeding val-
ues) for all genotyped chickens; e is the vector of residual 
terms; X and Z are design matrices assigning DRP to 
the overall mean and additive genetic values, where the 
dimension of Z is the number of individuals in the train-
ing set times the number of all genotyped individuals.

A normal distribution of the residual term e is assumed 
e ∼ N

(

0,Rσ 2
e

)

, where R is a diagonal matrix, with diago-
nal element Rii =

(

1− r2DRPi
)

/r2DRPi [28] for an individual 
i in the training set, where r2DRPi is the reliability of DRP 
for individual i, and σ 2

e  is the residual variance. The distri-
bution of the additive genetic values is assumed normal 
g ∼ N

(

0,Gσ 2
g

)

, where σ 2
g  is the additive genetic variance 

and G is a realized genomic relationship matrix includ-
ing all genotyped individuals, which can be calculated 
with different approaches resulting in different GBLUP 
models.

The general approach to build a G matrix is:

where M contains the corrected SNP genotypes with 
individuals in rows and SNPs in columns. The elements 
of column i of M are 0 −  2pi (for homozygotes of the 
first allele), 1 − 2pi (for heterozygotes), and 2 − 2pi (for 
homozygotes of the second allele), where pi is the fre-
quency of the second allele at locus i from the current 
dataset. D is a diagonal matrix that contains the weight 
of each locus; these weights varied according to the sce-
nario studied. An identity matrix was used (D = I) in the 
original GBLUP [29], which implies that all loci contrib-
ute equally to the variance–covariance structure. The 
resulting G matrix is denoted as GI in the following. De 

y = Xµ+ Zg + e,

G =
MDMT

2
∑m

i=1 pi(1− pi)
,
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los Campos et al. [15] suggested using the corresponding 
−(log10P) from a t test of a GWAS as weighting factors to 
consider the relative importance of different SNPs on a 
specific trait. The genomic relationship matrix including 
a D matrix based on this weighing factor will be denoted 
as GP. The corresponding P values were derived from dif-
ferent GWAS models, each being fitted for each trait of 
interest separately in the respective training set. In order 
to correct for population stratification and relationships 
between individuals, a principal component analysis 
(PCA) was performed on genomic data and significance 
among principal components (PC) was tested in advance 
with a Tracy Widom test as implemented in the program 
EIGENSTRAT [30]. Then, the PC with P values ≤10−100 
(or ≤0.05) were used as fixed covariates in single-SNP 
GWAS runs. The resulting genomic relationship matrix 
was denoted as GP100 (or GP005). Genomic relationship 
matrices with weighting factors based on results from 
single-SNP GWAS may not adequately represent or may 
overweight regions because different SNPs can capture 
the effect from the same QTL due to long-range LD. 
However, a SNP effect is not corrected for any other SNP 
effect in a single-marker regression type GWAS. We also 
investigated the usefulness of weighting the G matrix 
with results from a random-regression BLUP (RRBLUP) 
in which random SNP effects are fitted simultaneously. 
Thus, for matrix GS, we used the squares of the estimated 
SNP effects of the respective trait as weighting factors 
to build matrix D (as was done in [28]). Finally, we also 
investigated BLUP|GA [17] in this study. To account for 
genetic architecture, the trait-specific genomic relation-
ship matrix Gz was constructed as a weighted sum of a 
genetic architecture matrix S and a realized relationship 
matrix GI (i.e. Gz = ωS +  (1 − ω)GI). The construction 
of the S matrix was similar to the construction of GS, 
but it was based only on selected SNPs according to the 
size of their absolute SNP effects (top%) from RRBLUP. 
The optimal choices for top% and ω were identified with 
a grid search strategy applied in the training population. 
The combinations for searching for optimal parameters 
were the same as in the original study of Zhang et al. [17] 
(top% within a range of [0.05, 10] and ω within the range 
[0.1, 0.99]). To make sure that the weighted G matrices 
were in the same scale as GI, all weighting factors were 
divided by their mean. To mimic the real situation in the 
best way and avoid over-fitting, all weighting factors in 
all models were derived exclusively from individuals in 
the respective training set. To assess whether focusing 
on functional information improves prediction accuracy, 
the original GBLUP was applied to the functional subset 
of the WGS data (HD array data) by building a genomic 

relationship matrix GG based on WGS_genic data (HD_
genic data) with weights in D being 1.

Each approach mentioned above was investigated using 
fivefold random cross-validation (i.e. having 614 or 615 
individuals in the training set and 178 or 179 individu-
als in the validation set) with five replications and was 
applied to both WGS and HD array data. Predictive abil-
ity was measured as the correlation between the obtained 
direct genomic values (DGV) and DRP for each trait of 
interest. DGV and corresponding variance components 
were estimated using ASReml 3.0 [31].

In layer chicken breeding, genomic breeding values 
are especially interesting for selecting the best individu-
als from full-sib families. Thus, we performed the Spear-
man’s rank correlation to evaluate the ranking of full-sibs 
according to DRP and DGV in a randomly chosen full-sib 
family with 12 individuals. Results presented here were 
from the validation sets of the first replicate of a fivefold 
cross-validation.

Results and discussion
Data summary
Numbers of SNPs in different MAF bins for different 
datasets are shown in Fig.  1. The difference in the distri-
bution of SNPs between HD array data and data from re-
sequencing runs is illustrated in the top panel. The last bin 
(0.48 < MAF ≤ 0.5) contains only half the number of SNPs 
since, in this bin, only one allele frequency class (25 out of 
50 alleles) is represented, while in all other bins two fre-
quency classes (e.g. 24 and 26 out of 50 alleles in the adja-
cent class) are reflected. The MAF distribution based on 
WGS data was significantly different from that based on 
HD data (tested with a χ2-test, P < 0.001). For data from re-
sequencing runs of the 25 sequenced chickens, the number 
of SNPs per bin decreased with increasing MAF. SNPs with 
a very small MAF are not so extremely overrepresented in 
the re-sequenced set as in other studies with sequenced data 
[32, 33], which could be due to two reasons. First, the size of 
the reference dataset was relatively small (25 chickens) and 
thus, some of the rare variants may not be captured. Second, 
the commercial layers have been subject to intensive within-
line selection, which might have reduced the genetic diver-
sity dramatically, and further resulted in a lack of rare SNPs 
[34]. Presumably, this problem can only be overcome with 
a larger sequenced reference set, which would allow higher 
imputation accuracies for rare SNPs. Numbers of SNPs in 
different MAF bins in the WGS data set before and after 
post-imputation filtering are in the bottom panel of Fig. 1. 
Unlike Van Binsbergen et al. [10], in which 429 sequenced 
individuals from several cattle breeds were used as a refer-
ence set for imputation process, we did not observe a clear 
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U-shaped distribution of MAF in the imputed WGS data. 
This means that some of the rare SNPs in the re-sequenced 
individuals were either not present in all the other indi-
viduals of the population or got lost during the imputation 
process, partly because of the poor imputation accuracy 
for SNPs with a low MAF [35, 36]. Starting from more 
than 9 million SNPs after imputation (monomorphic SNPs 
excluded), 200,679 SNPs were filtered out due to a low 
MAF, and 85% of these filtered SNPs had low imputation 
accuracy (Rsq of minimac3 <0.8) as well, which means that 
SNPs with a low MAF are even less represented in the SNP 
set. Furthermore, 1.3 million SNPs among the imputed SNP 
set, which passed the MAF criteria, were filtered out due to 
low imputation accuracy only; these were evenly distributed 
over all MAF bins. In total, more than 50% of SNPs were 
filtered out due to low imputation accuracy in the leftmost 

three MAF bins (0 < MAF ≤ 0.06). The fact that we found 
high rates of low Rsq values within the set of SNPs with a 
low MAF could be due to low LD between these SNPs and 
adjacent SNPs, which can result in lower imputation accu-
racy [for imputation accuracies in different MAF bins (see 
Additional file  2: Figure S1)] [37–41]. Filtering out a large 
number of SNPs with a low MAF—in many cases, because 
imputation accuracy is too low—could weaken the advan-
tage of imputed WGS data, which contain a large number of 
rare SNPs [6], although GP with all imputed SNPs without 
quality-based filtering did not improve the prediction ability 
in our case (results not shown). In addition, LD pruning was 
not performed in our study, because in a preliminary study 
we found that predictive ability based on the pruned dataset 
was the same as that based on data without pruning (results 
not shown).

Fig. 1  Percentage of SNPs in each MAF bin for high-density (HD) array data and data from re-sequencing runs of the 25 sequenced chickens (top), 
and for imputed whole-genome sequence (WGS) data after imputation and after post-imputation filtering (bottom). The values on the x-axis are the 
upper limit of the respective bin



Page 6 of 14Ni et al. Genet Sel Evol  (2017) 49:8 

Comparison between HD array data and WGS data using 
different weighting factors
Predictive abilities obtained with GBLUP using differ-
ent weighting factors based on HD array data and WGS 

data are in Fig. 2 for the traits ES, FI, and LR, respectively. 
Predictive ability was defined as the correlation between 
DGV and DRP of individuals in the validation set. Gen-
erally speaking, predictive ability could not be clearly 
increased when using WGS data compared to HD array 
data regardless of the different weighting factors studied. 
Using genic SNPs from WGS data had a positive effect on 
prediction ability in our study design.

Averaging over the three traits analyzed here, the 
predictive ability  ±  standard deviation for the original 
GBLUP was 0.353 ± 0.074 based on HD array data and 
0.358 ± 0.076 based on WGS data. When −(log10P) (with 
P values from GWAS with different covariates in the 
model) were used as weighting factors, predictive abilities 
for GP100 (G005) were 0.352 ± 0.062 (0.347 ± 0.072) based 
on HD array data and 0.356 ± 0.062 (0.354 ± 0.073) based 
on WGS data. Unlike the SNP effects that were estimated 
from RRBLUP, in which effects are assessed simulta-
neously, SNP effects were estimated independently in 
GWAS. Thus, effects of a group of SNPs which represent 
the same QTL could not be fitted simultaneously, and 
thus the overall weighting of a region might depend on 
the marker density. De los Campos et  al. [15] studied a 
public human type-2 diabetes case–control dataset that 
included genotype data from a 500 K SNP platform and 
around 6000 phenotype records from unrelated individu-
als. They reported that the predictive reliability (square of 
predictive accuracy) with a prediction model weighted by 
−(log10P) increased by a factor of 110% compared to that 
with the original GBLUP. Similarly, Su et al. [28] reported 
that predictive ability using −(log10P) as weighting fac-
tors was higher than that obtained with the original 
GBLUP, based on more than 5000 Nordic Holstein bulls 
that were genotyped with the Illumina Bovine SNP50 
BeadChip. However, the improvement in predictive abil-
ity by using −(log10P) as weighting factors in GP was not 
observed in our dataset.

Furthermore, using the squares of SNP effects as 
weighting factors in GBLUP (GS) resulted in slightly 
lower predictive abilities compared to the original 
GBLUP, in both analyses based on HD array data and 
on WGS data, respectively, as shown in Fig.  2. For GS, 
averaging over the three traits, predictive ability was 
0.341 ± 0.076 based on HD data and 0.348 ± 0.078 based 
on WGS array data, compared to 0.353 ± 0.074 (for HD 
array data) and 0.358 ±  0.076 (for WGS data) with the 
original GBLUP. These results are in agreement with Su 
et  al. [28], who reported that GBLUP with the squares 
of SNP effects as weighting factors did not improve pre-
dictive ability compared to the original GBLUP or to the 
model with −(log10P) as weighting factors. The lack of 
improvement in predictive ability when using the squares 
of SNP effects as weighting factors might be due to two 

Fig. 2  Predictive ability obtained with GBLUP using different 
weighting factors based on high-density array data and whole-
genome sequencing data. The predictive ability was measured as the 
correlation between direct genomic breeding values (DGV) and de-
regressed proofs (DRP) in the validation set. Results are for the traits 
eggshell strength (ES), feed intake (FI) and arcsine transformed laying 
rate in the last third of the laying period (LR). HD stands for high-
density data and WGS stands for whole-genome sequencing data. GI 
stands for the original GBLUP, GP represents the model with −(log10P) 
from GWAS as weighting factors where principal components that 
were significant at P values ≤ 10−100 (≤ 0.05) were used as covariates 
in the GWAS model, denoted as P100 (P005). GS stands for the GBLUP 
model with the squares of estimated SNPs effect as weighing factors. 
Gz stands for the results from BLUP|GA as described in the “Methods” 
section. GG stands for the original GBLUP but only based on genic 
SNPs. The dashed horizontal line denotes the median predictive ability 
of GBLUP with HD data as a reference. Note that all the outliers for 
trait LR were from the same replicate
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reasons. One reason is the occurrence of sequencing or 
imputation errors, i.e. in our study, the most probable 
genotypes imputed from Minimac3 were used as WGS 
data rather than genotype probabilities, which does not 
account for the uncertainty of imputation. The second 
reason is that the noise and uncertainty of estimated SNP 
effects could also bias predictive ability [28]. In our study, 
DGV of the training population were assigned to millions 
of SNPs [Figs. 3, 4; (Additional file 3: Figure S2)], so that 
the effect of each SNP was very small. However, the pre-
diction error of a SNP effect might be even larger than 
the SNP effect itself. In addition, the size of the training 
set was relatively small, which could further enhance 
the uncertainty of SNP effects. Thus, the combination 
of both mentioned reasons could lead to lower predic-
tive ability, since the DGV of individual i is the summa-
tion of estimated SNP effects times its genotypes (i.e. 
DGVi =

∑m
k=1 Xikβk).

With BLUP|GA, predictive ability was 0.342 (±0.085) 
based on HD array data and 0.346 (±0.091) based on 
WGS data averaged over the three traits analyzed (Fig. 2). 
Generally speaking, BLUP|GA did not improve predic-
tive ability with WGS or HD data, compared to the origi-
nal GBLUP. Zhang et  al. [17] reported that BLUP|GA 
outperformed the original GBLUP for production traits 
(i.e. fat percentage and milk yield) in a German Holstein 
cattle population, while its performance was similar to 
that of GBLUP for SCS. A well-known candidate gene 
DGAT1 has a strong influence on fat percentage [42, 43], 
while for SCS no major genes are known. This suggests 
that BLUP|GA is especially useful when QTL regions 
that heavily influence the trait are present in the genome. 
The genetic architecture of ES, FI, and LR seems to be 

more similar to that of SCS than of fat percentage which 
might explain why no strong candidate genes have been 
identified to date and also that no strong SNP effects have 
been detected in the GWAS runs performed in this study 
(see Additional file  4: Figure S3). The SNP effects esti-
mated from RRBLUP based on HD array (WGS) data are 
in Fig. 3 (Fig. 4) and further illustrate that ES, FI, and LR 
are controlled by numerous SNPs with very small effects.

When focusing on the training stage of BLUP|GA, the 
burden of calculation to identify the optimal combination 
for parameters top% and ω with a grid strategy was huge. 
Prediction abilities of BLUP|GA in the training stage are 
in Fig.  5 for each parameter combination exemplarily 
for the first fold of the first replicate. The combination 
of large ω and small top% tended to give lower predic-
tive ability. As top% increased and ω decreased, predic-
tive ability tended to increase. In most cases, the optimal 
option for ω based on HD data and WGS data was 0.1 
in our study, which is the minimal ω we analyzed. The 
optimal option for top% was 10%, which is the maxi-
mal top% we analyzed, and is different from the find-
ings of Zhang et al. [17]. These authors tended to select 
a smaller top% while there was no obvious pattern in the 
selection of ω. Those 10% SNPs explained approximately 
23% of the total variance of SNP effects for ES. Optimal 
combinations in each fivefold cross-validation of each 
replicate for each trait are in Additional file  5: Table S2 
and Additional file 6: Table S3. It should be noted that, as 
described in Zhang et al. [17], accuracy of GP based on 
the optimal parameters obtained in the training stage by 
cross-validation may not lead to the highest accuracy in 
the application stage.

Fig. 3  Manhattan plot of absolute estimated SNP effects for trait eggshell strength based on high-density (HD) array data. SNP effects were 
obtained from RRBLUP in the training set of the first replicate
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Fig. 4  Manhattan plot of absolute estimated SNP effects for trait eggshell strength based on whole-genome sequence (WGS) data. SNP effects 
were obtained from RRBLUP in the training set of the first replicate

Fig. 5  Predictive ability of the best linear unbiased prediction given the genetic architecture (BLUP|GA) in the training stage to select the optimal 
parameter combination for the application stage. Predictive ability in this figure is the mean correlation between direct genomic breeding values 
(DGV) and de-regressed proofs (DRP). The first row is for high-density (HD) array data, while the second row is for whole-genome sequence (WGS) 
data. The x-axis stands for the overall weighting factor; y-axis stands for the percentage of SNPs selected based on the SNP effects (top%); different 
colors stand for different levels of predictive ability



Page 9 of 14Ni et al. Genet Sel Evol  (2017) 49:8 

Averaging over the three traits analyzed here, pre-
dictive ability  ±  standard deviation was 0.366  ±  0.075 
based on the WGS_genic data and 0.361 ± 0.072 based 
on HD_genic data, compared to 0.353 (HD array data) 
and 0.358 (WGS data), which means that GP with WGS_
genic resulted in the highest predictive ability in our 
study. Similarly, Do et  al. [44] reported that predictive 
ability increased only when SNPs in genes were consid-
ered for residual feed intake based on 1272 Duroc pigs, 
which were genotyped with the 60 K SNP chip, although 
the increase was not significantly different from that 
obtained with 1000 randomly SNPs. In chicken, Morota 
et  al. [12] studied predictive ability with 1351 commer-
cial broiler chickens genotyped with the Affymetrix 
600 K chip, and found that prediction based on SNPs in 
or around genes did not result in a higher accuracy using 
kernel-based Bayesian ridge regression. In our dataset, 
predictive ability with HD_genic data was slightly higher 
than that with all HD data. Furthermore, the benefit was 
observed when using WGS_genic, which could be due to 
the fact that using only genic SNPs reduces the noise in 
WGS data and might increase the chance to identify the 
potential causal mutations. Koufariotis et  al. [45] found 
that significant SNPs in the GWAS were enriched in cod-
ing regions based on 17,425 Holstein or Jersey bulls and 
cows, which were genotyped with the 777  K Illumina 
Bovine HD array. The enrichment of significant SNPs 
could further imply that using genic SNPs can help us to 
achieve higher predictive ability.

The bias of DGV was assessed as the slope coeffi-
cient of the linear regressions of DRP on DGV within 
the validation sets of random fivefold cross-validation. 
The averaged regression coefficient ranged from 0.520 
(GP005 of HD dataset) to 0.871 (GI of WGS dataset) for 
the trait ES (see Additional file  7: Figure S4). No major 
differences were observed between using HD and WGS 
datasets within different methods. Generally, regression 
coefficients were all smaller than 1, which means that 
the variance of the breeding values tends to be overesti-
mated. However, the regression coefficients were closer 
to 1 when the identity matrix was used in the predic-
tion model (i.e.  GI, GG). The overestimation could be 
due to the fact that those analyses were based on cross-
validation where the relationship between training and 
validation populations might cause a bias. Another 
possible reason for the overestimation could be that, in 
this chicken population, individuals were under strong 
within-line selection. The same tendency was observed 
for traits FI and LR (results not shown).

Comparison within a full‑sib family
 To get an insight into the ranking of 12 full-sibs within a 
family according to DRP and DGV, DGV that were pre-
dicted in the validation sets with different G matrices in 
the first of the five replicates of the cross-validation runs 
are in Figs.  6 (HD data) and 7 (WGS data) for ES, and 
Additional file 8: Figure S5 and Additional file 9: Figure S6 
for traits FI and LR, respectively. The higher the rank cor-
relation is, the higher is the possibility to select the same 
candidates. Based on HD array data, DGV from different 
weighting models had a relatively high rank correlation 
with those from GI (from 0.88 to 0.97 for ES). This sug-
gested that the same candidate tended to be selected in 
different models. Likewise, the rank correlations based on 
WGS data were relatively high as well, with minimal val-
ues of 0.91 between GG and GP005. In addition, the Spear-
man’s rank correlation between GI based on HD array 
data and that based on WGS data was 0.98. Spearman’s 
rank correlation between GG with WGS_genic data and 
GI with WGS data was 0.99, which indicated that there 
was hardly any difference in selecting candidates based 
on HD array data, or WGS data, or WGS_genic data with 
GBLUP. Generally, the same set of candidates tended to be 
selected regardless of the dataset (HD array data or WGS 
data) and weighting factors (identity weights, squares of 
SNPs effect, or P values from GWAS) used in the model. 
When comparing the DGV from different models with 
DRP, the Spearman’s rank correlations were modest (from 
0.38 to 0.54 with HD data and from 0.31 to 0.50 with 
WGS data) and within the expected range considering the 
overall predictive ability obtained in the cross-validation 
study (see Fig.  2). Although DGV from different models 
were highly correlated, Spearman’s rank correlation of the 
respective DGV to DRP clearly varied. This fact, however, 
should not be overvalued regarding the small sample size 
that was used here (n = 12) and the fact that the DGV of 
the full-sib family were estimated from different CV folds. 
Thus, a forward prediction was performed with 146 indi-
viduals from the last two generations as validation set. In 
this case the same tendency was observed, namely that 
DGV from different models were highly correlated within 
a large half-sib family. However, in this forward predic-
tion scenario, the predictive ability with genic SNPs was 
slightly lower than that with all SNPs (results not shown). 

Perspectives and implications
Using WGS data in GP was expected to lead to higher 
predictive ability, since WGS data should include most 
of the causal mutations that influence the trait and 
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prediction is much less limited by LD between SNPs and 
causal mutations. Contrary to this expectation, little gain 
was found in our study. One possible reason could be that 
QTL effects were not estimated properly, due to the rela-
tively small dataset (892 chickens) with imputed WGS 
data [18]. Imputation has been widely used in many live-
stock [38, 46–48], however, the magnitude of the potential 
imputation errors remains difficult to detect. In fact, Van 

Binsbergen et al. [10] reported from a study based on data 
of more than 5000 Holstein–Friesian bulls that predictive 
ability was lower with imputed HD array data than with 
the actual genotyped HD array data, which confirms our 
assumption that imputation could lead to lower predic-
tive ability. In addition, discrete genotype data were used 
as imputed WGS data in this study, instead of genotype 
probabilities which can account for the uncertainty of 

Fig. 6  Predictive ability in a full-sib family with 12 individuals for eggshell strength based on high-density (HD) array data of one replicate. In each 
plot matrix, the diagonal shows the histograms of DRP and DGV obtained with various matrices. The upper triangle shows the Spearman’s rank cor-
relation between DGV with different matrices and with DRP. The lower triangle shows the scatter plot of DGV with different matrices and DRP
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imputation and may be more informative [49]. At present, 
sequencing all individuals in a population is not realistic. 
In practice, there is a trade-off between predictive ability 
and cost efficiency. When focusing on the post-imputa-
tion filtering criteria, the threshold for imputation accu-
racy was 0.8 in our study to guarantee the high quality of 
the imputed WGS data. Numerous rare SNPs, however, 

were filtered out due to the low imputation accuracy as 
shown in Fig. 1 and Additional file 2: Figure S1. This could 
increase the risk of excluding rare causal mutations. How-
ever, Ober et al. [8] did not observe an increase in predic-
tive ability for starvation resistance when rare SNPs were 
included in the GBLUP based on ~2.5 million SNPs that 
had been identified from 192 D. melanogaster. Further 

Fig. 7  Predictive ability in a full-sib family with 12 individuals for eggshell strength based on whole-genome sequence (WGS) data of one replicate. 
In each plot matrix, the diagonal shows the histograms of DRP and DGV obtained with various matrices. The upper triangle shows the Spearman’s 
rank correlation between DGV with different matrices and with DRP. The lower triangle shows the scatter plot of DGV with different matrices and 
DRP
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investigation needs to be done in chicken, especially when 
more founder sequences become available.

Another reason why we did not observe any increase in 
predictive ability when using WGS data could be that we 
did not apply variable selection. The density of WGS data 
was around 15 times higher than that of HD array data, 
which increased LD between SNPs. Thus, QTL effects 
were assigned to more SNPs in WGS data than in HD 
array data, which could be overcome by variable selection. 
Su et al. [28] reported that reliability of GP increased by 
more than 5% when grouping 30 adjacent SNPs. In each 
group, a common weight was assigned which reflected the 
mean over the SNP effects in the same group. In addition, 
Brøndum et  al. [11] reported that the reliability of GP 
can be improved by adding several significant QTL into 
the regular bovine 54  K array data. In our study, 20 top 
SNPs were selected according to their estimated effects 
from RRBLUP or −(log10P) of GWAS and used as fixed 
effects in GBLUP, but it did not improve predictive ability 
(results not shown). GP with genic SNPs from WGS (the 
WGS_genic data) provided the highest predictive abil-
ity compared to that obtained when all SNPs from WGS 
data were used. This implies that selecting the proper 
variables could help us to reduce noise and increase pre-
dictive ability. Using a variable selection model may also 
help. Based on a simulated WGS data, Wimmer et al. [50] 
reported that feature selection methods (e.g. the least 
absolute shrinkage and selection operator) have limita-
tions when the ratio between sample size and number of 
SNPs is unfavorable, which was the case in our study. A 
similar conclusion was drawn by Heidaritabar et  al. [14] 
who found that there was no advantage in genomic pre-
diction with a BayesC model compared to GBLUP based 
on imputed WGS data of 1244 white layer chickens. In 
addition, Ober et  al. [8] observed no differences in pre-
dictive ability with BayesC and GBLUP based on a data-
set with ~2.5 million SNPs that were identified for a D. 
melanogaster population. In addition, with the increasing 
knowledge about gene networks, pathways and suitable 
prediction models, blending biological knowledge based 
on gene annotations and complex interactions may pro-
vide insights to guide GP [51].

Our fourth possible explanation for the small improve-
ment in predictive ability with WGS data refers to the 
population structure. Commercial chickens have been 
subject to intensive within-line selection, which has a 
strong effect on the population structure. MacLeod et al. 
[52] studied the accuracy of GP based on WGS data for 
two simulated populations with a different demographic 
history. They found that in a highly selected population 
with a small effective population size there was almost 
no gain in prediction accuracy when using WGS data 
compared to HD data, which is in agreement with our 

findings. The way the data were split for the cross-vali-
dation strategy might enhance this effect compared to a 
forward prediction scenario.

The use of incomplete WGS information could also 
weaken its predictive ability. First, in most studies, sex 
chromosomes were disregarded in the GP scheme, con-
sidering that the transmission of sex chromosomes and 
that of autosomes differ and that the density of SNPs and 
LD structure on the sex chromosomes is lower than on 
autosomes in commercial SNP chips. However, recent 
studies have discovered an increasing number of genes 
on the sex chromosomes that affect economic traits. For 
example, Su et al. [53] found that including the sex chro-
mosomes in the GP scheme could increase the predictive 
ability averaged over 15 traits that were included in the 
Nordic Total Merit index (e.g. milk yield and fat yield). 
Second, WGS data, technically include all DNA variants 
[e.g. copy number variations (CNV) and InDels], but the 
studies on GP in livestock have so far mostly focused on 
SNPs. However, according to previous studies [54, 55], 
CNV and other types of structural variations play an 
important role in gene expression and phenotypic varia-
tion. Third, although the chicken karyotype consists of 39 
chromosomes, data from re-sequencing represent only 
30 chromosomes and two linkage groups since the ref-
erence genome was not available for some of the micro-
chromosomes which are also assumed to be gene-rich 
[56, 57]. Beyond that, chromosome 16, which hosts the 
chicken major histocompatibility complex, is included in 
the reference sequence but has a low marker density [58] 
and the quality of the reference sequence is expected to 
be inferior due to the high genetic variability. Further-
more, non-nuclear DNA present in the mitochondria is 
not accounted for. In general, further work is necessary to 
assess the importance of the entire DNA variation on the 
predictive ability of GP in chicken.

Conclusions
In this study, we compared the ability of genomic pre-
diction using both high-density array data and imputed 
whole-genome sequencing data. More comparisons were 
performed based on GBLUP with different genomic rela-
tionship matrices to account for the genetic architecture 
of the three traits analyzed: eggshell strength, feed intake, 
and laying rate. Our results show that little or no benefit 
was gained when using all imputed WGS data compared 
to HD array data with different weighting approaches 
in the GBLUP model. However, our results suggest that 
using genic SNPs for genomic prediction has the poten-
tial to improve the predictive ability both with HD and 
WGS data. Overall, the same candidates tend to be 
selected from a full-sib family of interest regardless of the 
genotype data and weighting factors used.
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